畜牧兽医学报  2020, Vol. 51 Issue (2): 227-233. DOI: 10.11843/j.issn.0366-6964.2020.02.003    PDF    
玉米赤霉烯酮对母猪的繁殖毒性研究进展
吴峰洋1, 杨新宇1, 栗金丽1, 陈宝江1,2     
1. 河北农业大学动物科技学院, 保定 071000;
2. 河北省牛羊胚胎工程技术研究中心, 保定 071000
摘要:玉米赤霉烯酮(zearalenone,ZEA)是一种具有雌激素活性的真菌毒素,是猪生产中最常见的霉菌毒素之一。玉米赤霉烯酮广泛存在于谷物原料和配合饲料中,食入被其污染的饲料可导致母猪繁殖障碍,严重影响母猪的生产潜力和生产性能。本文就ZEA在猪饲料中的污染现状、对母猪的繁殖毒性以及毒性作用途径等方面进行综述,为进一步研究提供参考。
关键词玉米赤霉烯酮    母猪    繁殖毒性    
Research Progress on Reproductive Toxicity of Zearalenone to Sows
WU Fengyang1, YANG Xinyu1, LI Jinli1, CHEN Baojiang1,2     
1. College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China;
2. Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei, Baoding 071000, China
Abstract: Zearalenone(ZEA) is a mycotoxin with estrogen activity, which is one of the most common mycotoxins in swine production.Zearalenone is widely found in cereal raw materials and compound feeds.Reproductive disorders may occur when sows are fed the feed contaminated by zearalenone, which can seriously affect the production performance and production potential of the sow.This paper reviewed the pollution status of zearalenone in pig feed, reproductive toxicity to sows, and toxic action pathways, which will provide a reference for further research.
Key words: zearalenone    sow    reproductive toxicity    

ZEA污染分布广泛,是猪生产中最常见的霉菌毒素之一。2018年黄俊恒和黄广明[1]检测了从19个省市收集的422份原料及饲料样品发现,原料中玉米和饼粕类分别有7.9%和6.1%的样本ZEA含量超标,饲料中ZEA检出率为95%,超标率为7.9%,污染最高值为1 730.9 μg·kg-1,远高于国家饲料卫生标准(GB13078-2017)的限量要求。ZEA污染会导致谷物在外观、气味和营养成分等方面发生改变,影响谷物的感官和营养价值。ZEA的繁殖毒性还会导致母猪的繁殖器官出现宏观损伤和微观病变,严重影响母猪的生产力及猪场的核心利益。为了应对ZEA污染的危害,相关人员已在饲料原料生产加工、运输、仓储管理、脱霉剂的应用研发、污染检测以及中毒治疗等诸多环节做了大量努力,但仍未能有效防控ZEA的危害。因此,本文就ZEA对母猪的繁殖毒性作用做一综述,为进一步的研究及防治措施的制定提供参考。

1 猪饲料中ZEA的污染状况

我国大部分农区位于太平洋西岸,呈夏季炎热多雨、雨热同期、冬季海陆温差大的季风气候特征,是ZEA污染的重灾区[2]。ZEA污染会导致谷物在外观、气味和营养成分等方面发生改变[3],从而影响谷物和配合饲料的感官和营养价值。就污染总体比例而言,黄俊恒和黄广明[4]在2017年从全国20余省市采集了659份饲料原料及配合饲料样品,以ZEA含量>500 μg·kg-1为超标,发现204份全价料样品中ZEA检出率为97.5%,平均含量和最高含量分别为53和427.7 μg·kg-1,232份玉米和17份豆粕样品中ZEA检出率分别为87.5%和94.1%,平均含量和最高含量分别为86.7、5 052.5 μg·kg-1和23.6、146.6 μg·kg-1,其中玉米的超标率为2.7%。就污染区域分布而言,苏永腾[5]自2013年1月到2016年7月间收集了340份猪饲料样品,696份玉米样品,发现我国猪饲料及原料中镰刀菌毒素的污染以华北和东北冷湿储粮生态区和华东热湿储粮生态区较为严重,而青藏高寒干燥、蒙新干冷、华北干热、西南中温低湿以及华南高温高湿等储粮生态区相对较轻。就污染时间特点而言,陈丽媛[6]对2018年1—6月收集的166份玉米样品检测后发现,ZEA含量与季节变化有一定关联,1—4月份,国内温湿度双低,ZEA污染情况相对较轻,从5月份开始,伴随气温升高,降雨增多,ZEA污染情况迅速加重,1—6月份样品ZEA含量分别为96.24、34.14、82.97、37.95、152.54和60.97 μg·kg-1。就不同饲养阶段饲料污染状况而言,陈丽媛[6]对2018年上半年不同地区采集到的153份猪饲料检测后发现,ZEA污染情况为:哺乳母猪料>育肥料>怀孕母猪料>空怀母猪料>仔猪料,含量分别为:129.15、86.56、72.55、54.09和46.02 μg·kg-1。苏永腾[5]对2013年1月到2016年7月从各地区收集到的不同饲养阶段的猪饲料进行ZEA含量检测,得到的结果与陈丽媛相近。提示,对猪饲料中ZEA污染的管控不能一成不变,应结合地域分布、季节性气候特征以及不同阶段猪饲料污染特点综合制定管控措施。

