畜牧兽医学报  2020, Vol. 51 Issue (3): 465-474. DOI: 10.11843/j.issn.0366-6964.2020.03.007    PDF    
HOTAIR与山羊皮肤黑色素沉积的关系及体外表达规律的研究
蒋婧1,2, 李杰1,2, 周鹏1,2, 王高富1,2, 陈灿灿1,2, 付琳1,2, 张丽1,2, 刘良佳1,2, 任航行1,2     
1. 重庆市畜牧科学院, 荣昌 402460;
2. 重庆市山羊工程技术研究中心, 荣昌 402460
摘要:旨在探讨山羊HOX转录反义RNA(HOTAIR)及其部分家族基因与山羊皮肤黑色素沉积的关系以及它们在黑色素细胞中的表达规律。本研究采用qRT-PCR检测HOTAIRHOXD10、HOXC11、HOXC12基因在健康成年雌性酉州乌羊((19.16±1.44)kg)、板角山羊((23.27±3.24)kg)皮肤组织中的mRNA水平,及其在小鼠皮肤黑色素瘤细胞(B16-F10)增殖、分化过程中(培养1、3、5和7 d)的表达模式,并分析HOTAIR与其他3个基因表达的相关性。结果显示,在皮肤组织中,酉州乌羊HOTAIRHOXC12的相对表达量极显著高于板角山羊(P < 0.01),酉州乌羊HOXD10的相对表达量显著低于板角山羊(P < 0.05);HOTAIRHOXC12表达显著正相关(P < 0.05),与HOXD10表达显著负相关(P < 0.05)。在B16-F10细胞增殖阶段,HOTAIR在各阶段表达差异不显著(P>0.05),HOXC11、HOXC12和HOXD10呈"高-低-高"的表达模式,且均在培养1 d的相对表达量极显著高于3和5 d(P < 0.01);HOTAIRHOXC11表达呈极显著正相关(P < 0.01)。在B16-F10细胞分化阶段,HOTAIR表达持续上升,HOXD10表达持续下降,HOXC11在各阶段的相对表达差异不显著(P>0.05),HOXC12在培养1和5 d的相对表达量极显著高于3和7 d(P < 0.01);HOTAIRHOXD10表达极显著负相关(P < 0.01)。HOTAIR在乌皮山羊皮肤中高表达,在B16-F10细胞分化阶段的表达随着培养时间的延长而增加,HOTAIRHOXD10存在负向调控作用。HOTAIRHOXD10互作可能调控山羊皮肤黑色素细胞的分化与黑色素生成。
关键词山羊    HOX转录反义RNA    HOX家族基因    皮肤    黑色素细胞    
The Relationship between HOTAIR and Skin Pigmentation in Goats and Its Expression Pattern in vitro
JIANG Jing1,2, LI Jie1,2, ZHOU Peng1,2, WANG Gaofu1,2, CHEN Cancan1,2, FU Lin1,2, ZHANG Li1,2, LIU Liangjia1,2, REN Hangxing1,2     
1. Chongqing Academy of Animal Sciences, Rongchang 402460, China;
2. Chongqing Engineering Research Center for Goat, Rongchang 402460, China
Abstract: The aim of this study was to explore the relationship between goat HOX transcript antisense RNA (HOTAIR) and its partial family genes and skin pigmentation in goats as well as its expression pattern in the melanocytes. qRT-PCR was used to detect the mRNA expression level of HOTAIR, HOXD10, HOXC11 and HOXC12 genes in skin tissues of adult female Youzhou Dark-skin goats ((19.16±1.44) kg) and Banjiao goats ((23.27±3.24) kg). Then the expression pattern of these genes in mouse skin melanoma cells (B16-F10) at different proliferation and differentiation stages (1, 3, 5 and 7 d cultured) were also detected by qRT-PCR, and the relationship in expression level between HOTAIR and the other 3 genes was analyzed. The results showed that expression of HOTAIR and HOXC12 in the skin tissue of Youzhou Dark-skin goats were significantly higher than those of Banjiao goats (P < 0.01), however, expression of HOXD10 in the skin tissue of Youzhou Dark-skin goats was significantly lower than that of Banjiao goats (P < 0.05). Pearson correlation analysis indicated that expression level of HOTAIR was significantly positively correlated with HOXC12 (P < 0.05), but significantly negatively correlated with HOXD10 (P < 0.05). In the proliferation stage of B16-F10 cells, expression of HOTAIR was not significantly different (P>0.05) among different proliferation stages; The expression of HOXC11, HOXC12 and HOXD10 showed a pattern of "high-low-high", and their mRNA levels on 1 d cultured were higher than those on 3 and 5 d cultured (P < 0.01); The expression level of HOTAIR was positively correlated with HOXC11 (P < 0.01). At the differentiation stage of B16-F10 cells, expression of HOTAIR kept increasing during cell differentiation; Instead, expression of HOXD10 kept decreasing during this stage; Expression of HOXC11 was not significantly different (P>0.05) among different differentiation stages; Expression of HOXC12 on 1 and 5 d cultured were very significantly higher than those on 3 and 7 d cultured (P < 0.01); Expression level of HOTAIR was significantly negatively correlated with HOXD10 (P < 0.01). HOTAIR shows high expression level in the dark skin of goats, and its expression level remains increasing during differentiation in B16-F10 cells. HOTAIR has a negative regulatory effect on HOXD10. The interaction between HOTAIR and HOXD10 may affect skin pigmentation by regulating the differentiation of skin melanocytes in goats.
Key words: goat    HOTAIR    HOX family gene    skin    melanocyte    

