畜牧兽医学报  2020, Vol. 51 Issue (3): 505-513. DOI: 10.11843/j.issn.0366-6964.2020.03.010    PDF    
牛卵泡CART受体的筛选及其表达特性分析
侯淑宁1, 郝庆玲1, 景炅婕2, 王锴2, 成俊丽1, 吕丽华2, 李鹏飞1     
1. 山西农业大学生命科学学院, 太谷 030801;
2. 山西农业大学动物科技学院, 太谷 030801
摘要:旨在筛选可卡因-苯丙胺调节转录肽(cocaine and amphetamine regulated transcript peptide,CART)的受体,明确其受体在优势卵泡(dominant follicles,DF)和从属卵泡(subordinate follicles,SF)的表达特性。本研究使用琼脂糖Protein A/G磁珠免疫共沉淀(co-immunoprecipitation,Co-IP)鉴定CART及其相互作用蛋白;利用HMMTOP V2.0分析其跨膜次数并获得G蛋白偶联受体(G-protein-coupled receptors,GPCRs);运用SWISS-MODEL和PDB数据库对CART和筛选出的GPCRs同源建模,获得模型分子的PDBQT文件,并通过评分函数对构建模型质量和每个氨基酸残基的模型质量进行评价;将CART和待分析受体PDBQT文件输入ZDOCK进行分子对接,获得复合体立体空间模型和评分函数值;利用qRT-PCR和免疫组织化学技术对筛选出的靶蛋白趋化因子样受体1(chemokine-like receptor 1,CMKLR1)在牛DF和SF中的表达及定位进行分析。Co-IP获得的111个蛋白质组分中包含10个膜蛋白,分别为A2M、C5、CMKLR1、COX2、DDOST、HEATR5A、B3AT、ADT2、RPN2、SLC4A1;其中CMKLR1具有7次跨膜的α螺旋结构,属于GPCRs;利用SWISS-MODEL建模技术构建CART和CMKLR1的分子模型,ZDOCK分子对接后获得复合体立体空间模型,其中评分函数值最高为1 977.34。qRT-PCR分析表明,CMKLR1 mRNA在SF中的表达量显著高于DF(P < 0.05);免疫组织化学分析结果表明,CMKLR1存在于牛DF和SF颗粒层、膜层,在SF颗粒层和膜层细胞显色强度均高于DF,这与qRT-PCR的分析结果相一致。结果显示,蛋白同源建模和分子对接技术应用于受体筛选是可行的。CMKLR1作为神经肽CART的候选受体,在SF的表达量显著高于DF,该研究对CART受体的鉴定及深入阐明CART调控牛卵泡发育的作用机理具有重要意义。
关键词卵泡    CART    受体    同源建模    分子对接    
Screening and Expression Analysis of CART Receptor in Bovine Follicle
HOU Shuning1, HAO Qingling1, JING Jiongjie2, WANG Kai2, CHENG Junli1, Lü Lihua2, LI Pengfei1     
1. College of Life Science, Shanxi Agricultural University, Taigu 030801, China;
2. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: The aim of this study was to screen CART receptor and clarify its expression characteristics in dominant follicles (DF) and subordinate follicles (SF). CART and proteins associated with CART were identified by using immunomagnetic Protein A/G Co-IP; The membrane proteins were predicted, transmembrane times were analyzed, GPCRs were obtained by HMMTOP V2.0; CART and screened GPCRs were modeled homologously by using SWISS-MODEL and PDB database, PDBQT file of model molecules was obtained, respectively. The quality of constructed model and each amino acid residue were evaluated by scoring function; Inputting CART and PDBQT file of receptors to be analyzed in ZDOCK interface for molecular docking, respectively, complex three-dimensional space model and score function value were obtained; Expression and localization of CMKLR1 in bovine DF and SF were analyzed by qRT-PCR and immunohistochemistry. One hundred and eleven proteins were obtained by Co-IP, which contained 10 membrane proteins (A2M, C5, CMKLR1, COX2, DDOST, HEATR5A, B3AT, ADT2, RPN2, SLC4A1); CMKLR1 had 7 transmembrane helix structures, which belonged to GPCRs; Molecular models of CART and CMKLR1 were constructed using SWISS-MODEL technology, complex three-dimensional space model was obtained by ZDOCK molecular docking, and the highest score function value was 1 977.34. qRT-PCR analysis showed that expression level of CMKLR1 mRNA in SF was significantly higher than that in DF (P < 0.05); Immunohistochemical analysis showed that CMKLR1 was expressed in GCs and membranelayer cells layer of DF and SF, and specific color intensity showed that expression levels of CMKLR1 in SF GCs and membrane cells were higher than those in DF, which were consistent with qRT-PCR results. The results show that protein homology modeling and molecular docking techniques are feasible for receptor screening. CMKLR1, as a candidate receptor for neuropeptide CART, has a significantly higher expression level in SF than DF. This study is of great significance for the identification of CART receptors and for elucidating the mechanism of CART regulating bovine follicular development.
Key words: follicle    CART    receptor    homology modeling    molecular docking    