2 ZEA对母猪的繁殖毒性

由于猪的3α-和3β-羟基类固醇脱氢酶(3α-和3β-HSD)活性较高,而UDP葡萄糖酸基转移酶的活性较低,因此,与其他动物相比,猪更易将ZEA转化为α-或β-玉米赤霉烯醇(α-或β-ZOL),而不易与UDP葡萄糖酸基转移酶形成共轭物排出体外[7],由于α-ZOL是猪ZEA的主要代谢产物且雌激素活性最强,因此猪是畜禽中对ZEA最敏感的物种之一[8]

2.1 ZEA对后备母猪的繁殖毒性

ZEA的毒性效应具有剂量和阶段等的依赖性,不同阶段母猪的敏感性存在一定差异,在母猪的各个阶段中,后备阶段对ZEA最为敏感[9]。刘秀凤[10]在21~25日龄断奶母猪饲粮中添加0.5~1.5 mg·kg-1ZEA,发现其卵巢卵泡提前发育,高剂量时卵泡发生闭锁,并且诱导卵巢Bax、Bcl-2、GHR、Hsp70以及PCNA的异常表达。周敏等[11]在饲喂35~38日龄小母猪的饲粮中添加ZEA含量分别为0.5、1和1.5 mg·kg-1时发现,ZEA可导致其子宫的内膜和肌层显著增厚,腺体数量显著增多,腺体密度显著增大。Gajcka等[12]在2月龄母猪的饲粮中持续48 d添加20和40 μg·kg-1的ZEA发现,20 μg·kg-1的ZEA可引起母猪子宫增生并伴有充血和肿胀,40 μg·kg-1的ZEA可导致子宫细胞坏死,结缔组织纤维化。Jakimiuk等[13]报道,ZEA可引起未性成熟的母猪外阴红肿及出现假发情的现象。而去除饲粮中的ZEA通常可以使发情状况在30 d内恢复正常[2]。Shi等[14]报道,饲喂小母猪ZEA含量为596.86 μg·kg-1的污染饲粮28 d后发现外阴面积显著增大,生殖激素分泌紊乱。饲喂后备母猪ZEA含量为3 mg·kg-1饲粮,发现可导致第1胎不孕[15]。可见ZEA可以通过促进子宫、卵巢、阴道等内外生殖器官的提前发育,引起生殖器官出现病理变化,扰乱发情周期等方式对后备母猪发挥繁殖毒性,从而影响生长、后备母猪繁殖潜力的发挥。

2.2 ZEA对繁殖母猪的繁殖毒性

虽然ZEA的雌激素效应强度仅为雌激素的1/10[16],但仍可从发情周期、受胎率、胚胎发育、新生仔猪健康与活力等方面直接影响母猪的繁殖性能,并诱发母猪繁殖机能障碍,导致外阴阴道炎、发情周期紊乱、不育、假孕、卵巢组织损伤、子宫内膜病和流产等症状的发生[17]。Young等[18]报道,饲喂母猪被ZEA(10和50 mg·kg-1)污染的饲粮发现,母猪的乏情时间与饲粮中ZEA的污染程度呈线性正相关。ZEA也会影响妊娠的建立和维持过程,Kunishige等[19]饲喂妊娠早期小鼠ZEA含量分别为2、4、8 mg·kg-1的饲粮发现,胚胎向子宫的迁移,蜕膜化反应、黄体功能的激活及胚胎的植入和着床后的发育均会不同程度受到影响。Zhang等[20]报道,在母猪妊娠期的第35~70天,饲喂含有2.77 mg·kg-1 ZEA的污染饲料,发现妊娠母猪的日采食量、增重、怀孕70 d的背膘厚及胎盘的重量均显著降低。Dänicke等[21]在母猪妊娠期的第75~110天,饲料中添加0.358 mg·kg-1 ZEA,发现仔猪体重显著低于未添加组,脾脏指数及红细胞比容也均低于未添加组,同时仔猪胆汁酸及其代谢产物中ZEA含量高于未添加组,说明ZEA与代谢产物可以通过胎盘屏障。Xu等[22]用10 μmol·L-1的ZEA处理体外培养的猪胚胎,发现显著降低了2-细胞期胚胎和胚泡的发育速率,并诱发氧化应激导致线粒体功能障碍和DNA损伤。