长链非编码RNA(long non-coding RNA,lncRNA)是一类不编码蛋白质、长于200个核苷酸的RNA,位于细胞核或胞浆[1]。通常分为5类:即正义(sense)、反义(antisense)、双向(bidirectional)、基因内(intronic)及基因间(intergenic)lncRNA[2-3]。在基因组转录产物中,lncRNA所占的比例远远超过mRNA,早期并未受到人们重视,被认为是转录过程中的副产物。近年来,随着lncRNA、miRNA、siRNA等研究的深入,研究人员发现,lncRNA可通过与DNA、RNA和蛋白质的相互作用,在基因表达调控和细胞生长、增殖、分化等生命活动中发挥重要作用[3]。Ren等[4]通过RNA-seq分析发现,大量lncRNAs在100日龄酉州乌羊(白毛乌皮)和渝东白山羊(白毛白皮)胎儿皮肤组织中存在极显著的表达差异,其中XLOC000026在乌皮中的表达极显著高于白皮,通过在GenBank、ENCODE等数据库中BLAST,发现该片段位于山羊HOXC11和HOXC12基因之间,与人和鼠的HOTAIR基因高度同源,预测XLOC000026为山羊同源异型盒(homeobox,HOX)转录反义RNA(HOX transcript antisense RNA,HOTAIR)基因的部分序列。

HOTAIR是第一个被发现的具有反式作用的lncRNA[5]。在哺乳动物中,HOTAIR基因的6个外显子同时出现在HOX基因家族的HOXC11和HOXC12基因之间,能反式调控位于不同染色体上的HOXD10基因[6]HOTAIR基因在黑色素瘤等多种人类肿瘤细胞中的表达异常高于周围正常组织[7-10],且HOTAIR的沉默能抑制黑色素瘤A375细胞的运动性和侵袭性[11]HOXD10、HOXC11和HOXC12等HOX家族成员均在恶性肿瘤中尤其是皮肤恶性黑色素瘤中异常表达[12],其中,HOXD10基因还能上调DKK1基因表达[13],而DKK1基因又可通过抑制β-cateninMITF来抑制其生成黑色素细胞的功能[14-16]。此外,HOX基因与MITF在启动子区域的结合会因MITF基因该区域突变而受到影响[17]。以上研究表明,HOTAIR基因可能通过调控黑色素细胞的行为学来影响黑色素的沉积和皮肤的着色,HOXD10、HOXC11和HOXC12基因可能与黑色素细胞或黑色素合成有一定的关联,但暂未发现有这方面的文献报道。

本试验首先以不同肤色的酉州乌羊(白毛乌皮)和板角山羊(白毛白皮)为研究对象,利用实时荧光定量PCR检测HOTAIRHOXD10、HOXC11和HOXC12基因在成年山羊皮肤组织中的表达水平,然后检测它们在B16-F10黑色素细胞增殖与分化过程中的动态表达规律,并进一步分析HOTAIR基因与其他3个基因表达的相关性。初步预测这4个基因与黑色素合成的关系,以及它们是否参与了黑色素细胞行为学的调控,以期为揭示HOTAIR基因及HOX家族在色素合成方面的分子机制提供理论依据。

