畜牧兽医学报  2020, Vol. 51 Issue (12): 3046-3056. DOI: 10.11843/j.issn.0366-6964.2020.12.014    PDF    
牛卵泡颗粒细胞CART相互作用蛋白鉴定及受体筛选
成俊丽, 郝庆玲, 侯淑宁, 朱芷葳, 许冬梅, 李鹏飞     
山西农业大学生命科学学院, 太谷 030801
摘要:旨在筛选牛卵泡发育关键负调控因子可卡因-苯丙胺调节转录肽(cocaine and amphetamine regulated transcript peptide,CART)的相互作用蛋白及其受体。本研究采集3头健康母牛双侧卵巢,分离卵泡后刮取颗粒细胞(granulosa cells,GCs)混样;采用跨膜蛋白Extraction试剂盒提取膜蛋白,运用Protein G琼脂糖磁珠与重组CART蛋白、Anti-CART抗体共孵育(n=3);洗脱CART-蛋白复合物进行二级质谱(LC-MS/MS)分析;获得的蛋白经可信度过滤,利用生物信息学技术对其进行功能聚类分析,通过CELLO V2.5软件对蛋白进行亚细胞定位和跨膜区分析;获得7次跨膜的G蛋白偶联受体(G-protein-coupled receptors,GPCRs),经ProtScale软件分析其胞内外结构区段特点,符合神经肽与受体结合结构特点的GPCR作为CART的候选受体。抽提的膜蛋白经免疫亲和层析(n=3)后,分别鉴定出149、557和298个相互作用蛋白,经筛选剔除重复蛋白,共鉴定出620个蛋白。多数据库集功能富集分析表明,CART相互作用蛋白包含参与信号传导活性的GNAS、GNG8和JUP,参与类固醇生物合成的HSD3B,参与细胞凋亡或增殖调节的OPA1和S100A11,参与Notch信号通路的ERH,这些蛋白或信号通路均与牛卵泡发育密切相关。亚细胞定位和跨膜区分析共获得膜蛋白156个,占总蛋白数的20.53%;其中7次跨膜的GPCRs有8个。经TMHMM分析表明,8个GPCRs中仅ZMPSTE24、HM13和GPR108的N端在胞外,C端在胞内,与神经肽受体的结构特征一致;经PredictProtein结合位点分析表明,ZMPSTE24在5~6跨膜区间的胞内环存在G蛋白结合的位点。ZMPSTE24作为CART的候选受体,有待于分子互作和功能试验进一步加以验证。本研究为牛卵泡CART受体的鉴定奠定了基础,对丰富牛卵泡发育调控理论具有重要意义。
关键词    卵泡    可卡因-苯丙胺调节转录肽    G蛋白偶联受体    质谱分析    
Identification and Receptor Screening of CART Interacting Proteins in Bovine Follicular Granulosa Cells
CHENG Junli, HAO Qingling, HOU Shuning, ZHU Zhiwei, XU Dongmei, LI Pengfei     
College of Life Science, Shanxi Agricultural University, Taigu 030801, China
Abstract: The aim of this study was to screen the interaction proteins and receptor of CART (cocaine and amphetamine regulated transcript peptide), which was a key negative regulatory protein of follicular development in bovine. The both ovaries of 3 healthy cows were collected, after sepa-rating follicles, the GCs (granulosa cells) were scraped and mixed. The membrane proteins were extracted by transmembrane protein extraction kit. The protein G agarose magnetic beads were used to incubate with recombinant CART protein and Anti-CART antibody (n=3). CART-protein complex was eluted and analyzed by LC-MS/MS. The obtained proteins were filtered, and function cluster was analyzed by bioinformatics technology, subcellular localization and transmembrane region analysis of these proteins were performed by CELLO V2.5 software. The intracellular and extracellular structural segments of GPCRs (G-protein-coupled receptors) with 7 times transmembrane were obtained and analyzed by ProtScale software. The GPCRs were used as candidate receptors of CART, their structural characteristics were consistent with the structural characteristics of neuropeptide and receptor binding. The 149, 557 and 298 interaction proteins were identified by immunoaffinity chromatography (n=3), respectively, and total 620 proteins were identified after screening and elimating repetitive proteins. Functional enrichment analysis of multiple database sets showed that GNAS, GNG8 and JUP involved in signal transduction activity, HSD3B involved in steroid biosynthesis, OPA1 and S100A11 involved in regulation of cell apoptosis or proliferation, and ERH involved in Notch signaling pathway, they were interaction proteins and closely related to follicular development in bovine. A total of 156 membrane proteins were obtained by subcellular localization and transmembrane domain analysis, which was 20.53% of total protein. Out of 156, 8 proteins with 7 times transmembrane were considered as GPCRs. The TMHMM analysis showed that the characteristics of ZMPSTE24, HM13 and GPR108 was consistent with the structural characteristics of neuropeptide receptor, their N-terminal was outside and C-terminal was inside. The analysis of PredictProtein binding site showed that there was a G-protein binding site in the intracellular loop of 5-6 transmembrane region of ZMPSTE24. As a candidate receptor for CART, ZMPSTE24 needs to be further verified by molecular interaction and functional tests. This study has laid a foundation for the identification of CART receptors in bovine follicles, and was of great significance to enrich the theory of regulation of follicular development in bovine.
Key words: bovine    follicle    CART    GPCRs    mass spectrometry    

