畜牧兽医学报  2020, Vol. 51 Issue (2): 311-319. DOI: 10.11843/j.issn.0366-6964.2020.02.012    PDF    
饲粮钙磷水平对伊犁马初乳成分、乳脂脂肪酸组成、产后血液钙磷及激素的影响
漆雯雯1,2, 臧长江1, 方美烟1, 陈勇1     
1. 新疆农业大学动物科学学院, 乌鲁木齐 830052;
2. 新疆乌鲁木齐县畜牧兽医站, 乌鲁木齐 830036
摘要:旨在研究妊娠后期饲喂不同钙磷水平饲粮对产后伊犁马初乳成分、乳脂脂肪酸组成、血液钙磷及钙磷代谢激素、繁殖及生长代谢激素等生理生化指标的影响,为明确伊犁马在妊娠后期对钙磷的适宜需要量提供参考。本试验选取健康、无亲缘关系、12~13周岁、体重为(380±32)kg、胎次为4~5胎、处于第10妊娠月左右的伊犁马25匹,随机分为5组,每组5个重复。各组饲粮钙饲喂水平分别为36.00、39.00、42.00、45.00和48.00 g·d-1,磷饲喂水平分别为26.30、28.30、30.30、32.30和34.30 g·d-1。试验预试期10 d,正试期从第11天至母马分娩后第2天结束。母马分娩后12 h内采集初乳用于测定乳成分和乳脂脂肪酸含量,空腹血液用于测定Ca、P、甲状旁腺素(PTH)、降钙素(CT)、骨钙素(OC)、胎盘催乳素(PL)、垂体催乳素(PRL)、雌酮(E1)、雌二醇(E2)、血清孕酮(PROG)、甲状腺素(T4)、三碘甲状腺原氨酸(T3)、生长激素(GH)、胰岛素样生长因子-Ⅰ(IGF-1)等激素浓度。结果表明:1)饲粮钙磷水平对初乳中钙、磷、乳脂率、乳糖率均无显著影响,组间乳蛋白率、总固形物、体细胞数、乳脂中饱和脂肪酸(SFA)和不饱和脂肪酸(UFA)比例存在显著差异(P < 0.05)。随着饲粮钙、磷水平的增加,乳磷浓度、乳蛋白率和UFA比例呈显著线性增加(P < 0.05),总固形物呈显著二次增加(P < 0.05),而乳糖率、SFA及肉豆蔻酸比例呈显著线性降低(P < 0.05)。2)饲粮钙磷水平显著影响血液中OC和PROG浓度(P < 0.05),随着饲粮钙磷水平的增加,血液中离子钙、CT和OC浓度呈显著的线性降低(P < 0.05),而PTH和PROG水平呈显著的线性升高(P < 0.05)。饲粮钙、磷水平对PL、PRL、E1、E2等生殖激素以及T3、T4、GH和IGF-1等生长代谢激素浓度均无显著影响。由此可见,在本试验条件下,饲粮钙磷通过提高初乳中乳蛋白率和总固形物来改变乳脂中饱和脂肪酸含量和不饱和脂肪酸比例影响初乳成分;通过降低血液中OC浓度影响钙磷代谢;通过提高血液中PROG浓度影响繁殖状况。
关键词伊犁马    妊娠后期            产后    初乳    脂肪酸    骨钙素    孕酮    
Effects of Dietary Calcium and Phosphorus Levels on Colostrum Components, Milk Fatty Acids Composition, and Postpartum Plasma Calcium, Phosphorus and Hormones of Yili Mares
QI Wenwen1,2, ZANG Changjiang1, FANG Meiyan1, CHEN Yong1     
1. College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
2. Animal Husbandry and Veterinary Station of Urumqi County of Xinjiang Uygur Autonomous Region, Urumqi 830036, China
Abstract: The purpose of this experiment was to study the effects of diets with different calcium (Ca) and phosphorus (P) levels on colostrum composition, fatty acid composition of colostrum fat, the plasma physiological and biochemical indexes including plasma Ca and P and hormones related with Ca and P metabolism, growth and reproduction in Yili mares after delivery, and to provide reference for defining the appropriate Ca and P requirement of Yili mares during the late gestation period. Twenty-five healthy Yili mares without kinship, and with the age of 12-13 years old, body weight of (380±32) kg, parity of 4-5 births and about in the 10 th gestational month were selected and randomly divided into 5 groups with 5 replicates in each group. Ca feeding levels of the 5 groups were 36.00, 39.00, 42.00, 45.00 and 48.00 g·d-1, respectively and P feeding levels were 26.30, 28.30, 30.30, 32.30 and 34.30 g·d-1, respectively. The pre-test period was 10 days, and the experimental period lasted from the 11th day of the trial to the 2nd day after delivery. Samples of colostrum and fasting blood were collected within 12 hours after delivery to determine the milk composition, fatty acids content in milk fat, and plasma concentration of Ca, P, parathyroid hormone (PTH), calcitonin (CT), osteocalcin (OC), placental prolactin (PL), pituitary prolactin (PRL), estrone (E1), estradiol (E2), progesterone (PROG), thyroxine (T4), triiodothyronine (T3), growth hormone (GH), and insulin-like growth factor-Ⅰ (IGF-1). The results showed that:1) Dietary Ca and P levels had no significant effect on the Ca, P, milk fat percentage and lactose percentage in colostrum, but there were significant differences in milk protein percentage, total solids, somatic cell counts, total saturated fatty acids (SFA) and unsaturated fatty acids (UFA) percentages in milk fat among groups (P < 0.05). With the increase of dietary Ca and P levels, the concentration of P, milk protein percentage and UFA percentage in colostrum significantly increased linearly (P < 0.05), total solids significantly increased quadraticly (P < 0.05), and lactose, SFA and myristic acid percentage significantly decreased linearly (P < 0.05). 2) Plasma concentrations of OC and PROG were significantly affected by dietary Ca and P levels (P < 0.05). With the increase of dietary Ca and P levels, the concentration of plasma ionic Ca, CT and OC significantly decreased linearly (P < 0.05), while the concentration of PTH and PROG significantly increased linearly (P < 0.05). Dietary Ca and P levels had no significant effect on the concentration of reproduction hormones such as PL, PRL, E1, E2, and growth and metabolism hormones such as T3, T4, GH and IGF-1. In this experiment, it can be concluded that dietary Ca and P levels affect colostrum compositions by increasing the milk protein percentage and total solids content, changing the saturated fatty acid and unsaturated fatty acid content in milk fat, affect Ca and P metabolism by reducing OC concentration, and affect fertility status by increasing PROG concentration.
Key words: Yili mares    late gestation period    calcium    phosphorus    postpartum    colostrum    fatty acid    osteocalcin    progesterone    