1 材料与方法 1.1 材料

酉州乌羊(白毛乌皮)和板角山羊(白毛白皮)购自重庆市酉州乌羊资源保护场,随机选择健康成年雌性酉州乌羊((19.16±1.44) kg)和板角山羊((23.27±3.24) kg)各3只,采集腹部皮肤组织,液氮保存备用。小鼠皮肤黑色素瘤细胞(B16-F10)购自中国科学院上海细胞库。

1.2 主要试剂

DMEM培养基、胎牛血清(fetal bovine serum,FBS)、马血清(horse serum,HS)均购自美国Gibco公司。青链霉素双抗、0.25%胰蛋白酶、PBS均购自新西兰HyClone公司。6孔板、10 cm细胞培养皿,15 mL离心管均购自美国Corning公司。Transcriptor First Strand cDNA Synthesis和FastStart Universal SYBR Green Master(ROX)购自德国Roche公司。Trizol试剂购自美国Invitrogen公司。

1.3 山羊B16-F10黑色素细胞培养

B16-F10细胞增殖培养步骤:在无菌条件下,用含有10% FBS的M1640完全培养基复苏B16-F10细胞,放入10 cm细胞培养皿中进行培养。待细胞生长达到90%融合时,加入胰蛋白酶消化细胞,离心,按照1.0×105个·mL-1铺板于6孔细胞培养板中,每个板3个重复。在37 ℃,5% CO2培养箱中继续培养,隔天更换1次培养基,显微镜下观察接种了1、3、5和7 d的细胞生长状态并拍照,每个样品随机拍3个视野,收集细胞以备RNA提取。

B16-F10细胞分化培养步骤:将细胞接种于6孔细胞培养板内,当细胞融合达到80%左右时,去除旧的培养液,更换为含2% HS的DMEM培养基进行诱导分化。每隔1 d对细胞进行换液,显微镜下观察分化培养了1、3、5和7 d的细胞生长状态,并收集细胞。

1.4 qRT-PCR检测各基因在不同肤色山羊皮肤中以及B16-F10细胞中的mRNA相对表达量

用Trizol法分别提取不同品种山羊皮肤组织总RNA和B16-F10细胞增殖与分化阶段细胞总RNA,1%琼脂糖凝胶电泳检测RNA质量,应用反转录试剂盒生成cDNA,荧光定量PCR检测HOTAIRHOXC11、HOXC12、HOXD10基因的mRNA表达情况。除HOTAIR基因序列参考实验室前期试验所得外,其他基因参考NCBI数据库中山羊相关基因的序列,β-actin为内参基因,引物信息见表 1。qRT-PCR反应总体系为10 μL:7 μL FastStart Universal SYBR Green Master(ROX),0.5 μL PCR Forward Primer(10 μmol·L-1),0.5 μL PCR Reverse Primer(10 μmol·L-1),1 μL cDNA模板,1 μL ddH2O。反应条件:95 ℃预变性10 min;95 ℃变性10 s,退火温度退火60 s,40个循环;每个基因做3次重复,反应在ABI stepone荧光定量PCR仪上进行。相对定量的结果采用2-△△Ct法进行计算。

表 1 基因引物参数 Table 1 Parameters of primer pairs for the genes
1.5 数据处理及分析

应用IBM SPSS Statistics 22统计软件进行分析,组间比较利用独立样本t检验进行方差分析和显著性检验;利用双变量Pearson检验各基因表达的相关性,试验数据以“平均值±标准差”表示。P < 0.05表示差异显著,P < 0.01表示差异极显著。

2 结果 2.1 HOTAIR与部分HOX基因家族成员在乌皮和非乌皮山羊中的表达及相关性分析

各基因在不同肤色成年山羊皮肤中的mRNA表达情况如图 1所示,HOTAIRHOXC12基因在酉州乌羊皮肤中相对表达量极显著高于板角山羊(P < 0.01),HOXD10在酉州乌羊皮肤中表达显著低于板角山羊(P < 0.05),HOXC11在两个品种山羊皮肤中表达差异不显著(P>0.05)。

不同大写字母表示差异极显著(P < 0.01),不同小写字母表示差异显著(P < 0.05),下同 Different capital letters indicate the extremely significant difference (P < 0.01), and different lowercase letters indicate significant difference (P < 0.05), the same as below 图 1 各基因在西州乌羊和板角山羊皮肤组织中的表达 Fig. 1 Expression of various genes in the goat skin tissue of Youzhou Dark-skin goats and Banjiao goats