3 ZEA繁殖毒性的作用途径 3.1 ZEA对母猪的类雌激素效应

ZEA的繁殖毒性主要来自其类雌激素作用,相关报道表明,ZEA及其衍生物能与17β-雌二醇特异性、竞争性地结合胞浆中的ER(雌激素受体)[23]。Takemura等[24]报道,ZEA及其衍生物ZOL和玉米赤霉酮(ZEL)能够以类似17β-雌二醇的方式特异性、竞争性的结合ERα和ERβ的活性位点,ZEA及其衍生物ZOL的酚环与17β-雌二醇的A环与活性位点结合的区域相同。ER有两种异构体ERα和ERβ,ZEA是ERα受体的完全激活剂,是ERβ的部分激活剂[25]。雌激素活性的调节主要受ERα的调控。ZEA与ER结合后,ER作为转运载体将ZEA转运到细胞核内,然后与雌激素受体反应元件结合,继而调节靶基因转录和蛋白质合成,影响细胞分裂和生长,发挥类雌激素作用[26-27]。尽管ZEA对靶组织的雌激素效应仅为乙烯雌酚或雌二醇的1/80~1/160[28-29],但ZEA及其代谢产物仍能导致母猪繁殖机能异常,影响母猪的繁殖力。ZEA及其代谢产物均具有雌激素效应,且效应强度不同。α-ZOL的效应强度约为ZEA及β-ZOL的2~4倍[30],约为乙炔雌二醇的17倍[23]。也有报道称,α-ZOL的雌激素效应为ZEA的92倍[31]。Malekinejad等[32]采用雌激素依赖性人乳腺癌(MCF-7)细胞,以17β-雌二醇为阳性对照,比较ZEA及其衍生物的雌激素活性发现,其活性大小排序为:α-ZOL > ZEA > β-ZOL,并用猪肝的亚细胞组分进行了生物转化研究发现,α-ZOL是ZEA在猪体内的主要肝代谢物。ZEA及其代谢产物效应强度的差异可能与其与雌激素受体的相对结合能力不同有关。总体而言,对不同物种,内分泌中枢下丘脑及内生殖器官子宫及乳腺等器官的亚细胞组分结合试验表明,ZEA及其代谢产物的相对亲和力约仅为17β-雌二醇的1/10~1/100[33]。ZEA及其代谢产物亲和力比17β-雌二醇低的原因可能是,17β-雌二醇与受体结合时不需要改变构象,而ZEA及其代谢产物与受体结合时构象需要发生改变[34]。就ZEA及其代谢产物而言,Greenman等[35]用17β-雌二醇为配体,研究ZEA与ZEL结合子宫受体的能力差异,发现ZEL的结合能力优于ZEA。Kuiper-goodman等[33]研究发现,ZEA及其代谢产物对小鼠子宫细胞质受体的亲和力排序如下:α-玉米赤霉酮(α-ZEL)> α-ZOL >β-玉米赤霉酮(β-ZEL)> ZEA > β-ZOL。

3.2 ZEA对母猪内分泌的干扰作用

ZEA是一种内分泌干扰物,不仅是雌激素受体的配体,还是甾类合成和代谢酶的竞争底物,可以调节类固醇的生成及相关内、外源化合物的生物转化[36]。Fu等[37]持续21 d饲喂断奶仔猪被ZEA污染的饲粮后发现,血清卵泡刺激素、促黄体生成素、雌二醇及孕酮水平均显著降低。ZEA及其代谢产物α-ZOL可以通过G蛋白偶联受体30来抑制猪垂体对卵泡刺激素的合成和分泌[38]。并且,ZEA可以通过上调miR-7的表达抑制卵泡刺激素的合成和分泌[39]。而ZEA对卵泡刺激素的抑制作用可能会抑制卵泡的发育进而抑制孕酮的合成和分泌[40]。ZEA及其代谢产物能通过调控猪垂体GPR30-G-AC/cAMP-PKA-ERK-LHX3-miR-7-FOS通路来抑制促黄体素的合成及分泌[41]。ZEA可以通过下调IGF-1、SFRP2CYP19A1等雌二醇合成相关基因mRNA的表达来抑制雌二醇的分泌[42]。由此可知,ZEA可以引起母猪内分泌紊乱,在中枢神经系统及植物性神经系统的发育与功能,生殖器官的生长与发育以及繁殖功能的维持与调节等方面发挥了重要的作用,可见,通过引起内分泌紊乱继而影响母猪的生产潜力和生产性能是ZEA繁殖毒性的作用途径之一。