钙和磷参与机体的生长发育、遗传繁殖及其他新陈代谢过程,在骨骼生长发育、神经传导、凝血、维持正常渗透压和酶激活等方面具有重要作用[1]。以植物性食物为主的非反刍动物通常需要额外补充钙和磷方能满足动物的生理需要。在妊娠后期,由于胎儿生长和骨骼发育迅速,母体对于营养物质的需要急剧增加。在母马妊娠的最后3个月,胎儿钙和磷平均沉积水平分别约为15.9和8.6 mg·kg-1BW;钙、磷内源流失分别为20和10 mg·kg-1BW[2]。倘钙、磷的吸收率以50%和35%计算,在妊娠最后3个月里,母马的每日钙、磷需要量分别为71.80和53.14 mg·kg-1BW[3]。对于成年体重为500 kg、妊娠最后3个月的母马,NRC(2007)对钙、磷的推荐量分别为36.0和26.3 g·d-1,并且在妊娠最后3个月保持不变[4]

多个因素影响马对钙、磷的消化和吸收,如饲粮中营养水平、钙磷浓度、植酸、草酸以及马匹年龄、生理状况、血液甲状旁腺素(PTH)水平等[3-4]。Hintz[5]报道,在低钙饲粮条件下,马通过调节钙的吸收效率维持机体钙的平衡。一般青年马对钙的吸收效率可达到70%,随着年龄的增长,吸收效率明显下降[3]。Pagan[6]研究发现,体重为550 kg的马对磷的真消化率为25.2%。方美烟等[7]研究发现,在妊娠后期,伊犁马对钙的表观消化率为43%,对磷的表观消化率为25%。在泌乳期时,钙的表观消化率升高到52%,P的表观消化率为27%[8]。这表明,对于伊犁马而言,NRC(2007)推荐水平可能不能满足其营养需要。此外,在妊娠后期由于机体需为泌乳做好营养储备,钙磷需要量将进一步增加。