牛在一个发情期内通常只有一个优势卵泡(dominant follicles, DF)成熟并排卵,卵母细胞的来源严重制约着胚胎工程技术的广泛应用和优良种畜的扩繁[1]。本课题组前期研究表明,可卡因-苯丙胺调节转录肽(cocaine and amphetamine regulated transcript peptide, CART)在牛卵泡发育波中是抑制卵泡优势化的重要调节因子[2-4]。对CART受体鉴定及其功能展开研究,可为深入分析牛卵泡闭锁以及提高单胎家畜的排卵率、解决优良种畜扩繁提供理论支持,也对丰富动物生殖生理学中下丘脑-垂体-卵巢轴的内分泌调控理论具有重要意义。神经肽是生物体内的一类活性多肽,分为垂体肽、下丘脑神经肽、脑肠肽、内源性阿片肽及一些小肽,CART属于下丘脑神经肽[5]。目前,已发现的神经肽受体除心房钠尿肽(ANP)受体外,均属于鸟核苷酸调节蛋白,即G蛋白偶联的受体,这类受体蛋白的特征是肽链形成7个α螺旋区段并7次跨膜,经胞内第二信使发挥生物调节效应;神经肽受体肽链长度约350~500个氨基酸,肽链N端位于胞外,C端在胞内;C端连接第5和第6个跨膜区段的胞内环是受体与G蛋白的结合部位[6]

基于CART在牛卵泡发育过程中的调控作用,本研究依据神经肽受体的定位及其结构特征,通过膜蛋白抽提和免疫亲和层析技术,分析牛卵泡颗粒细胞(granulesa cells, GCs)CART相互作用蛋白并进一步筛选其受体。试验中应用蛋白复合体质谱分析和生物信息结构分析技术,筛选CART候选受体,为后期CART受体的鉴定和结构解析提供依据。

1 材料与方法 1.1 试验材料

1.1.1 主要试剂   跨膜蛋白Extraction试剂盒(ab65400)、重组人CART蛋白(ab160570)、Anti-CART抗体(ab213617)均购自Abcam公司;LC-MS级乙腈、LC-MS级甲酸、LC-MS级超纯水、Protein G免疫磁珠均购自赛默飞公司;质谱级胰酶购自Promega公司;蛋白酶抑制剂、Bradford储液、Bradford工作液均购自Sigma公司。

1.1.2 试验动物及样品采集   试验中所用卵泡均来自文水县肉牛屠宰场。选取3头健康的黄白花母牛,屠宰后分别摘取双侧卵巢,要求双侧卵巢及卵泡形态正常,无囊肿及病变;投入灭菌DPBS冰盒中,带回实验室分离双侧卵巢上直径5 mm以上卵泡,用眼科剪剪开卵泡刮取GCs,混样置于1.5 mL EP管中,1 400 r·min-1离心5 min,弃上清,置于液氮保存备用。