可卡因-苯丙胺调节转录肽(cocaine and amphetamine regulated transcript peptide, CART)是下丘脑分泌的神经肽,其受体为G蛋白偶联受体(G-protein-coupled receptors, GPCRs)家族。基于CART对牛卵泡发育的重要调控作用[1-2],为了进一步阐明其调控卵泡发育的作用机理,对CART的受体展开筛选和研究,对后期CART受体的鉴定及调控卵泡发育相关药物的设计具有重要意义。对影响卵泡发育相关蛋白的研究较多,其中CART影响卵泡发育的功能是明确的[3-5]。然而,到目前还没有CART受体被成功克隆。Vicentic等[6-7]报道,125 I-CART62-102和小鼠垂体瘤细胞系AtT20能够特异性结合。Keller等[8]研究表明,CART55-102能够与绿色荧光蛋白标记的下丘脑细胞结合。Lakatos等[9]研究发现,CART55-102诱导细胞系AtT20细胞外信号调节激酶(Erk-1和Erk-2)的激活是通过GPCRs介导的,这表明AtT20细胞内存在一个明显的CART受体。目前已发现的神经肽受体,除心房钠尿肽(ANP)受体外,所有已克隆的神经肽受体都属于鸟核苷酸调节蛋白,即GPCRs,其共同特征是受体蛋白的肽链形成7个α螺旋区段并跨膜7次,在大多数情况下要通过细胞内的第二信使产生效应。ANP受体比较特殊,其本身就是膜上的鸟苷酸环化酶(cGMP),该受体激活时直接引起细胞内cGMP含量增加,不需要G蛋白的介导[10]

本研究通过免疫共沉淀(co-immunoprecipitation, Co-IP)筛选与CART相互作用的GPCRs,并通过同源建模和分子对接来评价该GPCRs作为CART受体的可能性。本研究应用Co-IP、生物信息学技术和函数评价筛选CART受体,并对该GPCRs在牛卵泡的表达和定位进行研究,初步分析其在牛卵泡发育中的调控作用,也为进一步鉴定CART的受体提供依据。

1 材料与方法 1.1 试验动物及样品采集

Co-IP试验用动物及样品采集方法详见参考文献[11]。qRT-PCR和免疫组化试验样品来自于实验室保存,详细方法见参考文献[2]。

1.2 试验方法 1.2.1 蛋白组分亚细胞定位

Co-IP、LC-ESI-Q-TOF质谱分析、数据库搜索及参数设定方法详见参考文献[11]。获得蛋白组数据后,通过CELLO V2.5在线软件(http://cello.life.nctu.edu.tw/)对全部蛋白进行亚细胞定位,筛选相关膜蛋白[12]

1.2.2 G蛋白偶联受体的预测

获得10个膜蛋白氨基酸的FASTA格式(NCBI数据库)。应用HMMTOP V2.0(Prediction of transmembrane helices and topology of proteins Version 2.0)[13]对Co-IP和质谱分析中(111个蛋白)筛选出的10个膜蛋白进行G蛋白偶联受体预测。

1.2.3 SWISS-MODEL和PDB数据库对CART和CMKLR1同源建模

通过SWISS-MODEL(http://swissmodel.expasy.org/interactive)运行RCSB PDB(PDB蛋白质数据库http://www.rcsb.org/pdb/results/static.do),分别输入牛CART和CMKLR1蛋白质FASTA序列,分析目标蛋白质Cα原子坐标,获得优化结构和评估数据后,输出PDBQT文件用于后续分析。