饲粮磷水平对奶牛乳成分的影响还没有统一的结论,有研究发现,提高饲粮磷水平可增加乳蛋白率和乳脂率,而另一些研究却得出了相悖的结果[9]。于全平等[8, 10]研究发现,随着饲粮钙、磷水平的增加,泌乳中后期伊犁马血液中PTH下降,同时乳脂中饱和脂肪酸含量增加而不饱和脂肪酸含量下降,但不影响生殖激素的水平。在妊娠后期不同钙、磷水平对分娩后12 h以内伊犁马的初乳乳成分和乳脂脂肪酸组成及血液生理生化指标有何影响还不清楚。本研究以处于第10妊娠月的伊犁马为研究对象,饲喂不同钙、磷水平至母马分娩后第2天结束,以研究饲粮钙、磷水平对伊犁马初乳乳成分、乳脂脂肪酸组成、血液中钙磷代谢相关激素以及生殖和生长代谢激素的影响,为阐明伊犁马妊娠后期钙、磷营养提供参考。

1 材料与方法 1.1 试验动物与饲粮

选取健康、无亲缘关系、12~13周岁、体重为(380±32) kg、胎次为4~5胎、处于第10妊娠月左右的伊犁马25匹,根据体重随机分为5组,每组5个重复。各组饲粮参照美国NRC(2007)[4]标准,按照成熟体重为400 kg泌乳马设计,饲粮钙饲喂水平分别为36.00、39.00、42.00、45.00和48.00 g·d-1,磷饲喂水平分别为26.30、28.30、30.30、32.30和34.30 g·d-1。各组饲粮组成及营养水平见表 1[7]

表 1 饲粮组成和营养水平(饲喂基础) Table 1 Diets composition and nutrient levels (as-fed basis) 
1.2 饲养与管理

本试验预试期10 d,正试期从试验第11天至母马分娩后第2天结束。试验期间每匹马粗饲料饲喂量为10 kg·d-1,饲粮Ⅰ~Ⅴ组精料补充料饲喂量分别为2 970、2 982、2 995、3 007和3 019 g·d-1。采取定时定量、少喂勤添、先粗后精的原则于每天02:00、09:30、13:30和18:00饲喂粗饲料,每次分别给料5.00、2.00、1.50和1.50 kg;每天在11:30和20:00分两次饲喂精料补充料,每次饲喂日饲喂量的1/2。试验马匹分栏单独饲养,自由饮水。

1.3 样本采集

在母马分娩产驹后12 h内将母马固定,经马驹引诱后由熟练的挤奶工手工挤奶,弃去前3把乳液后采集初乳100 mL,经2层纱布过滤杂质后,取50 mL于-20 ℃保存待测。母马分娩后第2天晨饲前从颈静脉处采集空腹血样5~8 mL,以肝素钠抗凝,按照常规程序分离血浆,-20 ℃保存待测。

1.4 测试指标与方法

马初乳中乳成分采用MilkoScanTM FT全自动乳成分分析仪测定,初乳脂肪酸组分采用岛津GC-2010气相色谱仪进行测定[10]。乳中钙和磷的测定采用张丽英[11]的方法进行。血清中离子钙(iCa)和磷采用北京华英生物技术研究所提供的试剂盒测定。甲状旁腺素(PTH)、降钙素(CT)、骨钙素(OC)、胎盘催乳素(PL)、垂体催乳素(PRL)、雌酮(E1)、雌二醇(E2)、血清孕酮(PROG)、甲状腺素(T4)、三碘甲状腺原氨酸(T3)、生长激素(GH)、胰岛素样生长因子-Ⅰ(IGF-1)等激素指标均由北京华英生物技术研究所采用放射免疫分析法测定。

1.5 数据统计分析

采用SPSS13.0软件中的单因素方差分析进行统计分析,并分析不同钙磷水平的线性和二次效应。多重比较采用Duncan’s法。显著性水平为P < 0.05。

2 结果 2.1 饲粮钙磷水平对伊犁马初乳成分的影响

在妊娠后期饲喂不同钙磷水平饲粮对伊犁马分娩后初乳中钙、磷、乳脂率、乳糖率均无显著影响(表 2)。但随着饲粮钙、磷水平的增加,乳磷水平呈显著线性增加(P < 0.05),而乳糖率呈显著线性降低(P < 0.05)。饲粮钙、磷水平显著影响乳蛋白率、总固形物和体细胞数(P < 0.05),乳蛋白率随钙磷水平增加呈显著线性增加(P < 0.05),总固形物呈显著二次增加(P < 0.05)。饲粮Ⅳ组乳蛋白率显著高于其他各组(P < 0.05),饲粮Ⅳ组总固形物显著高于饲粮Ⅰ和Ⅴ组(P < 0.05),饲粮Ⅰ、Ⅲ和Ⅳ组的体细胞数显著低于饲粮Ⅱ组(P < 0.05)。