1.2 试验方法

1.2.1 卵泡GCs膜蛋白分离   取出GCs,4 ℃ PBS缓冲液漂洗;加入4 μL蛋白酶抑制剂,冰浴条件下用超声破碎仪裂解细胞20 min,参数设定为间隔10 s运行3 s;裂解液1 000 r·min-1离心10 min,收集上清转移至EP管,14 000 r·min-1离心30 min,收集沉淀;按照跨膜蛋白Extraction试剂盒说明书操作,沉淀即为膜蛋白,-80 ℃保存。

1.2.2 膜蛋白浓度检测   分别取0、2、4、6、8、10、12、14 μL浓度为1 μμL-1的BSA,ddH2O定容至100 μL,加Bradford工作液1 mL,混匀后37 ℃恒温箱孵育5 min,分光光度计测定OD值,绘制BSA浓度标准曲线。取1 μL样品于1.5 mL EP管中,ddH2O定容至100 μL,加Bradford工作液1 mL,分光光度计测定OD值,利用标准曲线计算膜蛋白浓度。

1.2.3 免疫亲和层析流程   涡旋1 min重悬磁珠,吸取50 μL磁珠至EP管,经磁力架吸附,弃上清;在磁珠中添加200 μL PBS,然后分别加入0.5 μg重组CART及Anti-CART抗体,室温下旋转孵育10 min,磁力架吸附弃上清;200 μL PBS重悬,磁力架吸附弃上清;膜蛋白溶于300 μL加有Tween 20的PBS中,轻吸至孵育磁珠,室温下旋转孵育30 min;磁力架下缓慢吸附弃上清并PBS清洗3次;加入20 μL洗脱液室温下旋转孵育2 min;上清液即为抗体-CART-蛋白复合物(n=3)。

1.2.4 蛋白复合物酶解   蛋白复合物洗脱液中加2 μg胰酶和500 μL TEAB缓冲液,混匀后37 ℃酶切24 h;加入等体积1%甲酸混匀,16 800 r·min-1离心5 min;取上清缓慢通过C18除盐柱,清洗液(0.1%甲酸、4%乙腈)清洗3次;洗脱液(0.1%甲酸、45%乙腈)洗脱2次,合并洗脱液并冻干。

1.2.5 酶解物质谱检测   1 mL 0.1%甲酸溶液溶解冻干酶解物,16 800 r·min-1离心10 min,上清液经纳升级UHPLC系统预柱为Acclaim PepMap100 C18 Nano-Trap和分析柱Reprosil-Pur 120 C18-AQ分离,流速为600 nL·min-1;Q ExactiveTM HF-X质谱仪进行肽段分析,参数设定:全扫描范围为350~1 500 m·z-1,一级质谱分辨率60 000(200 m·z-1);选取全扫描中离子强度TOP 40的母离子高能碰撞裂解(HCD)进行二级质谱检测,分辨率设为15 000(200 m·z-1),肽段碎裂碰撞能量设为27%,阈强度设为8.3×103,生成质谱检测原始数据(raw文件)。

1.2.6 肽段数据库匹配   将基于质谱检测得到的原始raw文件导入Proteome Discoverer 2.2软件进行数据库检索获得谱肽(peptide spectrum matches,PSMs)和蛋白定量数据,数据库为Bos taurus-uniprot-fasta。参数设定:酶切方式为胰蛋白酶,固定修饰选择脲甲基化修饰,可变修饰为氧化修饰。

1.3 生物信息学分析

1.3.1 蛋白功能注释   鉴定获得的蛋白通过Interproscan软件基于6大数据库(Pfam、PRINTS、ProDom、SMART、ProSite、PANTHER)进行蛋白功能GO分类;经BLAST比对(E-Value ≤1×10-4)、过滤,选取评分最高的比对结果进行COG和KEGG注释;应用Interproscan软件基于iProclass综合数据库(IPR)对未知蛋白进行结构域注释;并基于GO、COG、KEGG和IPR注释结果制作韦恩图。

