畜牧兽医学报  2020, Vol. 51 Issue (2): 288-298. DOI: 10.11843/j.issn.0366-6964.2020.02.010    PDF    
玻璃化冷冻对牦牛未成熟卵母细胞发育能力及COC转录组的影响
杨远潇, 字向东     
西南民族大学生命科学与技术学院, 成都 610041
摘要:旨在探讨玻璃化冷冻-解冻对牦牛未成熟卵母细胞发育能力及卵丘-卵母细胞复合体(COCs)转录组的影响,为完善牦牛COCs冷冻保存技术提供理论依据。本研究将未经成熟培养的牦牛COCs进行玻璃化冷冻-解冻后分为2组,A组:COCs体外成熟(IVM)后用普通牛精子进行体外受精(IVF),获得的受精卵在G-1胚胎培养液中培养72 h后转入G-2培养液培养96 h;B组:IVF后,受精卵在G-1培养液培养120 h后转入G-2培养液培养48 h;以未进行冷冻处理的新鲜COCs作为对照组(C组):IVF后,受精卵在G-1培养液培养72 h后转入G-2培养液培养96 h。对牦牛新鲜COCs(n=3)和玻璃化冷冻-解冻的COCs(n=3)进行扩增、建库和转录组测序(RNA-seq)分析。结果发现,B组的卵裂率、囊胚率显著高于A组(P < 0.05),但A组和B组的卵裂率、囊胚率均显著低于C组(P < 0.05)。以|log2(fold change)|≥ 2,Q < 0.05为阈值,牦牛冻融COCs相对于新鲜COCs共筛选出851个差异表达基因(DEGs),其中上调846个,下调5个。GO分析表明,DEGs主要富集于生物过程、细胞组分和分子功能3大类;KEGG注释结果表明,DEGs富集到258条通路,其中16条通路显著富集(P < 0.05)。研究表明,IVF后在G-1培养液中培养120 h可以提高牦牛玻璃化冷冻卵母细胞的后续发育能力;玻璃化冷冻影响牦牛COCs转录组,从而降低卵母细胞的发育潜力。该发现为完善牦牛COCs玻璃化冷冻技术提供了一定的理论基础。
关键词牦牛    卵母细胞    体外受精    玻璃化冷冻    转录组测序    
Effect of Vitrification on Developmental Competence of Immature Oocytes and COC Transcriptome of Yaks
YANG Yuanxiao, ZI Xiangdong     
College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
Abstract: The objective of this study was to investigate the effect of vitrification/thawing on developmental competence of immature oocytes and cumulus-oocyte-complexes (COCs) transcriptome of yaks (Bos grunniens), in order to provide theoretical foundation to improve vitrification techniques of yak COCs. Vitrified/thawed yak immature COCs were divided into two groups. Group A:COCs were in vitro matured (IVM) and in vitro fertilized (IVF) with cattle sperms, then in vitro cultured (IVC) in G-1 for 72 h followed by IVC in G-2 for 96 h; Group B:after IVF, zygotes were IVC in G-1 for 120 h followed by IVC in G-2 for 48 h. Fresh immature yak COCs were used as the control (Group C):after IVF, zygotes were IVC in G-1 for 72 h followed by IVC in G-2 for 96 h. Yak fresh immature COCs (n=3) and vitrified/thawed immature COCs (n=3) were used for amplification, library preparation and RNA-seq analysis. The results showed that cleavage rate and blastocyst rate in Group B were significantly higher than those in Group A (P < 0.05), but cleavage rate and blastocyst rate in both Group A and B were significantly lower than those in Group C (P < 0.05). When|log2(fold change)|≥ 2 and Q-value < 0.05 were set as thresholds for identifying deferentially expressed genes (DEGs), a total of 851 DEGs were detected, of which, 846 were up-regulated and 5 were down-regulated in virtrified/thawed COCs compared to fresh COCs. GO analysis showed DEGs were classified into 3 categories:biological processes, cellular components and molecular functions. KEGG annotation showed that there were 258 pathways, of which, 16 were significantly enriched (P < 0.05). In conclusion, the results showed that IVC in G-1 for 120 h after IVF could increase subsequent developmental competence of vitrified yak oocytes. Vitrification affected transcriptome of yak COCs, which reduced developmental potential of yak vitrified oocytes. The result provided a theoretical basis for improving vitrification techniques of yak COCs.
Key words: yak    oocyte    in vitro fertilization    vitrification    RNA-seq    