1.2.4 ZDOCK分子对接程序

进入ZDOCK SERVER界面(http://zdock.umassmed.edu/),输入CART和受体蛋白PDBQT文件,不选择残基跳跃,然后提交输入结果。根据受体、配体的结构特征和结合部位,分别选择受体、配体的模拟结合网格和结合位点;ZDOCK自动默认参数设定为:蛋白分子结合距离小于6Å,预测数量为1 000,评分函数值由高到低,显示结合构象为前5个预测结果;JAVA程序运行JMol可视化图像预测结果的立体结合构象。

1.2.5 qRT-PCR检测

选取6头10月龄青年母牛,注射PGF2α(前列腺素F2α)同期发情,此间每12 h用B超仪检测并记录卵泡的生长状况,出现优势化卵泡后屠宰摘除卵巢,分离获得DF和SF。依据qRT-PCR检测要求,设定生物重复(n=3)、技术重复(n=3)和内参基因RPLP0(表 1)校正。按照标准曲线和目的基因扩增条件进行qRT-PCR反应。反应条件:95 ℃变性15 s,60 ℃ 1 min,45个循环。

表 1 qRT-PCR引物序列 Table 1 qRT-PCR primer sequences
1.2.6 免疫组化定位分析

参照参考文献[2]的方法,连续切片厚度5 μm。设定阳性对照组、阴性对照组和试验组;试验组滴加100倍稀释兔抗CMKLR1多抗(ab156597,Abcam),4 ℃孵育12 h;阳性对照组由PBS替代一抗;阴性对照组由一抗与10 μg·mL-1 CMKLR1活性肽(ab152289,Abcam)4 ℃预孵育12 h后替代一抗。

1.3 统计分析

采用△△CT法计算CMKLR1 mRNA相对表达量,基因相对表达水平=2-△△CT。结果采用“均值±SE”表示,经RPLP0表达量校正,以CART基因在DF的表达量作为对照组[2],SPSS(V 18.0)进行t检验分析。

2 结果 2.1 蛋白亚细胞定位分析

本研究中,LC-ESI-Q-TOF质谱鉴定出111个蛋白质组分,经CELLO V2.5亚细胞定位预测数据库分析进行亚细胞定位,结果显示(图 1),定位于细胞核的蛋白占32.03%,细胞质蛋白占21.09%,叶绿体蛋白占0.78%,胞外蛋白占21.09%,线粒体蛋白14.84%,内质网蛋白占2.34%,膜蛋白占7.84%。其中,膜蛋白有10个,分别为A2M、C5、CMKLR1、COX2、DDOST、HEATR5A、B3AT、ADT2、RPN2、SLC4A1。

图 1 亚细胞定位预测 Fig. 1 Subcellular localization prediction
2.2 G蛋白偶联受体的预测

应用HMMTOP V2.0在10个膜蛋白中仅筛选出CMKLR1含有7个跨膜α螺旋区(36~60、73~ 96、111~130、151~172、220~239、256~276、291~315 aa),表明CMKLR1属于G蛋白偶联受体。

2.3 目标序列的搜索建模

经SWISS-MODEL搜索(表 2),牛CART立体结构与人源1hy9.1.A同源性最高,为100%,其中,包含2个β折叠及6个半胱氨酸形成的3个二硫键。牛CMKLR1立体结构与人源4n6h.1.A同源性最高,为31.43%。二者同源性均大于30%,可作为蛋白模型建立的分子坐标。

表 2 SWISS-MODEL建模蛋白结果 Table 2 SWISS-MODEL protein modeling results
2.4 模型的评价与分析

通过QMEAN4评分函数对目标蛋白总体模型质量和每个氨基酸残基的模型质量(global and per-residue model quality,GMQE)进行评价(图 2)。结果表明,总体模型中绝大部分原子Z-score的绝对值小于1,只有少数原子Z-score的绝对值大于2;整体QMEAN4平均得分的绝对值为1.32,全部原子Z-score平均得分的绝对值为1.39;在溶解状态下,全部原子Z-score平均得分的绝对值为1.41;在侧链发生旋转时,全部原子Z-score平均得分的绝对值为1.42。

右图为CMKLR1整体模型QMEAN4评分数值,上端表示正值,下端表示负值 Right figure is the QMEAN4 score value of CMKLR1 overall model, the top is positive and the bottom is negative 图 2 总体模型质量评价图 Fig. 2 Overall model quality evaluation chart