在成年酉州乌羊和板角山羊皮肤中,HOTAIR与部分HOX基因家族成员mRNA表达的相关性分析结果(表 2)显示,HOTAIRHOXC12的相对表达量呈显著正相关(r=0.527,P < 0.05),与HOXD10的相对表达量呈显著的负相关(r=-0.501,P < 0.05),与HOXC11的相对表达量相关性不显著(r=-0.410,P>0.05)。

表 2 HOXTAIR与部分HOX基因家族成员在山羊皮肤组织mRNA表达的相关系数 Table 2 Correlation coefficient of expression between HOTAIR and some HOX gene family members in the goat skin tissue
2.2 HOTAIR与部分HOX基因家族成员在B16-F10细胞增殖阶段的动态表达及相关性分析

为了探究HOTAIR等基因是否参与了对黑色素细胞行为学的调控,本研究检测了它们在B16-F10细胞增殖过程中(培养1、3、5和7 d)的表达量。如图 2所示,在增殖介质中培养1 d时,细胞数量较少、结构清晰;随着细胞培养生长时间的延长,细胞数量不断增加,到5 d时细胞几乎铺满6孔板,其结构模糊,勉强能辨清单个细胞;到7 d时,细胞已完全铺满整个6孔板,无法辨清单个细胞。表达量检测结果发现(图 3),HOTAIR基因相对表达量在各阶段差异不显著(P>0.05);HOXC11、HOXC12和HOXD10均呈“高-低-高”的表达模式,且在培养3和5 d的相对表达量极显著低于1 d(P < 0.01),其中HOXC11在7 d的相对表达量显著低于1 d(P < 0.05),HOXC12在培养7 d的相对表达量极显著低于1 d(P < 0.01)。

A、B、C、D分别表示培养1、3、5、7 d细胞的增殖情况,标尺=200 μm A, B, C and D represent proliferation of cells on 1, 3, 5 and 7 d cultured, respectively, Bar=200 μm 图 2 B16-F10细胞不同培养时间增殖结果 Fig. 2 The results of B16-F10 cells proliferation at different cultured time
A、B、C、D分别表示HOTAIRHOXD10、HOXC11、HOXC12基因在B16-F10细胞增殖阶段的mRNA相对表达情况 A, B, C and D represent the relative mRNA expression of HOTAIR, HOXD10, HOXC11 and HOXC12 genes at the proliferation stage of B16-F10 cells, respectively 图 3 各基因在B16-F10细胞增殖阶段的表达 Fig. 3 Expression of various genes in the proliferation stage of B16-F10 cells

在B16-F10细胞增殖阶段,HOTAIR与部分HOX基因家族成员mRNA表达量的相关性分析结果(表 3)显示,HOTAIRHOXC11的相对表达量呈极显著正相关(P < 0.01),与HOXC12、HOXD10的相对表达量相关性不显著(P>0.05)。

表 3 HOXTAIR与部分HOX基因家族成员在B16-F10细胞增殖阶段表达量的相关系数 Table 3 Correlation coefficient of expression level between HOTAIR and some HOX gene family members in the proliferation stage of B16-F10 cells
2.3 B16-F10细胞分化阶段各基因mRNA表达情况及相关性分析

图 4可以看出,在分化前期(培养1和3 d),细胞数量仍持续增加,但到5和7 d的时候,细胞数量稳定,细胞核周围出现大量黑素体,黑色素分泌增多,突触增多、变长,细胞间突触相互交联。各基因在此阶段的表达情况如图 5所示,随着诱导分化时间的增加,HOTAIR呈持续上升的趋势,与1 d相比,7 d的相对表达量极显著增高(P < 0.01);HOXD10呈持续下降的趋势,5和7 d的相对表达量极显著低于1和3 d(P < 0.01);HOXC11呈上升-下降-上升的趋势,各阶段的相对表达量差异不显著(P>0.05);HOXC12呈下降-上升-下降的趋势,3和7 d的相对表达量极显著低于1和5 d(P < 0.01)。