3.3 ZEA对母猪繁殖相关细胞的毒性作用

研究表明,ZEA对繁殖相关细胞具有毒性作用。ZEA可以诱导卵母细胞凋亡,影响卵母细胞的产生和成熟,引起细胞周期停滞及DNA甲基化[43-44],导致卵母细胞数量减少,质量降低,ZEA导致的低妊娠率及高流产率可能均与此有关。ZEA除了影响生殖细胞的减数分裂过程外,其还能通过引起双链断裂导致DNA损伤,抑制DNA的复制及改变表观遗传修饰[45-46]。在生殖器官方面,ZEA能通过猪卵巢颗粒细胞线粒体跨膜电位的缺失以及细胞内过氧化来影响颗粒细胞的增殖,并能通过线粒体凋亡通路引发细胞凋亡[47-48]。ZEA也可以导致子宫内膜基质细胞活力下降,DNA复制受阻及产生凋亡[45]。ZEA对主要生殖器官细胞的毒性作用与上文描述的其引起的母猪生殖器官功能状态下降及病理损伤有直接关联,这也是导致母猪生产力下降的途径之一。

3.4 ZEA对母猪的遗传毒性作用

Kouadio等[49]报道,ZEA可引起体外培养的中国仓鼠卵巢细胞发生姐妹染色单体互换、染色体异常、多倍体产生等,继而影响DNA和蛋白质的合成。Ayed-boussema等[50]报道,ZEA可以导致体外培养的Vero细胞微核产生增多,染色体畸变,并且畸变程度与ZEA含量有相关性。ZEA可引起DNA出现双链断裂,表观遗传修饰变化以及复制受阻等[45]。ZEA的遗传毒性还表现在其对胎盘免疫的影响以及可以通过胎盘屏障直接影响胎儿[51]。王相生等[52]饲喂妊娠第30天的母猪ZEA含量为1.5 mg·kg-1的饲粮,持续74 d,发现胎盘非特异性免疫相关基因TLR-2及TLR-4的表达均降低,说明ZEA对母猪胎盘的非特异性免疫有抑制作用。Schoevers等[53]用被ZEA污染的玉米饲喂妊娠母猪,发现新生仔猪胆汁及其代谢产物中ZEA浓度为3.0~31.6 ng·mL-1,说明ZEA可以穿过母猪的胎盘屏障,直接影响子代。

3.5 ZEA对母猪抗氧化及免疫的毒性作用

氧化损伤也是ZEA造成繁殖毒性的作用途径之一,ZEA会诱发线粒体功能障碍,导致氧的单电子还原产物生成,引起氧化应激,过量的活性氧会对细胞的膜脂、蛋白质和DNA造成氧化损伤,最终导致细胞死亡[54-55]。氧化应激会引起机体新陈代谢紊乱和免疫力下降,产生氧自由基连锁反应,使母猪的生产力降低。Shi等[56]在断奶母猪饲粮中添加1 mg·kg-1 ZEA,饲喂28 d后发现,血液总抗氧化力以及谷胱甘肽过氧化物酶和超氧化物歧化酶的活性均显著降低,丙二醛的含量显著上升。陈亚等[57]饲喂断奶母猪呕吐毒素和ZEA含量分别为0.4 mg·kg-1和0.55 mg·kg-1的霉变饲料25 d,发现母猪卵巢抗氧化水平降低,并导致细胞凋亡程度加深。可见,ZEA也会导致母猪的免疫功能下降,最终影响母猪的繁殖力。杨立杰等[58]饲喂断奶母猪ZEA含量为1 mg·kg-1的饲粮后发现,猪瘟和伪狂犬病病毒抗体水平以及外周血淋巴细胞增殖率显著降低。Reddy等[59]连续28 d饲喂猪ZEA含量为0.8 mg·kg-1的饲粮,发现血清IgG及IgM水平显著降低。