1.3.2 CART候选受体筛选   CELLO V2.5(http://cello.life.nctu.edu.tw/)对鉴定到的所有蛋白进行亚细胞定位,TMHMM Server V2.0(http://www.cbs.dtu.dk/services/TMHMM/)分析膜蛋白跨膜次数,ProtScale(https://web.expasy.org/protscale/)分析蛋白亲水性及疏水性区域,PredictProtein (https://www.predictprotein.org/)预测蛋白结合位点。

2 结果 2.1 牛卵泡GCs膜蛋白浓度测定

通过测定不同浓度下标准液BSA的OD值,获得标准液浓度与OD值的关系曲线:y=0.037 3x+0.038 3,R2=0.967 6。膜蛋白提取液OD值为0.192,利用标准曲线计算出的蛋白浓度为4.12 μμL-1,满足后续免疫亲和试验要求。

2.2 牛卵泡GCs质谱检测质量控制分析

质谱下机数据在搜库完成后,通过肽段长度分布、母离子质量容差分布、Unique肽段数分布、蛋白覆盖度分布和蛋白分子量分布进行质控分析,结果表明,各项参数均符合试验和仪器要求,所获得的CART相互作用蛋白可信度较高。

2.3 牛卵泡GCs蛋白复合体质谱定性分析

为提高分析结果质量,降低假阳性率(false discovery rate,FDR),利用Proteome Discoverer 2.2软件对检索结果做了进一步过滤:PSMs可信度≥95%,且unique肽段≥1,FDR<0.05;结果表明,3组亲和层析蛋白复合物中分别鉴定出149、557和298个蛋白(表 1);经筛选剔除重复蛋白,3组蛋白复合物中共鉴定出620个蛋白。

表 1 鉴定蛋白种类 Table 1 Types of identified proteins
2.4 蛋白功能富集分析

获得的620个蛋白经GO、COG、KEGG和IPR通用功能数据库进行功能注释(图 1),共有487个蛋白获得GO注释,283个蛋白获得COG注释,620个蛋白获得KEGG注释,608个蛋白获得IPR注释;大多数蛋白获得2个以上数据库集注释,其中230个蛋白均获得4个数据库集注释。对已注释的功能分类条目进一步筛选,获得许多可能参与牛卵泡发育和信号传导的蛋白聚类(表 2),如参与信号传导活性的GNAS、GNG8和JUP,参与类固醇生物合成的HSD3B,参与细胞凋亡或增殖调节的OPA1和S100A11,参与Notch信号通路的ERH;参与胞膜形成的蛋白有10个;参与细胞生长和死亡的蛋白有29个;包含信号识别受体结构域的蛋白有SRPRB。

图中各圈代表一个数据库集注释结果,重叠部分代表多个数据库集注释蛋白,非重叠部分代表单独注释蛋白 The each circle in the figure represent one database-set annotation result, the overlaps represent multiple database-set annotation proteins, and the non-overlaps represent individual annotation proteins 图 1 蛋白功能注释韦恩图 Fig. 1 The Venn diagram of protein function annotation
表 2 蛋白功能聚类分析 Table 2 Protein functional cluster analysis
2.5 蛋白亚细胞定位及GPCRs筛选

获得的620个蛋白经CELLO V2.5分析表明(图 2A),亲和层析蛋白复合体中共包含膜蛋白156个,占比20.53%,这也表明,试验中选用的跨膜蛋白Extraction试剂盒(ab65400)抽提膜蛋白效果较好,免疫亲和层析的条件控制较优。经TMHMM Server V2.0对156个膜蛋白的跨膜分析表明(图 2B),亲和层析蛋白复合体包含的膜蛋白跨膜次数范围在0~14之间,其中,7次跨膜的GPCRs共有8个,分别为GPR108、HM13、SLC39A7、SLC39A9、TMBIM1、ZMPSTE24和2个未知蛋白。