A、B、C、D分别表示培养1、3、5、7 d细胞的分化情况,标尺=200 μm A, B, C and D represent differentiation of cells on 1, 3, 5 and 7 d cultured, respectively; Bar=200 μm 图 4 B16-F10细胞不同时间分化结果 Fig. 4 The results of B16-F10 cells differentiation at different cultured time
A、B、C、D分别表示HOTAIRHOXD10、HOXC11、HOXC12基因在B16-F10细胞分化阶段的mRNA相对表达情况 A, B, C and D represent the relative mRNA expression of HOTAIR, HOXD10, HOXC11 and HOXC12 genes at the differentiation stage of B16-F10 cells, respectively 图 5 各基因在B16-F10细胞分化阶段的表达 Fig. 5 Expression of various genes in the differentiation stage of B16-F10 cells

HOTAIR与部分HOX基因家族成员在B16-F10分化阶段mRNA表达量的相关性分析结果(表 4)显示,HOTAIRHOXD10相对表达量呈极显著负相关(P < 0.01),与HOXC11和HOXC12相对表达量相关性不显著(P>0.05)。

表 4 HOTAIR与部分HOX基因家族成员在B16-F10细胞分化阶段表达量的相关系数 Table 4 Correlation coefficient of expression between HOTAIR and some HOX gene family members in the differentiation stage of B16-F10 cells
3 讨论

同源异型盒转录反义RNA(HOTAIR)位于HOX基因家族的HOXC11和HOXC12基因之间,它在野生型小鼠中的表达与HOXC族基因之间的表达存在一定的关系,其中和HOXC11和HOXC12基因表达存在正相关[18]。本研究发现,HOTAIR基因在B16-F10细胞增殖阶段的表达与HOXC11基因表达呈极显著正相关,在皮肤组织中的表达与HOXC12基因呈极显著正相关,与前人研究结果相符。HOTAIR基因在哺乳动物体内反式调控HOXD10基因[6, 19],本研究结果说明无论是在山羊皮肤中还是在小鼠B16-F10黑色素瘤细胞内,HOTAIR基因均对HOXD10存在负向调控作用。

研究发现,山羊HOTAIR基因在100日龄乌皮山羊胎儿皮肤组织中的表达极显著高于同日龄白皮山羊胎儿[4],本研究发现,该基因在成年乌皮山羊皮肤组织中的表达极显著高于成年白皮山羊,说明山羊HOTAIR基因的持续性高表达可能在山羊不同发育阶段均与皮肤色素沉积高度相关。PI3K/Akt/mTOR信号通路既是调控细胞增殖和凋亡的经典通路之一,又是蛋白合成的主要信号调节通路,参与细胞增殖、分化和转移,通过调控生长因子的表达激活该途径可抑制多种细胞凋亡,促进细胞周期进程,进而促进黑色素瘤等肿瘤细胞的生长和增殖[20-21]。mTOR被证实是一个关键的自噬调节因子[22-23],下调PI3K/Akt/mTOR信号通路可诱导自噬,自噬参与了黑色素的降解[24],因此,推测促进mTOR表达和活性将促进黑色素的生成。此外,白介素1可通过激活PI3K/Akt途径来上调黑色素生成[25]。有研究报道,HOTAIR介导了PI3K/Akt/mTOR信号通路,过表达HOTAIR基因可显著增加B16-F10细胞中mTOR蛋白的表达,并显著提高B16-F10细胞的生存能力[26]HOTAIR基因在黑素瘤细胞中的表达高于周围正常组织,且对黑色素瘤细胞的运动性和侵袭性有一定的影响[11]。另外,李园等[27]通过生物信息学预测HOTAIR可能通过竞争性的结合miR-217、miR-203、miR-375来实现对MITF的调控,从而调控黑色素的生成。本研究发现,HOTAIR基因在B16-F10细胞增殖过程中的表达差异不显著,但在分化阶段随着分化天数的增加持续上升,并在分化7 d极显著高于1 d。推测HOTAIR基因可能通过调控MITF基因、促进mTOR蛋白的表达或促进黑色素细胞分化来促进黑色素的合成,从而影响皮肤着色。