4 小结

近年来,母猪因摄入被ZEA污染的饲料导致繁殖性能降低、免疫力下降以及继发其他疾病的情况持续发生,不仅给养猪业造成了经济损失,还阻碍了养猪业的健康、可持续发展。ZEA对母猪繁殖性能的持续影响一方面是由于毒性作用机制的研究不足限制了更有效控制措施的制定。因此,应进一步重视和加强相关基础研究,如霉菌毒素间的互作效应研究,生物脱霉剂降解产物毒性研究,多组学整合毒性机理研究,ZEA衍生物毒性研究等。另一方面应根据ZEA在不同地区不同季节不同阶段母猪料中的污染特点以及各阶段母猪的易感性差异综合制定防治措施,不能一成不变。同时应注重物理、化学、生物脱霉剂的组合应用,以及尝试与具有提高母猪免疫力、抗氧化性能、抗炎、保肝作用的产品搭配使用。

参考文献
[1] 黄俊恒, 黄广明. 2018年19省市饲料及饲料原料霉菌毒素污染状况分析[J]. 养猪, 2019(3): 6–8.
HANG J H, HUANG G M. Analysis of mycotoxin contamination status of feed and feed raw materials in 19 provinces in 2018[J]. Swine Production, 2019(3): 6–8. (in Chinese)
[2] 王相生.玉米赤霉烯酮及其降解酶对母猪繁殖性能的影响[D].兰州: 甘肃农业大学, 2017.
WNG X S.Effects of zearalenone and its degrading enzymes on reproductive performance of sows[D].Lanzhou: Gansu Agricultural University, 2017.(in Chinese)
[3] 姜淑贞, 杨维仁, 杨在宾. 玉米赤霉烯酮的污染和残留及其作用机制[J]. 中国饲料, 2011(2): 41–44.
JANG S Z, YANG W R, YANG Z B. The contamination, residue and mechanism of zearalenone[J]. China Feed, 2011(2): 41–44. (in Chinese)
[4] 黄俊恒, 黄广明. 2016年20省市饲料及饲料原料霉菌毒素污染状况分析[J]. 养猪, 2017(2): 21–24.
HANG J H, HUANG G M. Analysis of the status of mycotoxin contamination in feed and feed ingredients in 20 provinces and municipalities in 2016[J]. Swine Production, 2017(2): 21–24. (in Chinese)
[5] 苏永腾.我国猪饲料霉菌毒素污染现状分析[J].国外畜牧学-猪与禽, 2018, 38(4): 87-89. S Y T.
Analysis on the status of mycotoxin contamination in pig feed in China[J].Animal Science Abroad (Pigs and Poultry), 2018, 38(4): 87-89.(in Chinese)
[6] 陈丽媛. 2018年1-6月饲料及原料霉菌毒素分析报告[J]. 国外畜牧学-猪与禽, 2018, 38(8): 70–72.
CEN L Y. Analysis report of mycotoxin from feed and raw materials from January to June 2018[J]. Animal Science Abroad (Pigs and Poultry), 2018, 38(8): 70–72. DOI: 10.3969/j.issn.1002-1957.2016.04.008 (in Chinese)
[7] OLSEN M, PETTERSSON H, KIESSLING K H. Reduction of zearalenone to zearalenol in female rat liver by 3α-hydroxysteroid dehydrogenase[J]. Acta Pharmacol Toxicol, 1981, 48(2): 157–161. DOI: 10.1111/j.1600-0773.1981.tb01602.x
[8] HUSSEIN H S, BRASEL J M. Toxicity, metabolism, and impact of mycotoxins on humans and animals[J]. Toxicology, 2001, 167(2): 101–134. DOI: 10.1016/s0300-483x(01)00471-1
[9] ZINEDINE A, SORIANO J M, MOLTÓJ C, et al. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone:an oestrogenic mycotoxin[J]. Food Chem Toxicol, 2007, 45(1): 1–18. DOI: 10.1016/j.fct.2006.07.030
[10] 刘秀凤.玉米赤霉烯酮对断奶仔猪卵巢发育的影响[D].泰安: 山东农业大学, 2018.
LU X F.Effects of zearalenone on ovarian development of weaned piglets[D].Tai'an: Shandong Agricultural University, 2018.(in Chinese)
[11] 周敏, 周雪梅, 杨立杰, 等. 玉米赤霉烯酮对断奶小母猪子宫形态学及热应激蛋白70分布和表达的影响[J]. 中国农业科学, 2018, 51(4): 778–788.
ZOU M, ZHOU X M, YANG L J, et al. Effects of zearalenone on expression of heat shock protein 70 and morphology of uterus tissues of post-weaning piglets[J]. Scientia Agricultura Sinica, 2018, 51(4): 778–788. (in Chinese)
[12] GAJCKA M, RYBARCZYK L, JAKIMIUK E, et al. The effect of experimental long-term exposure to low-dose zearalenone on uterine histology in sexually immature gilts[J]. Exp Toxicol Pathol, 2012, 64(6): 537–542.
[13] JAKIMIUK E, GAJECKA M, JANA B, et al. Factors determining sensitivity of prepubertal gilts to hormonal influence of zearalenone[J]. Pol J Vet Sci, 2009, 12(1): 149–158. DOI: 10.1080/00480169.2009.64736