A.蛋白亚细胞定位,右侧图例括号中的数字表示亚细胞定位蛋白数目;B.蛋白跨膜区数量分布 A. Protein subcellular localization, the numbers in parentheses in the illustration at the right represent the number of subcellular localization proteins; B. Protein transmembrane number distribution 图 2 蛋白定位与跨膜次数分析 Fig. 2 Protein localization and transmembrane number analysis
2.6 CART的受体筛选与分析

获得的8个GPCRs经TMHMM Server V2.0分析表明(图 3),ZMPSTE24、HM13和GPR108的N端1~19、1~31、1~267区段均在胞外,C端406~ 475、337~506、500~548区段均在胞内,与神经肽受体的结构特征一致,而SLC39A7、SLC39A9、TMBIM1和2个未知蛋白结构不符合该特征。从神经肽受体的序列结构特点分析筛选获得的3个GPCRs表明(表 3),3个蛋白序列均在500个氨基酸左右,分子质量均大于50 000 u,基本符合神经肽受体的特征;经Genecards功能搜索表明,目前对3个蛋白功能的相关研究较少,ZMPSTE24参与蛋白水解和DNA损伤修复,HM13参与细胞识别,GPR108可能与软骨瘤形成有关。

A. ZMPSTE24;B.HM13;C.GPR108 图 3 GPCR跨膜区特征分析 Fig. 3 Transmembrane features analysis of GPCR
表 3 蛋白序列结构与功能分析 Table 3 Protein sequence structure and function analysis

经PredictProtein对筛选获得的3个GPCRs结合位点分析表明(图 4),ZMPSTE24在5~6跨膜区间胞内环220~348区段存在3个可能与G蛋白结合的位点(图 4A);HM13在5~6跨膜区间胞内环278~289区段不存在蛋白结合位点(图 4B);GPR108在5~6跨膜区间胞内环428~447区段不存在蛋白结合位点(图 4C)。因此,可选择ZMPSTE24作为CART的候选受体, 后期进行深入研究。

A. ZMPSTE24;B. HM13;C. GPR108 图 4 GPCR结合位点分析 Fig. 4 GPCR binding site analysis
3 讨论

神经肽是生物体内重要的化学信使,可通过神经递质、调质和激素发挥广泛的生理作用。神经肽CART有长型和短型两种前体,均含有27个氨基酸前导肽,经加工剪切分别形成102和89个氨基酸的活性肽,以神经内分泌激素的形式经血液运输至各靶器官,牛卵泡CART为短型氨基酸序列[7-8]。现已研究发现, CART具有以下生物学功能:1)对内分泌系统和摄食的影响。活体小鼠及体外试验研究表明,CART对体外培养的下丘脑细胞产生刺激并释放促肾上腺皮质激素释放激素(CRH)[9];大鼠脑室灌注CART42-89活性肽后,造成体内催产素水平的暂时性升高以及皮质酮、血糖水平的显著升高[10]。体外培养下丘脑细胞研究表明,CART可显著提高促甲状腺激素释放激素(TRH)的分泌水平;但也有研究表明,在脑室内灌注CART并不能引起外周血中促甲状腺激素(TSH)及TRH含量变化[11]。对哺乳动物的研究发现,CART大量存在于对摄食和体重调节特别重要的下丘脑神经核;在中枢神经系统中,CART与其他参与摄食调节的瘦素、NPY、阿黑皮素原(POMC)和刺鼠相关蛋白(AGRP)等神经递质和神经肽共存[12-14]。2)对卵泡发育的负调控作用。研究表明,卵泡GCs的增殖分泌功能及其与内分泌激素的相互影响,对维持卵泡正常生长、发育和成熟具有重要的作用[15-16]。Da Silva Bitecourt等[17]研究发现,闭锁卵泡总伴随着GCs的严重凋亡和卵泡液雌激素(estrogen, E2)浓度的显著降低;Santiquet等[18]认为,GCs包裹对卵母细胞的胚泡破裂有关键作用,对促进卵母细胞的完全成熟和防止卵母细胞DNA片段化具有重要作用。本课题组采用体外培养技术研究了CART对牛卵泡FSH诱导下GCs增殖和E2分泌的影响,结果表明,CART对牛卵泡GCs增殖和E2分泌具有显著的负调控作用[2, 19];对牛DF和从属卵泡(subordinate follicles, SF)转录组、蛋白组测序分析表明,CART对牛卵泡优势化具有显著的抑制作用,是引起牛卵泡闭锁的一个重要因素[20-21]