哺乳动物卵母细胞的有效冷冻保存是保护品种资源和拯救濒危动物的重要技术保障之一,也是加快家畜品种改良和胚胎移植技术产业化的重要组成部分。同时,冷冻保存可以充分利用动物卵母细胞资源,使卵母细胞来源不受季节和地域等因素的约束,为体外受精(in vitro fertilization, IVF)与胚胎移植、核移植(nuclear transfer)、转基因动物生产(transgenic animal production)等胚胎工程技术的研究与应用提供丰富的卵母细胞来源[1]。哺乳动物卵母细胞的冷冻保存主要有慢速冷冻法和玻璃化冷冻法(vitrification)两种方法,其中,玻璃化冷冻法由于具有细胞内冰晶形成的机率低,冷冻效率高,且操作简易等优点[2],成为应用最为广泛的动物卵母细胞冷冻方法[3-4]。目前,在小鼠、人、牛、绵羊、猪、水牛、马、牦牛、骆驼等物种都先后开展了一系列未成熟卵母细胞的玻璃化冷冻研究[5-15],而且用小鼠、牛和人的冷冻-解冻卵母细胞经IVF、胚胎移植后分别产下了后代[5-6, 8-9],但是,冷冻保存的卵母细胞IVF后的卵裂率和囊胚率均显著降低[5-15]。研究表明,卵母细胞在玻璃化冷冻前后有许多基因的表达发生显著改变,说明玻璃化冷冻保存可能在分子水平影响了卵母细胞的质量和发育能力,目前,多数研究仅局限于少数候选基因[3, 16-20],对转录组的研究较少[20]。RNA高通量测序(RNA-seq)技术的问世为研究生命活动的复杂分子调控机制提供了强大的研究工具,其具有高准确性、高通量、高灵敏度和低运行成本等其它转录组学技术无可比拟的优势[21]。但是,RNA-seq技术对样本的起始量需要至少为微克(μg)级别的总RNA量,对于不能满足最小要求量的样本则无法进行转录组测序文库的构建和进一步测序[22]。近年来,日趋完善的单细胞RNA-seq技术为研究像卵母细胞这样的微量生物样品的转录组提供了可靠途径[23-24]

牦牛(Bos grunniens)是生活在我国青藏高原地区的一种特有耐寒、耐低氧、耐粗饲牛种,是青藏高原人民赖以生存的重要生活和生产资料[25]。由于牦牛为季节性繁殖和生产的物种,其发情配种季节主要分布在每年的6~10月份,而屠宰上市、收集卵巢的季节则局限在每年的9~12月份[26],因此,牦牛卵丘-卵母细胞复合体(cumulus-oocyte-complexes, COCs)冷冻保存显得比其它物种更为重要。但是,牦牛胚胎移植、IVF的研究起步比较晚[27-29],而且,牦牛COCs经冷冻保存后的IVF卵裂率低,囊胚率也低[11, 18]。瑞典Vitrolife公司生产的G-1TM PLUS (G-1)和G-2TM PLUS (G-2)液是目前世界上广泛应用的胚胎体外培养(in vitro culture, IVC)试剂,IVF胚胎在G-1培养48~72 h继而转入G-2培养120~96 h后可发育到囊胚。目前,关于牦牛COCs冷冻后发育能力方面的报道甚少[11, 18]。Chen等[18]发现,牦牛冻融COCs体外受精后一直在G-1培养168 h能发育到囊胚,但囊胚率低,而G-1与G-2联合使用对牦牛冻融COCs发育能力的影响尚未见报道。

本研究以牦牛新鲜的和玻璃化冷冻-解冻的未成熟COCs为研究对象,研究G-1 72 h + G-2 96 h和G-1 120 h + G-2 48 h两个胚胎培养程序对胚胎发育能力的影响;应用单细胞RNA-seq技术进行高通量测序,通过转录组数据注释和生物信息学分析,比较牦牛玻璃化冷冻-解冻未成熟COCs和新鲜未成熟COCs的差异表达基因,从转录组学角度探讨冻融对卵母细胞发育能力的影响,为完善牦牛COCs的玻璃化冷冻技术提供理论基础。

1 材料与方法 1.1 主要仪器和试剂

Illumina HiSeq平台(Illumina HiSeqTM 2500,美国);Qubit 2.0 Flurometer (Life Technologies,美国);Agilent 2100 Bioanalyzer (Agilent Technologies,美国);FSH、LH(BIONICHE,加拿大);胎牛血清(FCS)(Gibco,美国);雌二醇、TCM199(10×,Sigma,美国);SpermRinseTM、G-IVFTM PLUS (G-IVF)、G-1TM PLUS (G-1)、G-2TM PLUS (G-2)(Vitrolife,瑞典);玻璃化冷冻试剂盒(VT101)、玻璃化解冻试剂盒(VT102)(Kitazato,日本);Agilent 2100 High Sensitivity DNA Assay Kit (Agilent Technologies,美国);KAPA HiFiDNApolymerase (KAPA Biosystems,美国)等。