表 2 饲粮钙磷水平对伊犁马初乳成分的影响 Table 2 Effect of dietary calcium and phosphorus levels on colostrum composition of Yili mares
2.2 饲粮钙磷水平对伊犁马初乳乳脂中脂肪酸组成的影响

本研究在马初乳中共检测出34种脂肪酸,其中饱和脂肪酸16种,单不饱和脂肪酸7种,多不饱和脂肪酸11种。对含量低于1.0%的饱和脂肪酸以及含量低于0.5%的单(多)不饱和脂肪酸合并后见表 3。由表 3可以看出,随饲粮钙、磷水平增加显著降低初乳中饱和脂肪酸的比例而显著升高不饱和脂肪酸的比例(P < 0.05)。在饱和脂肪酸中,肉豆蔻酸含量随饲粮钙、磷水平的增加呈显著线性降低(P < 0.05),单不饱和脂肪酸中的油酸含量随饲粮钙、磷水平的增加呈线性升高趋势(P=0.080)。

表 3 饲粮钙磷水平对伊犁马初乳乳脂中脂肪酸组成的影响 Table 3 Effect of dietary calcium and phosphorus levels on fatty acid composition in colostrum fat of Yili mares 
2.3 饲粮钙磷水平对伊犁马分娩后血液中钙、磷及相关激素水平的影响

表 4可以看出,从主效应来看,饲粮中不同钙、磷水平对伊犁马分娩后血液中iCa、磷、PTH和CT无显著影响(P>0.05)。但随着饲粮钙、磷水平的增加,血液中iCa和CT呈显著的线性降低(P < 0.05),而血液中PTH水平呈显著的线性升高(P < 0.05)。饲粮钙、磷水平显著影响分娩后OC水平(P < 0.05),随着饲粮钙、磷水平的增加血液中OC呈显著的线性降低(P < 0.05),饲粮Ⅳ和Ⅴ显著低于饲粮Ⅰ、Ⅱ和Ⅲ组(P < 0.05)。

表 4 饲粮钙磷水平对伊犁马分娩后血液中钙、磷及相关激素水平的影响 Table 4 Effect of dietary calcium and phosphorus levels on plasma Ca, P and related hormones of postpartum Yili mares
2.4 饲粮钙磷水平对伊犁马分娩后血液中生殖和生长代谢相关激素水平的影响

表 5可以看出,饲粮钙、磷水平对PRL、E1、E2等生殖激素水平无显著影响(P>0.05)。随着饲粮钙、磷水平的增加,血液中PL水平呈二次升高趋势(P=0.089)。PROG随饲粮钙、磷水平的增加而线性升高(P < 0.05),饲粮Ⅳ和Ⅴ组显著高于饲粮Ⅰ组(P < 0.05)。从生长代谢类激素来看,饲粮钙、磷水平对T3、T4、GH和IGF-1均无显著影响(P>0.05)。

表 5 饲粮钙磷水平对伊犁马分娩后血液中生殖和生长代谢相关激素水平的影响 Table 5 Effect of dietary calcium and phosphorus levels on plasma reproduction, growth and metabolism related hormones levels of postpartum Yili mares
3 讨论 3.1 饲粮钙磷水平对动物乳成分的影响