近年来,有文献报道[28-30]HOXD10基因是miR-10b的主要靶基因之一,miR-10b能够通过与HOXD10 mRNA 3′UTR上的结合位点结合,抑制HOXD10 mRNA的翻译,从而调节HOXD10蛋白的表达。在癌细胞中,miR-10b能通过抑制HOXD10的表达来促进RhOC基因的表达[30-31]RhOC表达与磷酸化MAPK和磷酸化Akt的表达呈正相关,过表达RhOC可上调MAPK和Akt磷酸化表达水平,从而激活Akt/MAPK信号通路[32]。Yuan等[33]发现,HOXD10的过表达可导致Akt/MAPK通路去磷酸化后失活,也证实了抑制HOXD10的表达可激活Akt/MAPK信号通路。MAPK家族蛋白之一p38的磷酸化可激活MITF表达,MAPK信号通路中的MEK和ERK通过与黑色素细胞外结构域结合激活Ras-Raf-MEK-ERK通路也可导致MITF上调,从而影响黑色素合成[34-35]。此外,miR-10b在山羊黑皮毛囊中的表达极显著高于在山羊白皮毛囊中的表达[36];miR-10b还是影响导致黑素瘤细胞异常生长的B-RafV600E活性的重要中介物[37],这些研究均表明,HOXD10基因可能对黑色素合成有抑制作用。本研究发现,白山羊皮肤中HOXD10基因表达量显著高于酉州乌羊,推测HOXD10基因高表达可能通过抑制RhOC/Akt/MAPK通路来抑制黑色素的合成。前人发现,HOXD10基因对DKK1基因的转录具有激活作用[13]DKK1作为Wnt/β-catenin信号通路的拮抗剂[38-39],对促进黑色素生成的β-cateninMITF具有抑制作用,从而抑制黑色素细胞的功能[14, 16, 39-40]。本研究发现,HOXD10基因在B16-F10细胞分化阶段的表达随着日龄的增加而下降,表明HOXD10基因的持续低表达能促进黑色素细胞的分化,预测HOXD10基因可能通过激活DKK1基因来抑制黑色素细胞的功能,从而抑制黑色素合成乃至皮肤着色。

一直以来,HOTAIR只作为癌症的调节因子、治疗靶点或生物标记物被探索[11, 19, 41-44]。本试验研究了HOTAIRHOX基因家族的HOXD10、HOXC11和HOXC12与山羊皮肤着色的关系及其体外动态表达特征,阐释了其影响山羊皮肤黑色素沉积的可能性,但其具体分子机制还有待进一步研究。

4 结论

HOTAIR在乌皮山羊皮肤中高表达,在B16-F10细胞分化阶段的表达随着培养时间的延长而增加,HOXD10基因则相反,证实HOTAIRHOXD10存在负向调控作用。初步揭示HOTAIRHOXD10的互作可能调控山羊皮肤黑色素细胞的分化与黑色素生成。