1.2 牦牛卵巢与冻精来源

在四川省郊区的屠宰场于2017年10~12月份采集牦牛卵巢,放入29~32 ℃的DPBS中,3 h内运回实验室。娟姗牛冻精购自四川省家畜改良站。

1.3 牦牛卵丘-卵母细胞复合体的冷冻与解冻

选取在直径为2~8 mm卵泡中抽吸的有3层以上颗粒细胞且形态学正常的牦牛卵丘-卵母细胞复合体(COCs)作为研究材料,采用开放式拉管法(open-pulled straw, OPS)[30],用Kitazato公司的玻璃化冷冻试剂盒(VT101)、玻璃化解冻试剂盒(VT102),按照使用说明书的步骤对未经体外成熟培养的牦牛COCs进行玻璃化冷冻与解冻处理。

1.4 牦牛卵母细胞的体外成熟、体外受精与胚胎培养

体外成熟(in vitro maturation, IVM)液为含5 μg·mL-1 FSH、5 μg·mL-1LH、1 μg·mL-1 17β-雌二醇和20%(v/v)胎牛血清(FCS)的TCM199液。体外受精(IVF)和胚胎体外培养(IVC)液分别用G-IVFTM PLUS (G-IVF)、G-1TM PLUS (G-1)、G-2TM PLUS (G-2)液。将解冻后的牦牛COCs置于IVM液中复苏培养1 h后,在体视显微镜下,卵母细胞膜完整、胞质均匀有光泽者视为存活[19],用于后续试验。采用Zi等[31]的方法对COCs进行IVM处理,进而与体外获能的娟姗牛精子进行IVF后行IVC。玻璃化冷冻-解冻后的COCs分为2组:A组为解冻后存活的COCs在IVF后,受精卵转入G-1中培养72 h,然后,再转入G-2中培养96 h; B组为解冻后存活的COCs在IVF后,受精卵转入G-1中培养120 h,然后再转入G-2中培养48 h。以牦牛新鲜COCs为对照组(C组):COCs不做冷冻-解冻处理,IVF和IVC的方法与A组一样。每组重复5次。

1.5 文库的构建与转录组高通量测序

选择形态正常的未经成熟培养的3枚牦牛新鲜COCs和3枚玻璃化冷冻-解冻COCs共构建6个文库并进行转录组高通量测序(文库的构建及转录组测序工作由成都百泰赛维科技有限公司完成)。把每枚COC放进加有细胞裂解液、Oligo-dT引物和dNTP mix的薄壁PCR管中裂解细胞,释放RNA,然后使用Smart-Seq2方法进行反转录[23]:用反转录酶、公共序列的Oligo-dT引物和TSO引物合成第一链cDNA;用ISPCR引物PCR扩增合成第二链cDNA。cDNA经预扩增、扩增产物回收和纯化处理后,用Agilent 2100 High Sensitivity DNA Assay试剂盒检测片段大小分布。利用转座酶Tn5实现片段化与加接头一步完成,根据DNA起始量调整酶的用量。用KAPA HiFiDNApolymerase进行片段PCR扩增,根据tagmentation反应所用的DNA量确定循环数。把管子放在磁站上2 min,吸取上清液。用Qubit 2.0 Flurometer检查样品的浓度,Agilent High Sensitivity DNA Assay试剂盒检测片段大小分布,峰值在300~800 bp范围内。文库质检合格后,在Illumina HiSeq平台测序。

1.6 测序结果与数据分析

对HiSeqTM2500测序所得的牦牛玻璃化冷冻-解冻未成熟COCs和新鲜未成熟COCs的Raw read数据用过滤软件SOAPnuke(v1.5.2,https://github.com/BGI-flexlab/SOAPnuke)过滤(参数为-l 15-q 0.2-n 0.05-i),将所有原始测序数据去除建库接头序列、扩增引物序列和3′polyA序列,得到Clean reads。然后,采用HISAT(v2.0.4)(http://www.ccb.jhu.edu/software/hisat)[32]将测序过滤得到的所有Clean reads比对到牦牛参考基因组(https://www.ncbi.nlm.nih.gov/genome/?term=yak)[33];使用RSEM (v1.2.12, http://deweylab.biostat.wisc.edu/RSEM)[34]计算出基因表达量后,根据Love等[35]描述的DESeq2(http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html)算法进行基因差异表达检测,最后,用Benjamini和Hochberg[36]的方法对P值进行校正得到Q值,以Q值和log2(fold change)值作为筛选差异表达基因(differentially expressed gene, DEG)的条件:log2(fold change)≥2且Q≤0.05为上调DEGs,log2(fold change)≤-2且Q≤0.05为下调DEGs。将获得的DEGs向GO数据库(http://www.geneontology.org/)各个条目进行映射,计算其数目,Q≤0.05的GO条目即为在DEGs中显著富集的GO条目。通过与KEGG数据库(http://wego.genomics.org.cn)进行比对,对基因涉及的KEGG通路(pathway)进行分析。