在妊娠后期和马驹断奶前,钙、磷、镁因用于支持胎儿及马驹骨骼快速生长而显得极其重要。研究发现,当饲粮钙水平仅为需要量的33%时,乳中钙水平下降40%;而当饲粮钙水平升高到需要量的250%时,乳中钙的浓度并未超出正常水平。更多的研究认为,饲粮钙水平对乳中钙浓度无显著影响[12]。Donoghue等[13]发现,在马妊娠后期,磷缺乏非常普遍而钙缺乏通常发生在泌乳期。在泌乳早期,机体对磷的需要量会增加30%[14]。Morse等[15]发现,饲粮钙:磷为1.1:1和2.9:1时,对奶牛乳成分均无显著影响,饲喂低钙低磷饲粮时奶牛的产奶量和乳蛋白含量略高。Liesegang等[16]也认为,饲粮钙磷水平不影响母猪乳中钙磷含量。从本研究来看,在妊娠后期饲喂不同钙、磷水平饲粮对伊犁马初乳中钙、磷含量也无显著影响。虽然Tan等[17]发现,与对照相比,高水平饲粮钙磷可显著提高乳中钙浓度,但二者浓度绝对值仅相差0.03%,这说明机体在维持钙、磷稳态方面具有重要的调节机制。饲粮钙、磷水平对马初乳成分的影响还未见报道。本研究发现,饲粮钙、磷水平并不影响伊犁马初乳中乳糖和乳脂含量,但显著增加了乳蛋白含量(P < 0.05)。于全平等[10]研究发现,饲粮钙、磷水平对伊犁马常乳中乳蛋白、乳脂、乳糖和乳总固形物含量均无显著影响。

3.2 饲粮钙磷水平对动物乳脂脂肪酸组成的影响

Ca2+对脂肪的消化和代谢具有重要影响,而磷有何影响尚不清楚。饲粮Ca2+在消化道与脂类形成皂钙而影响脂类的吸收;同时Ca2+还可与胆酸结合,增加胆酸的排泄并减少胆固醇的形成[18]。Yasuda等[19]发现,饲粮钙会改变心、肝和肾中脂肪酸的组成,但并不改变脑脂肪酸的构成。与无钙饲粮相比,饲喂钙含量为2.4%的饲粮时,大鼠组织中油酸和二十碳三烯酸增加,而亚油酸和花生四烯酸降低。于全平等[10]发现,随着饲粮钙磷水平的增加,乳中饱和脂肪酸含量增加而不饱和脂肪酸含量下降。在妊娠后期饲喂不同钙、磷水平饲粮对伊犁马初乳中乳脂脂肪酸组成有何影响尚不清楚。在本研究中,饲粮钙、磷水平并不影响乳脂率,这可能与机体在短期内维持乳成份相对稳定的机制有关。而在本研究中,饲粮钙、磷水平显著降低初乳中饱和脂肪酸的水平而显著升高不饱和脂肪酸水平(P < 0.05),这与肉豆蔻酸含量降低和油酸含量升高有关。Ca2+在不同生理阶段是否以不同机制调节脂肪代谢尚无相关报道。

3.3 饲粮钙磷水平对动物血液钙磷水平及钙磷代谢激素的影响

血液中钙、磷浓度主要受到1, 25-二羟维生素D3(1, 25(OH)2D3)、PTH和CT的调节。这些激素通过作用于骨、肾和胃肠道以维持血钙、磷浓度的相对恒定[20]。当血浆Ca2+和/或磷太低时,PTH和1, 25(OH)2D3释放,通过肠道吸收和骨溶解增加血浆Ca2+和/或磷,并减少肾的Ca2+和/或磷排泄。相反,当血浆Ca2+和/或磷过高时,CT会降低肠吸收和骨溶解,并增加肾对Ca2+和磷的排泄[1]。于全平等[8]报道,饲粮钙、磷对泌乳期伊犁马血液中钙、磷和CT浓度无显著影响,随着饲粮钙、磷水平增加,血液中PTH明显下降。Tan等[17]也认为,日粮钙磷水平不影响经产母猪血液中钙磷水平。Grandhi和Strain[21]报道,饲粮高钙、磷对妊娠和泌乳母猪血钙无显著影响;血磷水平增加,但血磷浓度仅相差0.03 mg·L-1。本研究中,饲粮钙饲喂水平从36增加到48 g·d-1,磷饲喂水平从26.30增加到34.30 g·d-1,血液中钙和磷含量虽有一定波动,但并无显著差异。由此可见,由于机体维持钙、磷稳态的机制使得饲粮钙、磷水平对血中钙、磷含量的影响微弱。