CART相互作用蛋白经多数据库集功能富集分析获得了与牛卵泡发育相关的许多重要蛋白。如参与细胞凋亡和增殖调节的OPA1、S100A11;参与细胞生长和死亡调节的蛋白有29个;具有抗细胞增殖结构域的蛋白有PHB2和PHB;具有14-3-3结构域的蛋白有YWHAQ、YWHAE和YWHAZ。14-3-3家族蛋白共同参与Hippo信号通路调节,该通路具有抑制细胞增殖及促进凋亡的功能,从而对器官形态和大小产生影响[22-24];课题组前期通过Label-free定量蛋白质组学技术对牛DF和SF的GCs蛋白质组分进行比较分析,也证明了14-3-3家族蛋白可能参与Hippo信号通路调节[25]。研究表明,14-3-3家族蛋白对神经细胞的增殖和分化具有调控作用,其通过与特定蛋白互作参与细胞周期调控、细胞存活与胞间粘附[26]。HSD3B是性腺、胎盘合成中间类固醇产物生成反应的酶,在脊椎动物的分化、发育、生长过程中发挥重要生理功能[27]。Notch信号通路是一种高度进化保守的信号通路,在调控细胞通讯和细胞命运方面发挥作用[28];ERH调控Notch信号通路可能通过与核复合物的特定亚基结合来调节许多不同核复合物的活性,同时,ERH在DNA损伤修复中具有重要作用[29]

介于CART的重要性生理功能,研究者对CART受体的筛选和鉴定进行了大量研究[30-31]。但由于CART的受体为GPCRs,其细胞定位特点和立体结构的复杂性,造成受体蛋白重组表达或抽提后立体结构与蛋白活性的保留较为困难,因此,与CART结合的受体仍未鉴定。课题组前期已经从牛卵泡GCs转录组差异表达基因和免疫共沉淀复合体蛋白中筛选GPCRs,并通过分子建模和对接技术,将AGTR2、TEDDM1和CMKLR1作为CART的候选受体[32-34]。本研究采用的细胞跨膜蛋白提取试剂盒,其特点是细胞裂解较为温和,能有效保护GPCRs中的二硫键及立体结构,同时,也保证了免疫亲和层析中CART与其受体的有效结合,并将ZMPSTE24(zinc metallopeptidase STE24)作为CART的候选受体。ZMPSTE24作为金属蛋白酶最早发现于酵母中,广泛分布于哺乳动物组织[35]。其蛋白结构中包含一个锌结合位点、一个三联氨基酸残基部分和GPCRs家族标志;目前对其功能研究较少,Ragnauth等[36]研究表明,平滑肌细胞衰老过程中氧化应激造成ZMPSTE24表达量下降,对细胞DNA损伤修复和有丝分裂产生影响,加速细胞衰老。目前,课题组将获得的AGTR2、TEDDM1、CMKLR1和ZMPSTE24 4个GPCRs作为研究对象,后期将通过分子互作技术和细胞功能试验开展CART受体的鉴定。

4 结论

本研究共鉴定出620个CART相互作用蛋白,获得牛卵泡GCs膜蛋白156个,其中包含8个GPCRs。经结构分析将ZMPSTE24作为CART的候选受体有待于进一步鉴定。同时,CART相互作用蛋白功能富集分析获得29个参与细胞生长和死亡调控的蛋白,1个参与类固醇生物合成蛋白HSD3B以及1个调控类固醇生物合成过程中重要Notch信号通路的调节蛋白ERH。