1.7 统计分析

用SPSS19.0软件对卵裂率、囊胚率进行单因素方差分析,用Duncan氏法进行多重比较。试验统计数据用“平均值±标准误”表示。

2 结果 2.1 玻璃化冷冻-解冻后牦牛未成熟卵母细胞的复苏率及发育能力

试验进行了5次重复,玻璃化冷冻-解冻后牦牛未成熟卵母细胞平均复苏率为(91.6±0.4)%。IVF/IVC结果表明(表 1),牦牛冻融COCs用娟姗牛冷冻精液IVF后,用G-1 120 h + G-2 48 h的培养程序(B组)显著比G-1 72 h + G-2 96 h的传统培养程序(A组)培养的COCs的卵裂率和囊胚率高(P<0.05),但两组冻融COCs在IVF/IVC后的卵裂率和囊胚率均显著低于新鲜COCs组(C组,P<0.05)。

表 1 玻璃化冷冻-解冻对牦牛未成熟卵母细胞发育能力的影响 Table 1 Effect of vitrification/thawing (v/t) on developmental competence of yak immature oocytes
2.2 玻璃化冷冻-解冻和新鲜COCs差异表达基因的筛选

本项目使用Illumina HiSeq平台共检测了牦牛3枚玻璃化冷冻-解冻的未成熟COCs样本和3枚新鲜未成熟COCs样本,每个样品平均产出4.72 Gb数据。每个样品测序的原始数据过滤后得到过滤读数比例(Clean Reads ratio)≥84%、Q20≥95%、Q30≥91%。

相比较新鲜未成熟COCs,采用DEseq2法筛选到在牦牛玻璃化冷冻-解冻COCs共有851个DEGs,其中上调DEGs 846个,下调DEGs 5个,非DEGs 14 928个(图 1)。表 2列出了冷冻后上调倍数最大的前30个DEGs,表 3列出了冷冻后下调的5个DEGs。

红色、蓝色和灰色分别代表上调的DEGs(846个)、下调的DEGs(5个)和非DEGs(14 928个) Red, blue and grey color indicate up-regulated DEGs (846), down-regulated DEGs (5) and not DEGs (14 928), respectively 图 1 牦牛新鲜和冷冻-解冻未成熟COCs差异表达基因火山图 Fig. 1 The volcano plot of DEGs for the fresh- vs. vitrified/thawed-immature COCs of the yak
表 2 牦牛新鲜和冷冻-解冻未成熟COCs中上调倍数最大的前30个差异表达基因 Table 2 Top 30 up-regulated DEGs with the greatest fold changes for the fresh- vs. vitrified/thawed-immature COCs of the yak
表 3 牦牛新鲜和冷冻-解冻未成熟COCs中下调差异表达基因 Table 3 The down-regulated DEGs for the fresh- vs. vitrified/thawed-immature COCs of the yak
2.3 差异表达基因的GO功能富集分析

GO分析结果显示,851个DEGs归类涉及生物过程(biological process,BP)、细胞组分(cellular component,CC)和分子功能(molecular function,MF)3大类49个二级条目(图 2)。在BP分类24个二级条目中占比例最大依次为细胞过程(cellular process)、代谢过程(metabolic process)、生物调节(biological regulation)和生物过程调节(regulation of biological process)。在CC分类15个二级条目中占比例最高依次为细胞(cell)、细胞部分(cell part)、细胞器(organelle)及细胞膜(membrane)。在MF分类10个二级条目中占比例最大的依次为绑定分子(binding)、催化活性(catalytic activity)及信号传感器活性(signal transducer activity)。

图 2 牦牛未成熟冷冻-解冻与新鲜COCs中差异表达基因GO功能分类统计图 Fig. 2 Gene Ontology classification of the DEGs for the fresh- vs. vitrified/thawed-immature COCs of the yak
2.4 差异表达基因KEGG通路分析

对牦牛玻璃化冷冻-解冻未成熟COCs与新鲜未成熟COCs之间的851个DEGs进行KEGG通路分析,结果显示,DEGs被富集到258条KEGG通路,其中味觉转导(taste transduction)、矿物吸收(mineral absorption)、溶酶体(lysosome)和ABC转运体(ABC transporter)等16条通路为显著富集(表 4)。

表 4 差异表达基因显著富集的KEGG通路 Table 4 The significantly enriched KEGG pathways of DEGs
3 讨论

为了探讨牦牛未成熟卵母细胞冷冻保存技术作为提供牦牛卵母细胞来源,开展牦牛胚胎工程研究与应用的有效性和可行性,本研究将牦牛未成熟COCs经玻璃化冷冻-解冻、IVM、IVF后,比较了两种IVC程序对其卵裂率和囊胚率的影响,并对COCs进行RNA-seq分析,首次揭示了玻璃化冷冻-解冻对牦牛未成熟卵母细胞发育能力和COCs转录组的影响。本研究使用Smart-Seq2扩增技术[23]分别对3枚玻璃化冷冻-解冻的未成熟COCs和3枚新鲜未成熟COCs样本进行富集并构建6个测序文库,再进行高通量测序分析。扩增产物cDNA样品片段分布、碱基的组成和质量值分布、Q20、Q30、Clean Reads比例等质量评估及数据分析结果都表明,冷冻-解冻COCs的RNA降解不明显,测序质量和文库构建质量高,测序数据准确可靠。