OC是骨形成和溶解的标志物,由成骨细胞合成并分泌,其合成受1, 25(OH)2D3和VK的调控;通常骨更新率越快,OC浓度越高,反之降低[17]。生长猪、妊娠后期及泌乳期母马体内OC浓度均不受饲粮钙、磷水平的影响[7-8, 22]。而另一些研究则发现,饲喂低钙或低磷的大鼠和猪血液中OC浓度增加[23-24]。相反,Varley等[25]发现,仔猪饲喂高磷饲粮后血液中OC浓度增加,出现这种差异的原因尚不清楚。Pan和Price[26]认为,血液中OC升高的原因是1, 25(OH)2D3合成增加的结果,因为1, 25(OH)2D3可促进OC的合成。本研究中,随着饲粮钙、磷水平的增加血液中OC呈显著的线性降低。这可能是由于随着钙、磷的增加,血液中1, 25(OH)2D3浓度降低,并导致OC合成减少。

3.4 饲粮钙磷水平对血液中生殖和生长代谢激素水平的影响

当饲粮中钙、磷不足或比例不当时会影响动物的繁殖性能,但没有证据表明给家畜饲喂超过需要量的钙、磷可以进一步提高其繁殖性能。饲粮钙、磷水平对母马生殖激素的影响还未见报道。方美烟等[7]报道,增加饲粮钙、磷水平使妊娠后期伊犁马血液中E1和E2水平降低。而这一现象并未在泌乳期母马上发现,但饲粮钙、磷有增加PRL的趋势[8]。本研究中,随饲粮钙、磷水平的增加,E1水平明显下降。这可能与饲粮钙加速E1的代谢有关[27]。钙参与PROG的合成,也是卵母细胞成熟所必需的。低钙血症可引起奶牛血液中PROG水平下降[28]。Kuran等[29]研究发现,给成年母羊补饲脂肪酸钙可提高血液及滤泡中PROG浓度。本研究也发现,随着饲粮钙、磷水平的增加,母马分娩后血液中PROG浓度显著升高。Alila等[30]报道,牛小黄体细胞产生基础PROG并不需要Ca2+,但由黄体生成素(LH)等激素刺激产生PROG以及大黄体细胞产生基础PROG和激素刺激产生PROG均离不开Ca2+。虽然磷在动物繁殖中起着重要作用,但磷对PROG的产生似乎没有影响。青年奶牛饲粮磷水平为0.73%、1.38%或2.46%时,血清中PROG和LH的水平均无显著差异[9]。Chakurkar等[31]也认为,补磷对奶牛PROG的产量无明显影响。由此可见,在本研究中,母马分娩后PROG浓度的增加可能是饲粮钙的作用。

高水平的饲粮钙离子影响甲状腺的形态与功能。长时间饲喂高钙饲粮的大鼠其甲状腺增生肥大、血液中T4水平增加而T3水平下降[32]。本研究中,饲粮钙、磷水平对母马分娩后血液中T3和T4浓度均无显著影响,说明钙、磷水平均在母马可接受范围内。研究发现,给家禽饲喂钙离子螯合剂、钙通道阻断剂或抑制调钙素均急剧抑制血浆GH的分泌[33]。方美烟等[7]研究发现,随着饲粮钙、磷水平的增加,妊娠后期伊犁马血浆中GH水平增加,表明饲粮钙具有促进GH分泌的作用。本研究中,母马分娩后血液中GH浓度随着饲粮钙、磷水平的增加有明显增加,但在各组间并无显著差异,这可能与试验动物数量偏少有关。

4 结论

当饲粮钙水平在36.00~48.00 g·d-1、磷水平在26.30~34.30 g·d-1之间时,随着饲粮钙、磷水平的增加初乳中乳蛋白率、总固形物和体细胞数增加,乳脂中饱和脂肪酸含量降低而不饱和脂肪酸含量升高;血液中OC浓度降低而PROG浓度升高。