[14] SHI D H, ZHOU J C, ZHAO L H, et al. Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts[J]. J Anim Sci Biotechnol, 2018, 9(3): 727–737.
[15] KANORA A, MAES D. The role of mycotoxins in pig reproduction:a review[J]. Vet Med, 2009, 54(12): 565–576. DOI: 10.3906/vet-0806-18
[16] 高爽, 梁珍, 邓俊良, 等. 玉米赤霉烯酮和脱氧血腐镰刀菌烯醇对雌性动物的生殖毒性及作用机制[J]. 动物营养学报, 2016, 28(4): 1042–1049.
GO S, LIANG Z, DENG J L, et al. Reproductive toxicities and functional mechanisms of female animals induced by deoxynivalenol and zearalenone[J]. Chinese Journal of Animal Nutrition, 2016, 28(4): 1042–1049. DOI: 10.3969/j.issn.1006-267x.2016.04.011 (in Chinese)
[17] OSWEILER G D.Occurrence and clinical manifestations of trichothecene toxicoses and zearalenone toxicoses[M]//RICHARD J L, THURSTON J R.Diagnosis of Mycotoxicoses.Dordrecht: Springer, 1986: 31-42.
[18] YOUNG L G, PING H, KING G J. Effects of feeding zearalenone to sows on rebreeding and pregnancy[J]. J Anim Sci, 1990, 68(1): 15–20. DOI: 10.1051/gse:19900407
[19] KUNISHIGE K, KAWATE N, INABA T, et al. Exposure to zearalenone during early pregnancy causes estrogenic multitoxic effects in mice[J]. Reprod Sci, 2017, 24(3): 421–427. DOI: 10.1177/1933719116657194
[20] ZHANG Y Y, GAO R, LIU M, et al. Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development[J]. Theriogenology, 2015, 83(5): 932–941.
[21] DÄNICKE S, BRUSSOW K P, GOYARTS T, et al. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from the sow to the full-term piglet during the last third of gestation[J]. Food Chem Toxicol, 2007, 45(9): 1565–1574. DOI: 10.1016/j.fct.2007.02.016
[22] XU Y, ZHANG K H, SUN M H, et al. Protective effects of melatonin against zearalenone toxicity on porcine embryos in vitro[J]. Front Pharmacol, 2019, 10: 327. DOI: 10.3389/fphar.2019.00327
[23] LE GUEVEL R, PAKDEL F. Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods[J]. Hum Reprod, 2001, 16(5): 1030–1036. DOI: 10.1111/j.1600-0463.2001.tb05800.x
[24] TAKEMURA H, SHIM J Y, SAYAMA K, et al. Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro[J]. J Steroid Biochem Mol Biol, 2007, 103(2): 170–177. DOI: 10.1016/j.jsbmb.2006.08.008
[25] KUIPER G G J M, CARLSSON B, GRANDIEN K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta[J]. Endocrinology, 1997, 138(3): 863–870. DOI: 10.1210/endo.138.3.4979
[26] ALM H, GREISING T, BRVSSOW K P, et al. The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes[J]. Toxicol In Vitro, 2002, 16(6): 643–648. DOI: 10.1016/s0887-2333(02)00059-0
[27] NIKOV G N, HOPKINS N E, BOUE S, et al. Interactions of dietary estrogens with human estrogen receptors and the effect on estrogen receptor-estrogen response element complex formation[J]. Environ Health Perspect, 2000, 108(9): 867–872. DOI: 10.1289/ehp.00108867
[28] FORSELL J H, PESTKA J J. Relation of 8-ketotrichothecene and zearalenone analog structure to inhibition of mitogen-induced human lymphocyte blastogenesis[J]. Appl Environ Microbiol, 1985, 50(5): 1304–1307. DOI: 10.1016/0141-4607(85)90029-0
[29] UENO Y, TASHIRO F. α-zearalenol, a major hepatic metabolite in rats of zearalenone, an estrogenic mycotoxin of Fusarium species[J]. J Biochem, 1981, 89(2): 563–571. DOI: 10.1093/oxfordjournals.jbchem.a133232