图 3A是对构建模型CART中每个氨基酸残基模型质量的评价,图 3A可知,每一个氨基酸残基(76~116 aa)的评分均为正值,这说明构建模型中每一个氨基酸残基都处于可信合理的空间位置。图 3B为CMKLR1构建模型的质量评价曲线,图 3B可知,所构建模型的每一个氨基酸残基(36~315 aa)的评分均为正值,这说明构建模型中每一个氨基酸残基都处于可信合理的空间位置。

A. CART;B. CMKLR1 图 3 蛋白模型质量评价 Fig. 3 Protein model quality estimate
2.5 蛋白复合体立体构象模型及评分结果输出

ZDOCK分子对接后,在结果输出界面获得1 000个在“Grid”内对接结果的评分,选择最大评分作为两蛋白结合的最佳模型(表 3),其评分值接近2 000,符合ZDOCK筛选相互作用蛋白的要求。CART与CMKLR1形成最大评分值复合体的立体空间模型见图 4,由图可见, CMKLR1以桶状结构模式与配体CART紧密结合,且结合部位位于CMKLR1的跨膜区。

表 3 分子对接最高评分输出 Table 3 ZDOCK max score output
深色. CART;白色. CMKLR1 Dark. CART; White. CMKLR1 图 4 蛋白复合体立体空间模型 Fig. 4 Protein complex three-dimensional space model
2.6 CMKLR1 mRNA在牛DF和SF的表达分析

qRT-PCR分析结果见图 5,由图可见,CMKLR1 mRNA在SF的表达量显著高于DF(P < 0.05)。

*. P < 0.05 图 5 CMKLR1在牛DF与SF中的表达差异分析 Fig. 5 The expression difference of CMKLR1 in bovine DF vs SF
2.7 牛卵泡CMKLR1的免疫组化定位分析

免疫组化分析结果显示,CMKLR1在牛DF和SF颗粒层(GC)和膜层(TC)细胞均有表达(图 6B, E),在DF阳性和阴性对照组(图 6A, C)、SF阳性和阴性对照组(图 6D, F)中均无特异性显色反应;从显色强度上可看出SF颗粒层和膜层细胞CMKLR1表达量均高于DF,这与qRT-PCR分析结果相一致。

A、B、C分别为优势卵泡阳性对照组、试验组和阴性对照组;D、E、F分别为从属卵泡阳性对照组、试验组和阴性对照组。GC.颗粒细胞;TC.膜细胞;比例尺为20 μm A, B, C. Control group, experiment group and negative control group of DF, respectively; D, E, F. Control group, experiment group and negative control group of SF, respectively. GC. Granulosa cells; TC. Theca cells; Scale=20 μm 图 6 CMKLR1在牛DF与SF的免疫组化分析(400×) Fig. 6 Immunohistochemical analysis of CMKLR1 in bovine DF vs SF (400×)
3 讨论

CART作为神经递质与进食、体重、药物成瘾、应激以及神经内分泌控制有关[14-16]。研究表明,CART在卵泡颗粒细胞上有表达,且CART在一定FSH浓度下,对体外培养的卵泡GCs生长和增殖具有显著影响[17-19]。尽管CART的作用及细胞活性已得到明确证实,但是与CART结合的具体受体尚不清楚。

CART是动物下丘脑分泌的神经肽,属于经典激素类,其受体为GPCRs。目前,预测蛋白三维结构的方法有3种:折叠识别法、从头预测法和同源建模法。同源建模又称比较建模,是最实用和可信度较高的蛋白结构预测方法[20-22]。蛋白质同源建模的理论基础就是依据生物在进化过程中,蛋白质立体空间结构保守性远大于氨基酸序列保守性,因此,当蛋白质之间的同源性大于30%时,其空间骨架结构基本不发生变化[23-25]。1969年,首次以蛋清溶菌酶结构为基础,成功对α-乳清蛋白三维结构手工建模[26]。从Blundell等[27-28]正式提出同源蛋白三维结构预测之后,相继出现了大量通过同源建模、参数设定成功预测各种蛋白三维结构的报道[29-30]。本研究通过HMMTOP V2.0对跨膜α螺旋进行分析获得GPCRs,利用SWISS-MODEL同源建模技术对CART和CMKLR1进行分子建模,利用分子动力学能量最小化原理优化和QMEAN4评分函数验证表明所构建的CART和CMKLR1分子模型合理可信。