本研究发现,牦牛未成熟卵母细胞玻璃化冷冻-解冻后的复苏率约为91.6%,与普通牛成熟卵母细胞玻璃化冷冻后的复苏率(91.1%)相近[20],说明玻璃化冷冻-解冻对卵母细胞形态学的影响较小。但是与其它物种的研究结果一致[5-15],本研究也发现,玻璃化冷冻-解冻的牦牛COCs在IVM、IVF和IVC后,发育潜能显著低于新鲜卵母细胞(表 1)。研究采用的瑞典Vitrolife公司生产的G-IVF、G-1和G-2是目前世界上广泛应用于包括人在内的许多哺乳动物IVF和IVC的商品化试剂,G-1为含有透明质烷、人血清白蛋白的以碳酸盐为缓冲物质的培养液,用于IVF后前3 d的胚胎培养,而G-2液含有囊胚发育优化的多种氨基酸和透明质烷,用于囊胚发育培养。瑞典Vitrolife公司推荐的标准IVC程序是卵子受精后在G-1中培养72 h后转入G-2中培养96 h,但是,Chen等[18]的研究发现,虽然囊胚发育率低,但牦牛玻璃化冻融卵母细胞IVF后第1~8天的胚胎单独采用G-1培养也能发育到囊胚。在G-1液中添加胰岛素样生长因子(IGF-1)可以通过调节BAXBCL-2和AQP3基因的表达提高玻璃化冷冻-解冻牦牛未成熟卵母细胞IVF后的胚胎发育率。本研究发现,G-1延长培养时间(120 h)组的卵裂率((55.8±0.5)% vs. (44.5±0.6)%)和囊胚率((9.7±0.4)% vs. (4.3±0.6)%)均显著高于标准组(在G-1培养72 h组)(P<0.05), 与Chen等[18]用G-1单独培养获得的卵裂率((63.05±0.98)%)和囊胚率((8.37±1.12)%)相近。主要原因可能是从解冻后卵母细胞获得的IVF胚胎发育相对缓慢,延长在G-1中的培养时间有利于胚胎的发育。但是,这种培养条件不利于从新鲜卵母细胞获得的胚胎发育,因为本研究中新鲜卵母细胞IVF后在G-1培养72 h + G-2培养96 h的囊胚率高达(34.2±0.6)%,而IVF后192 h一直用G-1培养的囊胚率只有(14.07±0.45)%[18]。这些研究提示,冻融卵母细胞需要的IVM、IVF和IVC条件与新鲜卵母细胞有一定差异,在研究改善卵母细胞冷冻保存技术的同时,有必要研究改善其复苏后的IVM、IVF和IVC方法。由于采集牦牛卵母细胞的季节短,数量有限,因此,本研究只设置了两个胚胎培养组合,这方面有待进一步系统研究。

在分子水平的研究发现,卵母细胞在玻璃化冷冻前后有许多基因的表达发生显著改变[3, 16-20],卵母细胞的发育能力与冷冻前后转录组的变化尤其是其中的一些特异基因的差异表达密切相关[3, 20]。人卵母细胞慢速冷冻前后的差异表达基因的数目比玻璃化冷冻前后多,结果慢速冷冻法的胚胎发育率低于玻璃化冷冻法[3]。玻璃化冷冻对小鼠卵母细胞的发育率无显著影响[37],可能与其玻璃化冷冻前后转录组无明显变化有关[38]。本研究发现,玻璃化冷冻-解冻造成牦牛未成熟COCs产生851个DEGs,其中,上调846个,下调5个,这可能是导致其发育能力显著降低的重要机制。通用转录因子IIF (GTFIIF)参与基因转录的起始、启动子清除、延伸过程,是由通用转录因子IIF多肽2和GTFIIF 1两种亚基组成的四聚体分子[39]。甘油激酶(GK)和3-磷酸甘油脱氢酶是需氧甘油代谢途径的关键酶, 其主要作用是甘油激酶催化甘油生成3-磷酸甘油, 然后,在3-磷酸甘油脱氢酶的作用下生成磷酸二羟丙酮。之后,进入糖酵解途径, 为细胞代谢提供能量和代谢所需物质[40]。因此,冷冻后COC中通用转录因子IIF亚基2(GTF2F2)和GK等基因表达上调,可能是由于冻融应激后COC为保持正常生物过程和分子功能的应激反应。泛素结合酶E2s(UBE2S)家族成员参与泛素化修饰,调节蛋白活性[41]。SLMAP参与信号传导、细胞周期和细胞凋亡等过程的调控[42]。因此,本研究冷冻后的COCs中UBE2SSLMAP等基因表达下调可能影响了卵母细胞的发育能力[18]。研究采用牦牛COCs微量RNA进行反转录、构建文库、高通量测序能充分保持mRNA原有种类的复杂性,保证了扩增样品的测序数据和原始未扩增富集样本测序数据的一致性[20, 43-44],因此,本研究对测序结果没有进行qPCR验证。