参考文献
[1] FORTUNE J E, RIVERA G M, EVANS A C O, et al. Differentiation of dominant versus subordinate follicles in cattle[J]. Biol Reprod, 2001, 65(3): 648–654.
[2] LV L, JIMENEZ-KRASSEL F, SEN A, et al. Evidence supporting a role for Cocaine- and amphetamine-regulated transcript (CARTPT) in control of granulosa cell estradiol production associated with dominant follicle selection in cattle[J]. Biol Reprod, 2009, 81(3): 580–586.
[3] LI P F, MENG J Z, LIU W Z, et al. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave[J]. Int J Genomics, 2016, 2016: 3472748.
[4] LI P F, MENG J Z, ZHU Z W, et al. Detection of genes associated with follicle development through transcriptome analysis of bovine ovarian follicles GCs[J]. Curr Bioinform, 2018, 13(2): 127–140.
[5] RALE A, SHENDYE N, BODAS D S, et al. CART neuropeptide modulates the extended amygdalar CeA-vBNST circuit to gate expression of innate fear[J]. Psychoneuroendocrinology, 2017, 85: 69–77.
[6] 路长林. 神经肽基础与临床[M]. 上海: 第二军医大学出版社, 2000.
LU C L. Neuropeptide foundation and clinical[M]. Shanghai: Second Military Medical University Press, 2000. (in Chinese)
[7] RAKOVSKA A, BARANYI M, WINDISCH K, et al. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens[J]. Brain Res Bull, 2017, 134: 246–252.
[8] 李鹏飞, 毕锡麟, 王锴, 等. CART在不同发育阶段牛卵泡颗粒细胞中的表达和定位[J]. 中国农业科学, 2016, 49(12): 2389–2396.
LI P F, BI X L, WANG K, et al. Research on the expression and localization of CART in bovine granulosa cells at different developmental stages[J]. Scientia Agricultura Sinica, 2016, 49(12): 2389–2396. (in Chinese)
[9] ZHANG Z, CAO X, BAO X Y, et al. Cocaine- and amphetamine-regulated transcript protects synaptic structures in neurons after ischemic cerebral injury[J]. Neuropeptides, 2020, 81: 102023.
[10] SMEDH U, SCOTT K A, MORAN T H. Fourth ventricular CART peptide induces c-fos in the area postrema and nucleus of the solitary tract via a CRF-receptor dependent mechanism[J]. Neurosci Lett, 2015, 609: 124–128.
[11] UGUR M, KANIT L, KOYLU E O, et al. Cocaine- and amphetamine-regulated transcript promoter regulated by nicotine in nerve growth factor-treated PC12 cells[J]. Physiol Int, 2019, 106(3): 272–282.
[12] IDELEVICH A, SATO K, AVIHAI B, et al. Both NPY-expressing and CART-expressing neurons increase energy expenditure and trabecular bone mass in response to AP1 antagonism, but have opposite effects on bone resorption[J]. J Bone Miner Res, 2020, 35(6): 1107–1118.
[13] YIN K L, JIN J L, ZHU X L, et al. CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice[J]. Neurol Res, 2017, 39(10): 885–894.
[14] LEE S J, KRIEGER J P, VERGARA M, et al. Blunted vagal cocaine- and amphetamine-regulated transcript promotes hyperphagia and weight gain[J]. Cell Rep, 2020, 30(6): 2028–2039.
[15] MA X T, HAYES E, PRIZANT H, et al. Leptin-induced CART (Cocaine- and Amphetamine-Regulated Transcript) is a novel intraovarian mediator of obesity-related infertility in females[J]. Endocrinology, 2016, 157(3): 1248–1257.
[16] LI P F, YU X J, XIE J S, et al. Expression of cocaine- and amphetamine-regulated transcript (CART) in hen ovary[J]. Biol Res, 2017, 50(1): 18.
[17] DA SILVA BITECOURT F, HORTA C O D, LIMA K S, et al. Morphological study of apoptosis in granulosa cells and ovulation in a model of atresia in rat preovulatory follicles[J]. Zygote, 2018, 26(4): 336–341.