[30] CELIUS T, HAUGEN T B, GROTMOL T, et al. A sensitive zonagenetic assay for rapid in vitro assessment of estrogenic potency of xenobiotics and mycotoxins[J]. Environ Health Perspect, 1999, 107(1): 63–68. DOI: 10.1289/ehp.9910763
[31] SHIER W T, SHIER A C, XIE W, et al. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins[J]. Toxicon, 2001, 39(9): 1435–1438. DOI: 10.1016/S0041-0101(00)00259-2
[32] MALEKINEJAD H, MAAS-BAKKER R F, FINK-GREMMELS J. Bioactivation of zearalenone by porcine hepatic biotransformation[J]. Vet Res, 2005, 36(5-6): 799–810. DOI: 10.1051/vetres:2005034
[33] KUIPER-GOODMAN T, SCOTT P M, WATANABE H. Risk assessment of the mycotoxin zearalenone[J]. Regul Toxicol Pharmacol, 1987, 7(3): 253–306. DOI: 10.1016/0273-2300(87)90037-7
[34] 姜淑贞.玉米赤霉烯酮对断奶仔猪的毒性初探及改性蒙脱石的脱毒效应研究[D].泰安: 山东农业大学, 2010.
JANG S Z.An initial study of zearalenone on toxic of post-weaning gilts and the detoxification effects of modified montmorillonite[D].Tai'an: Shandong Agricultural University, 2010.(in Chinese)
[35] GREENMAN D L, MEHTA R G, WITTLIFF J L. Nuclear interaction of Fusarium mycotoxins with estradiol binding sites in the mouse uterus[J]. J Toxicol Environ Health, 1979, 5(4): 593–598. DOI: 10.1080/15287397909529771
[36] 付冠华.地衣芽胞杆菌CK1缓解饲料中玉米赤霉烯酮对藏猪的毒性及其脱毒机制的研究[D].杨凌: 西北农林科技大学, 2018. F G H.
Detoxifacation by Bacillus licheniformisc CK1 of zearalenone in feed for Tibetan piglets and its potential mechanisms for detoxification[D].Yangling: Northwest A&F University, 2018.(in Chinese)
[37] FU G H, WANG L H, LI L, et al. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets[J]. J Anim Sci, 2018, 96(10): 4471–4480. DOI: 10.1093/jas/sky301
[38] HE J, WEI C, LI Y Q, et al. Zearalenone and alpha-zearalenol inhibit the synthesis and secretion of pig follicle stimulating hormone via the non-classical estrogen membrane receptor GPR30[J]. Mol Cell Endocrinol, 2018, 461: 43–54. DOI: 10.1016/j.mce.2017.08.010
[39] HE J, ZHANG J L, WANG Y, et al. miR-7 mediates the zearalenone signaling pathway regulating FSH synthesis and secretion by targeting FOS in female pigs[J]. Endocrinology, 2018, 159(8): 2993–3006.
[40] AHMAD B, SHRIVASTAVA V K, SALEH R, et al. Protective effects of saffron against zearalenone-induced alterations in reproductive hormones in female mice (Mus musculus)[J]. Clin Exp Reprod Med, 2018, 45(4): 163–169. DOI: 10.5653/cerm.2018.45.4.163
[41] ZHENG W L, FENG N N, WANG Y, et al. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones:a review[J]. Food Chem Toxicol, 2019, 126: 262–276.
[42] ZHANG G L, ZHANG R Q, SUN X F, et al. RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro:significance to steroidogenesis[J]. Oncotarget, 2017, 8(38): 64001–64014. DOI: 10.18632/oncotarget.19699
[43] SU Y, SUN Y C, JU D X, et al. The detoxification effect of vitamin C on zearalenone toxicity in piglets[J]. Ecotoxicol Environ Saf, 2018, 158: 284–292. DOI: 10.1016/j.ecoenv.2018.04.046
[44] LI Y J, HE X Y, YANG X, et al. Zinc inhibits the reproductive toxicity of Zearalenone in immortalized murine ovarian granular KK-1 cells[J]. Sci Rep, 2015, 5: 14277. DOI: 10.1038/srep14277