虽然玻璃化冷冻对卵母细胞形态学的影响较小[20],但对其超微结构影响较大[45-46]。卵母细胞的体积较大,细胞内脂质含量高,抗冻能力差,且膜结构对冷冻敏感[45]。卵母细胞的细胞骨架由微管(聚合的微管蛋白)、微丝(聚合的肌动蛋白)和中间丝3个主要部分组成。冷冻保存时,为了达到平衡,渗透压发生急剧的变化,可能会导致卵母细胞萎缩变形,破坏细胞骨架[45-46]。这些细胞结构的破坏导致卵膜线粒体的异常分布,从而导致减数分裂能力和卵母细胞受精率降低,而且影响早期胚胎发育[4]。本研究发现,牦牛COCs经玻璃化冷冻-解冻后,DEGs在CC分类的二级条目中占比例最高的依次是细胞、细胞部分、细胞器部件及细胞器和膜(图 2),表明玻璃化冷冻对卵母细胞超微结构的影响与对转录组的影响相关联。玻璃化冷冻时,高浓度冷冻保护剂对细胞的强毒性和细胞结构的损伤可能也是导致冷冻保存后卵母细胞发育能力继续下降的重要原因[4]。玻璃化冷冻-解冻造成牦牛卵母细胞851个DEGs在BP分类的二级条目中占比例最大依次为细胞过程、代谢过程、生物调节和生物过程调节;在MF分类的二级条目中占比例最大的是绑定分子,其次是催化活性及信号传感器活性。本研究还发现,DEGs之间存在相互调控或功能重叠(图 2),提示这些基因可能通过多条代谢通路影响冷冻-解冻卵母细胞的质量、受精和胚胎发育潜能。对851个DEGs进行KEGG通路分析的结果显示,DEGs显著富集的有16条通路(表 4)。许多研究已经证明,这些通路中如溶酶体、ABC转运体、氧化磷酸化等多数通路与细胞周期和功能有关[20, 31, 47]。Nagy等[48]的研究表明,人卵泡液中的胆汁酸与早期胚胎发育有关。本研究结果显示,DEGs富集最显著的通路是味觉转导,这方面则尚未见报道,有待进一步研究。

4 结论

本研究探讨了牦牛未成熟卵母细胞玻璃化冷冻-解冻、IVM和IVF后的IVC技术,发现早期胚胎在G-1培养120 h + G-2培养48 h的培养程序比传统的标准程序(G-1 72 h + G-2 96 h)更有利于胚胎的发育。玻璃化冷冻-解冻影响牦牛COCs转录组,从而降低卵母细胞的发育潜力,该发现为完善牦牛COCs玻璃化冷冻技术提供了一定的理论基础。