参考文献
[1] MCDONALD P, GREENHALGH J F D, MORGAN C A, et al. Animal nutrition[M]. 7th ed. New York: Pearson Education, 2011.
[2] National Research Council. Nutrient requirements of horses[M]. 5th ed. Washington DC: National Academy Press, 1989.
[3] National Research Council. Nutrient requirements of horses[M]. 6th ed. Washington DC: National Academy Press, 2007.
[4] 王贤东, 于全平, 方美烟, 等. 饲粮不同营养水平对伊犁马妊娠后期体重、消化代谢及分娩后初乳成分的影响[J]. 畜牧兽医学报, 2017, 48(2): 272–279.
WANG X D, YU Q P, FANG M Y, et al. Effects of dietary nutrient levels on body weight, nutrient digestion and metabolism, and colostrum composition of Yili mares during late pregnancy period[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(2): 272–279. (in Chinese)
[5] HINTZ H F.Macrominerals: calcium, phosphorus and magnesium[C]//Proceedings Kentucky Equine Research Nutrition Conference for Feed Manufacturers.Versailles, KY: Kentucky Equine Research Inc, 2000: 121-131.
[6] PAGAN J D.Nutrient digestibility in horses[M]//PAGAN J D.Advances in Equine Nutrition.Nottingham: Nottingham University Press, 1998: 77-87.
[7] 方美烟, 漆雯雯, 唐伟, 等. 饲喂不同钙、磷水平饲粮对妊娠后期伊犁马营养物质消化代谢和血浆生理生化指标的影响[J]. 动物营养学报, 2016, 28(9): 2761–2770.
FANG M Y, QI W W, TANG W, et al. Effects of feeding different levels of calcium and phosphorus diets on nutrient digestion and metabolism, plasma physiological-biochemical indices of Yili mares during late pregnancy[J]. Chinese Journal of Animal Nutrition, 2016, 28(9): 2761–2770. DOI: 10.3969/j.issn.1006-267x.2016.09.014 (in Chinese)
[8] 于全平, 王贤东, 方美烟, 等. 饲粮钙、磷水平对泌乳期伊犁母马营养物质消化代谢和血浆生理生化指标的影响[J]. 动物营养学报, 2017, 29(8): 2716–2724.
YU Q P, WANG X D, FANG M Y, et al. Effects of dietary calcium and phosphorus levels on nutrient digestion and metabolism, plasma physiological-biochemical indices of Yili mares during lactation period[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2716–2724. DOI: 10.3969/j.issn.1006-267x.2017.08.014 (in Chinese)
[9] National Research Council. Nutrient requirements of dairy cattle[M]. 7th ed. Washington, DC: National Academies Press, 2001.
[10] 于全平, 王贤东, 漆雯雯, 等. 饲喂不同钙、磷水平饲粮对泌乳期伊犁马乳成分、乳脂脂肪酸组成和马驹生长发育、血浆生理生化指标的影响[J]. 动物营养学报, 2016, 28(8): 2619–2629.
YU Q P, WANG X D, QI W W, et al. Effects of feeding different levels of calcium and phosphorus diets to Yili mares during lactation period on milk composition and fatty acid composition of milk fat, and growth development and plasma physiological-biochemical indices of foals[J]. Chinese Journal of Animal Nutrition, 2016, 28(8): 2619–2629. DOI: 10.3969/j.issn.1006-267x.2016.08.035 (in Chinese)
[11] 张丽英. 饲料分析及饲料质量检测技术[M]. 4版. 北京: 中国农业大学出版社, 2016.
ZHANG L Y. Feed analysis and quality test technology[M]. 4th ed. Beijing: China Agricultural University Press, 2016. (in Chinese)
[12] LEWIS L D. Equine clinical nutrition:feeding and care[M]. Baltimore: Williams & Wilkins, 1995.
[13] DONOGHUE S, MEACHAM T N, KRONFELD D S. A conceptual approach to optimal nutrition of brood mares[J]. Vet Clin North Am Equine Pract, 1990, 6(2): 373–391. DOI: 10.1016/S0749-0739(17)30547-3
[14] HUNTINGTON P J, OWENS E, CRANDELL K, et al.Nutritional management of mares-the foundation of a strong skeleton[M]//PAGAN J D.Advances in Equine Nutrition Ⅲ.Nottingham: Nottingham University Press, 2005: 193-218.
[15] MORSE D, HEAD H H, WILCOX C J. Effects of phosphorus and calcium on feed intake and yield and composition of milk of Holstein cows[J]. Asian-Australas J Anim Sci, 1994, 7(2): 231–237. DOI: 10.5713/ajas.1994.231
[16] LIESEGANG A, LOCH L, BVRGI E, et al. Influence of phytase added to a vegetarian diet on bone metabolism in pregnant and lactating sows[J]. J Anim Physiol Anim Nutr (Berl), 2005, 89(3-6): 120–128. DOI: 10.1111/j.1439-0396.2005.00549.x