分泌型蛋白CMKLR1也称ChemR23,在动物体内广泛表达[31-33]。CMKLR1在调节蛋白激活以及调控炎性部位趋药性方面具有重要作用,经动物体外和在体试验研究表明,CMKLR1在组织炎性或损伤部位受信号通路调节,促使CMKLR1在细胞中过表达并参与炎性组织消炎[34-35]。发情期动物卵泡发育过程涉及卵泡的生长、增殖和分化,该过程受到生长因子、促性腺激素和细胞内因子等的严格调控,同时,卵泡各细胞之间的相互调节也对类固醇激素的分泌和DF的形成至关重要[36-37]。大量研究证实,CMKLR1对人和大鼠的生殖生理过程发挥重要调控作用[38-39];通过长期对大鼠模型给予雄激素刺激,结果表明,卵巢和循环系统的趋化素分泌量显著提高,卵泡内高水平的CMKLR1会抑制FSH诱导的GCs类固醇激素生成[40]。本研究通过qRT-PCR和免疫组化分析表明,CMKLR1在牛SF GCs的表达量显著高于DF,推测CMKLR1可能是通过抑制牛卵泡GCs类固醇激素分泌来促进卵泡闭锁的。

GPCRs是一个庞大的跨膜蛋白受体家族,目前,已经发现800多个成员,广泛参与感知、生殖、发育、生长、神经和精神等多种生命活动以及内分泌和代谢等多种生理过程;同时,与糖尿病、心脏病、肿瘤、免疫和感染性疾病、神经与精神疾病等重要疾病的发生、发展及治疗密切相关。基于GPCRs在生理病理过程中的重要生物作用,这一蛋白家族也是目前最重要的药物作用靶标库,超过50%的临床用药物以及正在研发中的药物都作用于GPCRs。因此,对CART受体展开研究,不仅为进一步分析单胎家畜卵泡闭锁提供理论依据,也可以为提高单胎家畜的排卵率和优良种畜扩繁等提供技术支持。鉴于GPCRs结构的特殊性,通过肽段合成、重组表达等技术难以获得有活性的蛋白,给配体-受体结合试验造成很大困难。本研究通过对CART受体的筛选,为后期CART受体的鉴定及其作用机理研究奠定了基础。

4 结论

本研究结果显示,蛋白同源建模和分子对接技术应用于受体筛选是可行的。CMKLR1作为神经肽CART的候选受体,在SF的表达量显著高于DF。在牛卵泡发育过程中,CMKLR1可能通过抑制牛卵泡GCs类固醇激素分泌来促进卵泡闭锁的。