参考文献
[1] QUINN J J, ILIK I A, QU K, et al. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification[J]. Nat Biotechnol, 2014, 32(9): 933–940. DOI: 10.1038/nbt.2943
[2] MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs:insights into functions[J]. Nat Rev Genet, 2009, 10(3): 155–159. DOI: 10.1038/nrg2521
[3] PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4): 629–641. DOI: 10.1016/j.cell.2009.02.006
[4] REN H X, WANG G F, CHEN L, et al. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus)[J]. BMC Genomics, 2016, 17: 67. DOI: 10.1186/s12864-016-2365-3
[5] RINN J L, KERTESZ M, WANG J K, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7): 1311–1323. DOI: 10.1016/j.cell.2007.05.022
[6] HE S, LIU S P, ZHU H. The sequence, structure and evolutionary features of HOTAIR in mammals[J]. BMC Evol Biol, 2011, 11: 102. DOI: 10.1186/1471-2148-11-102
[7] ZHAO W, AN Y, LIANG Y, et al. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer[J]. Eur Rev Med Pharmacol Sci, 2014, 18(13): 1930–1936.
[8] KIM K, JUTOORU I, CHADALAPAKA G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer[J]. Oncogene, 2013, 32(13): 1616–1625. DOI: 10.1038/onc.2012.193
[9] KOGO R, SHIMAMURA T, MIMORI K, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers[J]. Cancer Res, 2011, 71(20): 6320–6326. DOI: 10.1158/0008-5472.CAN-11-1021
[10] CHEN F J, SUN M, LI S Q, et al. Upregulation of the long non-coding RNA HOTAIR promotes esophageal squamous cell carcinoma metastasis and poor prognosis[J]. Mol Carcinog, 2013, 52(11): 908–915. DOI: 10.1002/mc.21944
[11] TANG L H, ZHANG W, SU B, et al. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma[J]. Biomed Res Int, 2013, 2013: 251098.
[12] PIÉRARD G E, PIÉRARD-FRANCHIMONT C. HOX gene aberrant expression in skin melanoma:a review[J]. J Skin Cancer, 2012, 2012: 707260.
[13] MAGNUSSON M, BRUN A C M, MIYAKE N, et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development[J]. Blood, 2007, 109(9): 3687–3696. DOI: 10.1182/blood-2006-10-054676
[14] YAMAGUCHI Y, PASSERON T, HOASHI T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes[J]. FASEB J, 2008, 22(4): 1009–1020. DOI: 10.1096/fj.07-9475com
[15] YAMAGUCHI Y, PASSERON T, WATABE H, et al. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes:mechanisms underlying its suppression of melanocyte function and proliferation[J]. J Invest Dermatol, 2007, 127(5): 1217–1225. DOI: 10.1038/sj.jid.5700629
[16] HARTMAN M L, TALAR B, NOMAN M Z, et al. Gene expression profiling identifies microphthalmia-associated transcription factor (MITF) and Dickkopf-1 (DKK1) as regulators of microenvironment-driven alterations in melanoma phenotype[J]. PLoS One, 2014, 9(4): e95157. DOI: 10.1371/journal.pone.0095157
[17] 刘小辉, 彭永东, 周荣艳, 等. 坝上长尾鸡MITF基因核心启动子鉴定与分析[J]. 畜牧兽医学报, 2018, 49(6): 1116–1123.
LIU X H, PENG Y D, ZHOU R Y, et al. Identification and analysis of the core promoter of MITF gene in Bashang long-tail chicken[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(6): 1116–1123. (in Chinese)
[18] AMÂNDIO A R, NECSULEA A, JOYE E, et al. Hotair is dispensible for mouse development[J]. PLoS Genet, 2016, 12(12): e1006232. DOI: 10.1371/journal.pgen.1006232
[19] ZHOU Y, WANG C Q, LIU X, et al. Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells[J]. Oncol Lett, 2017, 13(3): 1143–1148. DOI: 10.3892/ol.2017.5587
[20] CHAMCHEU J C, ROY T, UDDIN M B, et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer:a review of current status and future trends on natural and synthetic agents therapy[J]. Cells, 2019, 8(8): 803. DOI: 10.3390/cells8080803
[21] EDIRIWEERA M K, TENNEKOON K H, SAMARAKOON S R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer:biological and therapeutic significance[J]. Semin Cancer Biol, 2019, 59: 147–160. DOI: 10.1016/j.semcancer.2019.05.012
[22] HUI K K, TANAKA M. Autophagy links MTOR and GABA signaling in the brain[J]. Autophagy, 2019, 15(10): 1848–1849. DOI: 10.1080/15548627.2019.1637643
[23] JIA J Y, ABUDU Y P, CLAUDE-TAUPIN A, et al. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy[J]. Autophagy, 2019, 15(1): 169–171. DOI: 10.1080/15548627.2018.1505155
[24] YANG Z B, ZENG B Y, PAN Y, et al. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling[J]. Biomed Pharmacother, 2018, 97: 248–254. DOI: 10.1016/j.biopha.2017.10.070