参考文献
[1] SANCHEZ-PARTIDA L G, KELLY R D W, SUMER H, et al. The generation of live offspring from vitrified oocytes[J]. PLoS One, 2011, 6(6): e21597. DOI: 10.1371/journal.pone.0021597
[2] RALL W F, FAHY G M. Ice-free cryopreservation of mouse embryos at -196 ℃ by vitrification[J]. Nature, 1985, 313(6003): 573–575. DOI: 10.1038/313573a0
[3] MONZO C, HAOUZI D, ROMAN K, et al. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase Ⅱ oocytes[J]. Hum Reprod, 2012, 27(7): 2160–2168. DOI: 10.1093/humrep/des153
[4] MOUSSA M, SHU J, ZHANG X H, et al. Cryopreservation of mammalian oocytes and embryos:current problems and future perspectives[J]. Sci China Life Sci, 2014, 57(9): 903–914. DOI: 10.1007/s11427-014-4689-z
[5] TUCKER M J, WRIGHT G, MORTON P C, et al. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation[J]. Fertil Steril, 1998, 70(3): 578–579. DOI: 10.1016/S0015-0282(98)00205-2
[6] AONO N, ABE Y, HARA K, et al. Production of live offspring from mouse germinal vesicle-stage oocytes vitrified by a modified stepwise method, SWEID[J]. Fertil Steril, 2005, 84(S2): 1078–1082.
[7] THARASANIT T, COLENBRANDER B, STOUT T A E. Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes[J]. Mol Reprod Dev, 2006, 73(5): 627–637. DOI: 10.1002/mrd.20432
[8] VIEIRA A D, FORELL F, FELTRIN C, et al. Calves born after direct transfer of vitrified bovine in vitro-produced blastocysts derived from vitrified immature oocytes[J]. Reprod Domest Anim, 2008, 43(3): 314–318. DOI: 10.1111/j.1439-0531.2007.00899.x
[9] KOHAYA N, FUJIWARA K, ITO J, et al. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain[J]. PLoS One, 2013, 8(3): e58063. DOI: 10.1371/journal.pone.0058063
[10] MOAWAD A R, ZHU J, CHOI I, et al. Effect of cytochalasin B pretreatment on developmental potential of ovine oocytes vitrified at the germinal vesicle stage[J]. Cryo Letters, 2013, 34(6): 634–644.
[11] NIU H R, ZI X D, XIAO X, et al. Developmental competence of frozen-thawed yak (Bos grunniens) oocytes followed by in vitro maturation and fertilization[J]. Cryobiology, 2014, 68(1): 152–154. DOI: 10.1016/j.cryobiol.2014.01.012
[12] NOHALEZ A, MARTINEZ C A, GIL M A, et al. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes[J]. Theriogenology, 2015, 84(4): 545–552. DOI: 10.1016/j.theriogenology.2015.04.004
[13] EL-SHALOFY A S, MOAWAD A R, DARWISH G M, et al. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the Germinal Vesicle (GV) stage[J]. Cryobiology, 2017, 74: 86–92. DOI: 10.1016/j.cryobiol.2016.11.010
[14] MOAWAD A R, TAN S L, TAKETO T. Beneficial effects of glutathione supplementation during vitrification of mouse oocytes at the germinal vesicle stage on their preimplantation development following maturation and fertilization in vitro[J]. Cryobiology, 2017, 76: 98–103. DOI: 10.1016/j.cryobiol.2017.04.002
[15] FATHI M, MOAWAD A R, BADR M R. Production of blastocysts following in vitro maturation and fertilization of dromedary camel oocytes vitrified at the germinal vesicle stage[J]. PLoS One, 2018, 13(3): e0194602. DOI: 10.1371/journal.pone.0194602
[16] NIU H R, ZI X D, XIAO X, et al. Cloning of cDNAs for H1F0, TOP1, CLTA and CDK1 and the effects of cryopreservation on the expression of their mRNA transcripts in yak (Bos grunniens) oocytes[J]. Cryobiology, 2014, 69(1): 55–60. DOI: 10.1016/j.cryobiol.2014.05.002
[17] ARCARONS N, MORATÓ R, VENDRELL M, et al. Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro matured bovine oocytes[J]. PLoS One, 2017, 12(9): e0184714. DOI: 10.1371/journal.pone.0184714
[18] CHEN P, PAN Y, CUI Y, et al. Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3[J]. Reprod Domest Anim, 2017, 52(5): 825–835. DOI: 10.1111/rda.12985
[19] DINNYÉS A, DAI Y P, JIANG S, et al. High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer[J]. Biol Reprod, 2000, 63(2): 513–518. DOI: 10.1095/biolreprod63.2.513
[20] WANG N, LI C Y, ZHU H B, et al. Effect of vitrification on the mRNA transcriptome of bovine oocytes[J]. Reprod Domest Anim, 2017, 52(4): 531–541. DOI: 10.1111/rda.12942
[21] MARIONI J C, MASON C E, MANE S M, et al. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome Res, 2008, 18(9): 1509–1517. DOI: 10.1101/gr.079558.108
[22] RAMSK LD D, LUO S J, WANG Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30(8): 777–782. DOI: 10.1038/nbt.2282
[23] PICELLI S, BJ RKLUND Å K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096–1098. DOI: 10.1038/nmeth.2639
[24] 兰道亮, 熊显荣, 林宝山, 等. 基于微量RNA高通量测序技术的牦牛MⅡ期卵母细胞转录组研究[J]. 畜牧兽医学报, 2014, 45(5): 722–732.
LAN D L, XIONG X R, LIN B S, et al. Transcriptome analysis of yak metaphase Ⅱ (MⅡ) oocytes by a micro-transcriptome sequencing method[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(5): 722–732. (in Chinese)