参考文献
[1] SMITH G W, SEN A, FOLGER J K, et al. Putative role of cocaine-and amphetamine-regulated transcript (CARTPT) in dominant follicle selection in cattle[J]. Soc Reprod Fertil Suppl, 2010, 67: 105–117.
[2] 李鹏飞, 毕锡麟, 王锴, 等. CART在不同发育阶段牛卵泡颗粒细胞中的表达和定位[J]. 中国农业科学, 2016, 49(12): 2389–2396.
LI P F, BI X L, WANG K, et al. Research on the expression and localization of CART in bovine granulosa cells at different developmental stages[J]. Scientia Agricultura Sinica, 2016, 49(12): 2389–2396. DOI: 10.3864/j.issn.0578-1752.2016.12.014 (in Chinese)
[3] HOU S N, HAO Q L, ZHU Z W, et al. Unraveling proteome changes and potential regulatory proteins of bovine follicular granulosa cells by mass spectrometry and multi-omics analysis[J]. Proteome Sci, 2019, 17: 4. DOI: 10.1186/s12953-019-0152-1
[4] HAO Q L, ZHU Z W, XU D M, et al. Proteomic characterization of bovine granulosa cells in dominant and subordinate follicles[J]. Hereditas, 2019, 156: 21. DOI: 10.1186/s41065-019-0097-5
[5] LI P F, MENG J Z, ZHU Z W, et al. Detection of genes associated with follicle development through transcriptome analysis of bovine ovarian follicles GCs[J]. Curr Bioinform, 2018, 13(2): 127–140. DOI: 10.2174/1574893612666170403165746
[6] VICENTIC A, LAKATOS A, KUHAR M J. CART (cocaine-and amphetamine-regulated transcript) peptide receptors:specific binding in AtT20 cells[J]. Eur J Pharmacol, 2005, 528(1-3): 188–189. DOI: 10.1016/j.ejphar.2005.11.041
[7] VICENTIC A, LAKATOS A, JONES D. The CART receptors:background and recent advances[J]. Peptides, 2006, 27(8): 1934–1937. DOI: 10.1016/j.peptides.2006.03.031
[8] KELLER P A, COMPAN V, BOCKAERT J, et al. Characterization and localization of cocaine-and amphetamine-regulated transcript (CART) binding sites[J]. Peptides, 2006, 27(6): 1328–1334. DOI: 10.1016/j.peptides.2005.10.016
[9] LAKATOS A, PRINSTER S, VICENTIC A, et al. Cocaine-and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors[J]. Neurosci Lett, 2005, 384(1-2): 198–202. DOI: 10.1016/j.neulet.2005.04.072
[10] ROCHE J F, MIHM M, DISKIN M G, et al. A review of regulation of follicle growth in cattle[J]. J Anim Sci, 1998, 76(S3): 16–29.
[11] 李鹏飞, 孟金柱, 刘岩, 等. 免疫共沉淀筛选牛卵泡CART相互作用蛋白的研究[J]. 畜牧兽医学报, 2015, 46(12): 2169–2175.
LI P F, MENG J Z, LIU Y, et al. Screening proteins interacting with cocaine-and amphetamine-regulated transcript in bovine follicles by co-immunoprecipitation[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(12): 2169–2175. DOI: 10.11843/j.issn.0366-6964.2015.12.007 (in Chinese)
[12] HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44–57. DOI: 10.1038/nprot.2008.211
[13] TUSNÁDY G E, SIMON I. The HMMTOP transmembrane topology prediction server[J]. Bioinformatics, 2001, 17(9): 849–850. DOI: 10.1093/bioinformatics/17.9.849
[14] HUNTER R G, PHILPOT K, VICENTIC A, et al. CART in feeding and obesity[J]. Trends Endocrinol Met, 2004, 15(9): 454–459. DOI: 10.1016/j.tem.2004.09.010
[15] KUHAR M J, JAWORSKI J N, HUBERT G W, et al. Cocaine-and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets[J]. AAPS J, 2005, 7(1): E259–E265. DOI: 10.1208/aapsj070125
[16] MO C H, LV C, HUANG L, et al. Regulation of pituitary cocaine-and amphetamine-regulated transcript expression and secretion by hypothalamic gonadotropin-releasing hormone in chickens[J]. Front Physiol, 2019, 10: 882. DOI: 10.3389/fphys.2019.00882
[17] SEN A, BETTEGOWDA A, JIMENEZ-KRASSEL F, et al. Cocaine-and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells[J]. Endocrinology, 2007, 148(9): 4400–4410. DOI: 10.1210/en.2007-0332
[18] LI P F, MENG J Z, JING J J, et al. Study on the relationship between expression patterns of cocaine-and amphetamine regulated transcript and hormones secretion in porcine ovarian follicles[J]. Biol Res, 2018, 51(1): 6. DOI: 10.1186/s40659-018-0154-y
[19] LI P F, YU X J, XIE J S, et al. Expression of cocaine-and amphetamine-regulated transcript (CART) in hen ovary[J]. Biol Res, 2017, 50(1): 18. DOI: 10.1186/s40659-017-0123-x