[45] XIE H Q, HU J, XIAO C, et al. Exploration of ZEA cytotoxicity to mouse endometrial stromal cells and RNA-seq analysis[J]. J Biochem Mol Toxicol, 2017, 31(4): e21874. DOI: 10.1002/jbt.21874
[46] LIU X L, WU R Y, SUN X F, et al. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro[J]. Int J Biol Sci, 2018, 14(3): 294–305. DOI: 10.7150/ijbs.23898
[47] ZHENG W L, WANG B J, LI X, et al. Zearalenone promotes cell proliferation or causes cell death?[J]. Toxins, 2018, 10(5): 184. DOI: 10.3390/toxins10050184
[48] 胡进.玉米赤霉烯酮对小鼠子宫内膜基质细胞的毒性作用及机制研究[D].南京: 南京农业大学, 2016. H J.
Toxicity of zearalenone and its mechanisms on mouse endometrial stromal cells[D].Nanjing: Nanjing Agricultural University, 2016.(in Chinese)
[49] KOUADIO J H, MOBIO T A, BAUDRIMONT I, et al. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2[J]. Toxicology, 2005, 213(1-2): 56–65. DOI: 10.1016/j.tox.2005.05.010
[50] AYED-BOUSSEMA I, OUANES Z, BACHA H, et al. Toxicities induced in cultured cells exposed to zearalenone:apoptosis or mutagenesis?[J]. J Biochem Mol Toxicol, 2007, 21(3): 136–144. DOI: 10.1002/jbt.20171
[51] YANG D C, JIANG X W, SUN J X, et al. Toxic effects of zearalenone on gametogenesis and embryonic development:a molecular point of review[J]. Food Chem Toxicol, 2018, 119: 24–30. DOI: 10.1016/j.fct.2018.06.003
[52] 王相生, 孙亚宁, 阮崇美, 等. 玉米赤霉烯酮对母猪繁殖性能和胎盘免疫相关基因表达量的影响[J]. 动物营养学报, 2017, 29(10): 3696–3702.
WNG X S, SUN Y N, RUAN C M, et al. Effects of zearalenone on reproductive performance and placenta immunity related gene expression of sows[J]. Chinese Journal of Animal Nutrition, 2017, 29(10): 3696–3702. DOI: 10.3969/j.issn.1006?267x.2017.10.032 (in Chinese)
[53] SCHOEVERS E J, SANTOS R R, COLENBRANDER B, et al. Transgenerational toxicity of Zearalenone in pigs[J]. Reprod Toxicol, 2012, 34(1): 110–119. DOI: 10.1016/j.reprotox.2012.03.004
[54] TATAY E, ESPÍN S, GARCÍA-FERNÁNDEZ A J, et al. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells[J]. Toxicol in Vitro, 2017, 45: 334–339. DOI: 10.1016/j.tiv.2017.04.026
[55] LONG M, YANG S H, HAN J X, et al. The protective effect of grape-seed proanthocyanidin extract on oxidative damage induced by zearalenone in kunming mice liver[J]. Int J Mol Sci, 2016, 17(6): 808. DOI: 10.3390/ijms17060808
[56] SHI B M, SU Y, CHANG S Y, et al. Vitamin c protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes[J]. Food Funct, 2017, 8(10): 3675–3687. DOI: 10.1039/c7fo01301a
[57] 陈亚, 魏全伟, 杜文超, 等. 乳果糖和富氢水对断奶仔猪采食霉变玉米后引起卵巢机能障碍的缓解作用[J]. 畜牧兽医学报, 2018, 49(12): 2641–2651.
CEN Y, WEI Q W, DU W C, et al. Mitigation of lactulose and hydrogen-rich water on ovarian dysfunction caused by dietary contaminated corn in weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(12): 2641–2651. (in Chinese)
[58] 杨立杰, 王淑静, 杨维仁, 等. 玉米赤霉烯酮对断奶小母猪生产性能、血清抗氧化功能和免疫功能的影响[J]. 动物营养学报, 2017, 29(8): 2843–2850.
YNG L J, WANG S J, YANG W R, et al. Effects of zearalenone on production performance, serum antioxidant capacity and immune function of weaning gilts[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2843–2850. (in Chinese)
[59] REDDY K E, SONG J, LEE H J, et al. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs[J]. Toxins (Basel), 2018, 10(3): 114. DOI: 10.3390/toxins10030114