[25] WIENER G, HAN J L, LONG R J. The yak[M]. Bangkok: The Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, 2003.
[26] ZI X D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement[J]. Theriogenology, 2003, 59(5-6): 1303–1312. DOI: 10.1016/S0093-691X(02)01172-X
[27] YU S J, JU X H, WANG L B, et al. Successful embryo transfer in Tianzhu white yak using standard protocol[J]. Sci China Ser C Life Sci, 2007, 50(5): 655–659. DOI: 10.1007/s11427-007-0062-9
[28] ZI X D, YIN R H, CHEN S W, et al. Developmental competence of embryos derived from reciprocal in vitro fertilization between yak (Bos grunniens) and cattle (Bos taurus)[J]. J Reprod Dev, 2009, 55(5): 480–483. DOI: 10.1262/jrd.20202
[29] 孙永刚, 徐惊涛, 才让东智, 等. 体外受精生产犏牛胚胎与移植试验研究[J]. 畜牧兽医学报, 2013, 44(5): 719–726.
SUN Y G, XU J T, CAIRANG D Z, et al. The study on cattle×yak in vitro fertilization and embryo transfer[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(5): 719–726. (in Chinese)
[30] VAJTA G, HOLM P, KUWAYAMA M, et al. Open Pulled Straw (OPS) vitrification:a new way to reduce cryoinjuries of bovine ova and embryos[J]. Mol Reprod Dev, 1998, 51(1): 53–58. DOI: 10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
[31] ZI X D, LIU S, XIA W, et al. Transcriptional profiles of crossbred embryos derived from yak oocytes in vitro fertilized with cattle sperm[J]. Sci Rep, 2018, 8: 11571. DOI: 10.1038/s41598-018-29912-7
[32] KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357–360. DOI: 10.1038/nmeth.3317
[33] QIU Q, ZHANG G J, MA T, et al. The yak genome and adaptation to life at high altitude[J]. Nat Genet, 2012, 44(8): 946–949. DOI: 10.1038/ng.2343
[34] LI B, DEWEY C N. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. DOI: 10.1186/1471-2105-12-323
[35] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. DOI: 10.1186/s13059-014-0550-8
[36] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. J Roy Statist Soc Ser B, 1995, 57(1): 289–300.
[37] ZANDER-FOX D, CASHMAN K S, LANE M, et al. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development[J]. J Assist Reprod Genet, 2013, 30(1): 107–116. DOI: 10.1007/s10815-012-9898-4
[38] GAO L, JIA G X, LI A, et al. RNA-Seq transcriptome profiling of mouse oocytes after in vitro maturation and/or vitrification[J]. Sci Rep, 2017, 7(1): 13245. DOI: 10.1038/s41598-017-13381-5
[39] ABART P, U'JVÁRI A, PAL M, et al. Transcription factor TFⅡF is not required for initiation by RNA polymerase Ⅱ, but it is essential to stabilize transcription factor TFⅡB in early elongation complexes[J]. Proc Natl Acad Sci U S A, 2011, 108(38): 15786–15791. DOI: 10.1073/pnas.1104591108
[40] 郭雪娜, 诸葛斌, 诸葛健. 甘油代谢中甘油激酶的研究进展[J]. 微生物学报, 2002, 42(4): 510–513.
GUO X N, ZHUGE B, ZHUGE J. Research progress on the glycerol kinase[J]. Acta Microbiologica Sinica, 2002, 42(4): 510–513. DOI: 10.3321/j.issn:0001-6209.2002.04.021 (in Chinese)
[41] LORENZ S, BHATTACHARYYA M, FEILER C, et al. Crystal structure of a Ube2S-ubiquitin conjugate[J]. PLoS One, 2016, 11(2): e0147550. DOI: 10.1371/journal.pone.0147550
[42] NORDZIEKE S, ZOBEL T, FRILNZEL B, et al. A fungal sarcolemmal membrane-associated protein (SLMAP) homolog plays a fundamental role in development and localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria[J]. Eukaryot Cell, 2015, 14(4): 345–358. DOI: 10.1128/EC.00241-14
[43] 郑杰, 蒲思颖, 杨远潇, 等. 基于高通量测序的犏牛囊胚玻璃化冷冻损伤机制研究[J]. 畜牧兽医学报, 2017, 48(10): 1871–1881.
ZHENG J, PU S Y, YANG Y X, et al. Exploring mechanism for vitrification damage of the cross-bred blastocysts of the yak via high-throughput sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10): 1871–1881. DOI: 10.11843/j.issn.0366-6964.2017.10.010 (in Chinese)
[44] 蒲思颖, 郑杰, 杨远潇, 等. 牦牛新鲜囊胚与玻璃化冻融囊胚转录组的比较分析[J]. 畜牧兽医学报, 2018, 49(4): 709–717.
PU S Y, ZHENG J, YANG Y X, et al. Comparative transcriptome analysis between fresh and vitrified-thawed blastocysts of the yak (Bos grunniens)[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(4): 709–717. (in Chinese)
[45] LEDDA S, LEONI G, BOGLIOLO L, et al. Oocyte cryopreservation and ovarian tissue banking[J]. Theriogenology, 2001, 55(6): 1359–1371. DOI: 10.1016/S0093-691X(01)00487-3
[46] MARTINO A, POLLARD J W, LEIBO S P. Effect of chilling bovine oocytes on their developmental competence[J]. Mol Reprod Dev, 1996, 45(4): 503–512. DOI: 10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X
[47] ABOELENAIN M, KAWAHARA M, BALBOULA A Z, et al. Status of autophagy, lysosome activity and apoptosis during corpus luteum regression in cattle[J]. J Reprod Dev, 2015, 61(3): 229–236. DOI: 10.1262/jrd.2014-135
[48] NAGY R A, VAN MONTFOORT A P A, DIKKERS A, et al. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF[J]. Hum Reprod, 2015, 30(5): 1102–1109. DOI: 10.1093/humrep/dev034