[20] STERNBERG M J E. Protein structure prediction:a practical approach[M]. New York: Oxford Academy Press, 1996.
[21] SÁNCHEZ R, ŠALI A. Comparative protein structure modeling in genomics[J]. J Comput Phys, 1999, 151(1): 388–401. DOI: 10.1006/jcph.1999.6200
[22] SIMPKIN A J, THOMAS J M H, SIMKOVIC F, et al. Molecular replacement using structure predictions from databases[J]. Acta Crystallogr D Struct Biol, 2019, D75(12): 1051–1062.
[23] DODGE C, SCHNEIDER R, SANDER C, et al. The HSSP database of protein structure-sequence alignments and family profiles[J]. Nucleic Acids Res, 1998, 26(1): 313–315. DOI: 10.1093/nar/26.1.313
[24] VETRIVEL I, DE BREVERN A G, CADET F, et al. Structural variations within proteins can be as large as variations observed across their homologues[J]. Biochimie, 2019, 167: 162–170. DOI: 10.1016/j.biochi.2019.09.013
[25] HOU J, WU T Q, CAO R Z, et al. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13[J]. Proteins, 2019, 87(12): 1165–1178. DOI: 10.1002/prot.25697
[26] BROWNE W J, NORTH A C T, PHILLIPS D C, et al. A possible three-dimensional structure of bovine α-lactalbumin based on that of hen's egg-white lysozyme[J]. J Mol Biol, 1969, 42(1): 65–86. DOI: 10.1016/0022-2836(69)90487-2
[27] BLUNDELL T L, SIBANDA B L, STERNBERG M J E, et al. Knowledge-based prediction of protein structures and the design of novel molecules[J]. Nature, 1987, 326(6111): 347–352. DOI: 10.1038/326347a0
[28] BLUNDELL T, CARNEY D, GARDNER S, et al. 18th sir Hans Krebs Lecture[J]. Eur J Biochem, 1988, 172(3): 513–520. DOI: 10.1111/j.1432-1033.1988.tb13917.x
[29] WESSON L, EISENBERG D. Atomic solvation parameters applied to molecular dynamics of proteins in solution[J]. Protein Sci, 1992, 1(2): 227–235.
[30] MACARTHUR M W, THORNTON J M. Conformational analysis of protein structures derived from NMR data[J]. Proteins, 1993, 17(3): 232–251. DOI: 10.1002/prot.340170303
[31] GANTZ I, KONDA Y, YANG Y K, et al. Molecular cloning of a novel receptor (CMKLR1) with homology to the chemotactic factor receptors[J]. Cytogenet Cell Genet, 1996, 74(4): 286–290. DOI: 10.1159/000134436
[32] HE R, SONG Y, YIN W, et al. The Chemerin-CMKLR1 axis aggravates staphylococcus aureus skin infection via inhibition of IL-33-induced neutrophil recruitment[J]. Eur J Immunol, 2019, 49(Supp3): 1137–1138.
[33] KUMAR V, LAJEVIC M, PANDRALA M, et al. Novel CMKLR1 inhibitors for application in demyelinating disease[J]. Sci Rep, 2019, 9(1): 7178. DOI: 10.1038/s41598-019-43428-8
[34] MARIANI F, RONCUCCI L. Chemerin/chemR23 axis in inflammation onset and resolution[J]. Inflamm Res, 2015, 64(2): 85–95. DOI: 10.1007/s00011-014-0792-7
[35] ROURKE J L, DRANSE H J, SINAL C J. Towards an integrative approach to understanding the role of chemerin in human health and disease[J]. Obes Rev, 2013, 14(3): 245–262. DOI: 10.1111/obr.12009
[36] 朱芷葳, 郝庆玲, 侯淑宁, 等. 牛卵泡TEDDM1表达特点及其功能分析[J]. 畜牧兽医学报, 2019, 50(6): 1189–1197.
ZHU Z W, HAO Q L, HOU S N, et al. Expression characteristic and function analysis of TEDDM1 in bovine follicle[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1189–1197. (in Chinese)
[37] 郝庆玲, 景炅婕, 侯淑宁, 等. 基于Label-free技术分析牛卵泡蛋白质组分及关键调控蛋白[J]. 畜牧兽医学报, 2019, 50(5): 983–992.
HAO Q L, JING J J, HOU S N, et al. Proteomic analysis of follicular components and key regulatory proteins in bovine based on label-free technology[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(5): 983–992. (in Chinese)
[38] KIM J Y, XUE K, CAO M J, et al. Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone[J]. Endocrinology, 2013, 154(8): 2912–2923. DOI: 10.1210/en.2013-1001
[39] GARCES M F, SANCHEZ E, ACOSTA B J, et al. Expression and regulation of chemerin during rat pregnancy[J]. Placenta, 2012, 33(5): 373–378. DOI: 10.1016/j.placenta.2012.02.007
[40] WANG Q, KIM J Y, XUE K, et al. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome[J]. Endocrinology, 2012, 153(11): 5600–5611. DOI: 10.1210/en.2012-1424