[25] ZHOU L, LING J J, SONG J, et al. Interleukin 10 protects primary melanocyte by activation of Stat-3 and PI3K/Akt/NF-κB signaling pathways[J]. Cytokine, 2016, 83: 275–281. DOI: 10.1016/j.cyto.2016.05.013
[26] SHANG Z W, FENG H X, GUI L S, et al. Propofol promotes apoptosis and suppresses the HOTAIR-mediated mTOR/p70S6K signaling pathway in melanoma cells[J]. Oncol Lett, 2018, 15(1): 630–634.
[27] 李园, 刘文艳, 蔡永强, 等. 长链非编码RNA HOTAIR的分析及在黑色素瘤致病过程中互作分子的预测[J]. 畜牧兽医学报, 2017, 48(8): 1424–1435.
LI Y, LIU W Y, CAI Y Q, et al. Analysis of long non-coding RNA HOTAIR and prediction of its interaction molecules in melanoma pathogenesis[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(8): 1424–1435. (in Chinese)
[28] LIU Y, LI M H, ZHANG G Q, et al. microRNA-10b overexpression promotes non-small cell lung cancer cell proliferation and invasion[J]. Eur J Med Res, 2013, 18: 41. DOI: 10.1186/2047-783X-18-41
[29] LI W L, LI C Y, XIONG Q, et al. microRNA-10b-5p downregulation inhibits the invasion of glioma cells via modulating homeobox B3 expression[J]. Exp Ther Med, 2019, 17(6): 4577–4585.
[30] MA L, TERUYA-FELDSTEIN J, WEINBERG R A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature, 2007, 449(7163): 682–688. DOI: 10.1038/nature06174
[31] LIU Z, ZHU J M, CAO H, et al. miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer[J]. Int J Oncol, 2012, 40(5): 1553–1560.
[32] 卜强, 汤华明, 谈健, 等. 前列腺癌中RhoC和Rho激酶1的表达及其对丝裂原活化蛋白激酶和Akt蛋白的影响[J]. 中华肿瘤杂志, 2011, 33(3): 202–206.
BU Q, TANG H M, TAN J, et al. Expression of RhoC and ROCK-1 and their effects on MAPK and Akt proteins in prostate carcinoma[J]. Chinese Journal of Oncology, 2011, 33(3): 202–206. DOI: 10.3760/cma.j.issn.0253-3766.2011.03.011 (in Chinese)
[33] YUAN Y H, WANG H Y, LAI Y, et al. Epigenetic inactivation of HOXD10 is associated with human colon cancer via inhibiting the RHOC/AKT/MAPK signaling pathway[J]. Cell Commun Signal, 2019, 17(1): 9. DOI: 10.1186/s12964-018-0316-0
[34] PILLAIYAR T, MANICKAM M, JUNG S H. Downregulation of melanogenesis:drug discovery and therapeutic options[J]. Drug Discov Today, 2017, 22(2): 282–298. DOI: 10.1016/j.drudis.2016.09.016
[35] CHAE J, SUBEDI L, JEONG M, et al. Gomisin N inhibits melanogenesis through regulating the PI3K/Akt and MAPK/ERK signaling pathways in melanocytes[J]. Int J Mol Sci, 2017, 18(2): E471. DOI: 10.3390/ijms18020471
[36] WU Z Y, FU Y H, CAO J H, et al. Identification of differentially expressed miRNAs between white and black hair follicles by RNA-sequencing in the goat (Capra hircus)[J]. Int J Mol Sci, 2014, 15(6): 9531–9545. DOI: 10.3390/ijms15069531
[37] DATAR I, KALPANA G, CHOI J, et al. Critical role of miR-10b in B-RafV600E dependent anchorage independent growth and invasion of melanoma cells[J]. PLoS One, 2019, 14(4): e0204387. DOI: 10.1371/journal.pone.0204387
[38] LIANG L Y, TU Y L, LU J, et al. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway[J]. J Cell Sci, 2019, 132(10): jcs228478. DOI: 10.1242/jcs.228478
[39] NIU J, LI X M, WANG X, et al. DKK1 inhibits breast cancer cell migration and invasion through suppression of β-catenin/MMP7 signaling pathway[J]. Cancer Cell Int, 2019, 19: 168. DOI: 10.1186/s12935-019-0883-1
[40] HWANG I, PARK J H, PARK H S, et al. Neural stem cells inhibit melanin production by activation of Wnt inhibitors[J]. J Dermatol Sci, 2013, 72(3): 274–283. DOI: 10.1016/j.jdermsci.2013.08.006
[41] TANG S C, ZHENG K, TANG Y Y, et al. Overexpression of serum exosomal HOTAIR is correlated with poor survival and poor response to chemotherapy in breast cancer patients[J]. J Biosci, 2019, 44(2): 37. DOI: 10.1007/s12038-019-9861-y
[42] ZHOU Y, ZHANG C, QIN Q, et al. Overexpression of long non-coding RNA HOTAIR enhances breast cancer radioresistance via RhoC-Akt pathway by targeting HOXD10[J]. Int J Clin Exp Pathol, 2016, 9(1): 1–9.
[43] BOTTI G, SCOGNAMIGLIO G, AQUINO G, et al. LncRNA HOTAIR in tumor microenvironment:what role?[J]. Int J Mol Sci, 2019, 20(9): 2279. DOI: 10.3390/ijms20092279
[44] LI J, WANG J, ZHONG Y, et al. HOTAIR:a key regulator in gynecologic cancers[J]. Cancer Cell Int, 2017, 17: 65. DOI: 10.1186/s12935-017-0434-6