[17] TAN F P Y, KONTULAINEN S A, BEAULIEU A D. Effects of dietary calcium and phosphorus on reproductive performance and markers of bone turnover in stall-or group-housed sows[J]. J Anim Sci, 2016, 94(10): 4205–4216. DOI: 10.2527/jas.2016-0298
[18] SHIDFAR F, MOGHAYEDI M, KERMAN S R J, et al. Effects of a calcium supplement on serum lipoproteins, apolipoprotein B, and blood pressure in overweight men[J]. Int J Endocrinol Metab, 2010, 8(4): 194–200.
[19] YASUDA M, OKAMURA Y, YOSHIKAWA M, et al. Effect of dietary calcium on growth, calcium, magnesium and phosphorus contents and fatty acid composition of individual tissues in rats[J]. Chem Pharm Bull (Tokyo), 1983, 31(11): 4152–4156. DOI: 10.1248/cpb.31.4152
[20] TORIBIO R E. Disorders of calcium and phosphate metabolism in horses[J]. Vet Clin North Am Equine Pract, 2011, 27(1): 129–147. DOI: 10.1016/j.cveq.2010.12.010
[21] GRANDHI R R, STRAIN J H. Dietary calcium-phosphorus levels for growth and reproduction in gilts and sows[J]. Canad J Anim Sci, 1983, 63(2): 443–454. DOI: 10.4141/cjas83-053
[22] NICODEMO M L, SCOTT D, BUCHAN W, et al. Effects of variations in dietary calcium and phosphorus supply on plasma and bone osteocalcin concentrations and bone mineralization in growing pigs[J]. Exp Physiol, 1998, 83(5): 659–665. DOI: 10.1113/expphysiol.1998.sp004147
[23] TANIMOTO H, LAU K H W, NISHIMOTO S K, et al. Evaluation of the usefulness of serum phosphatases and osteocalcin as serum markers in a calcium depletion-repletion rat model[J]. Calcif Tissue Int, 1991, 48(2): 101–110. DOI: 10.1007/BF02555874
[24] CARTER S D, CROMWELL G L, COMBS T R, et al. The determination of serum concentrations of osteocalcin in growing pigs and its relationship to end-measures of bone mineralization[J]. J Anim Sci, 1996, 74(11): 2719–2729. DOI: 10.2527/1996.74112719x
[25] VARLEY P F, SWEENEY T, RYAN M T, et al. The effect of phosphorus restriction during the weaner-grower phase on compensatory growth, serum osteocalcin and bone mineralization in gilts[J]. Livest Sci, 2011, 135(2-3): 282–288. DOI: 10.1016/j.livsci.2010.07.025
[26] PAN L C, PRICE P A. The effect of transcriptional inhibitors on the bone γ-carboxyglutamic acid protein response to 1, 25-hydroxyvitamin D3 in osteosarcoma cells[J]. J Biol Chem, 1984, 259(9): 5844–5847.
[27] NAPOLI N, THOMPSON J, CIVITELLI R, et al. Effects of dietary calcium compared with calcium supplements on estrogen metabolism and bone mineral density[J]. Am J Clin Nutr, 2007, 85(5): 1428–1433. DOI: 10.1093/ajcn/85.5.1428
[28] JONSSON N N. The effects of subclinical hypocalcaemia on postpartum fertility[J]. Cattle Pract, 1999, 7(3): 255–260.
[29] KURAN M, ONAL A G, ROBINBSON J J, et al. A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep[J]. Anim Sci, 1999, 69(2): 385–393. DOI: 10.1017/S1357729800050955
[30] ALILA H W, DAYIS J S, DOWD J P, et al. Differential effects of calcium on progesterone production in small and large bovine luteal cells[J]. J Steroid Biochem, 1990, 36(6): 687–693. DOI: 10.1016/0022-4731(90)90189-Y
[31] CHAKURKAR E B, DEOPURKAR V L, CHINCHKAR S R, et al. Effect of phosphorus supplementation on progesterone output in Gir and its crossbred cows[J]. Anim Nutr Feed Technol, 2003, 3(1): 83–86.
[32] CHANDRA A K, GOSWAMI H, SENGUPTA P. Dietary calcium induced cytological and biochemical changes in thyroid[J]. Environ Toxicol Pharmacol, 2012, 34(2): 454–465. DOI: 10.1016/j.etap.2012.06.003
[33] HARVEY S, HUYBRECHTS L M, SCANES C G. Growth hormone secretion in chicks during dietary calcium deficiency[J]. Domest Anim Endocrinol, 1984, 1(4): 269–277. DOI: 10.1016/0739-7240(84)90000-6