[18] SANTIQUET N W, HERRICK J R, GIRALDO A, et al. Transporting cumulus complexes using novel meiotic arresting conditions permits maintenance of oocyte developmental competence[J]. J Assist Reprod Gen, 2017, 34(8): 1079–1086.
[19] SEN A, BETTEGOWDA A, JIMENEZ-KRASSEL F, et al. Cocaine- and amphetamine-regulated transcript regulation of follicle-stimulating hormone signal transduction in bovine granulosa cells[J]. Endocrinology, 2007, 148(9): 4400–4410.
[20] HOU S N, HAO Q L, ZHU Z W, et al. Unraveling proteome changes and potential regulatory proteins of bovine follicular granulosa cells by mass spectrometry and multi-omics analysis[J]. Proteome Sci, 2019, 17(1): 4.
[21] HAO Q L, ZHU Z W, XU D M, et al. Proteomic characterization of bovine granulosa cells in dominant and subordinate follicles[J]. Hereditas, 2019, 156(1): 21.
[22] HERGOVICH A. Mammalian hippo signalling:a kinase network regulated by protein-protein interactions[J]. Biochem Soc Trans, 2012, 40(1): 124–128.
[23] SHIMADA T, FOURNIER A E, YAMAGATA K. Neuroprotective function of 14-3-3 proteins in neurodegeneration[J]. Biomed Res Int, 2013, 2013: 564534.
[24] RÉGER B, PÉTERFALVI A, LITTER I, et al. Challenges in the evaluation of D-dimer and fibrinogen levels in pregnant women[J]. Thromb Res, 2013, 131(4): e183–e187.
[25] 郝庆玲, 景炅婕, 侯淑宁, 等. 基于Label-free技术分析牛卵泡蛋白质组分及关键调控蛋白[J]. 畜牧兽医学报, 2019, 50(5): 983–992.
HAO Q L, JING J J, HOU S N, et al. Proteomic analysis of follicular components and key regulatory proteins in Bovine based on label-free technology[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(5): 983–992. (in Chinese)
[26] TASHEVA E S, MAKI C G, CONRAD A H, et al. Transcriptional activation of bovine mimecan by p53 through an intronic DNA-binding site[J]. BBA Gene Struct Expr, 2001, 1517(3): 333–338.
[27] ZHANG S, MO J Y, WANG Y Y, et al. Endocrine disruptors of inhibiting testicular 3β-hydroxysteroid dehydrogenase[J]. Chem Biol Interact, 2019, 303: 90–97.
[28] ZHANG Y H, XIANG Z, JIA Y J, et al. The Notch signaling pathway inhibitor Daptalleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism[J]. Prog Neuro Psychoph Biol Psych, 2019, 94: 109644.
[29] TSUBOTA S I, PHILLIPS A C. Drosophila enhancer of rudimentary homolog, ERH, is a binding partner of RPS3, RPL19, and DDIT4, suggesting a mechanism for the nuclear localization of ERH[J]. Mol Biol Int, 2016, 2016: 8371819.
[30] MALETÍNSKÁ L, MAIXNEROVÁ J, MATYSKOVÁ R, et al. Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12[J]. Eur J Pharmacol, 2007, 559(2-3): 109–114.
[31] KELLER P A, COMPAN V, BOCKAERT J, et al. Characterization and localization of cocaine- and amphetamine-regulated transcript (CART) binding sites[J]. Peptides, 2006, 27(6): 1328–1334.
[32] 侯淑宁, 郝庆玲, 景炅婕, 等. 牛卵泡CART受体的筛选及其表达特性分析[J]. 畜牧兽医学报, 2020, 51(3): 505–513.
HOU S N, HAO Q L, JING J J, et al. Screening and expression analysis of CART receptor in bovine follicle[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 505–513. (in Chinese)
[33] 朱芷葳, 侯淑宁, 郝庆玲, 等. 牛卵泡AGTR2序列结构及表达特性分析[J]. 中国农业科学, 2020, 53(7): 1482–1490.
ZHU Z W, HOU S N, HAO Q L, et al. Sequence structure and expression characteristics analysis of AGTR2 in bovine follicle[J]. Scientia Agricultura Sinica, 2020, 53(7): 1482–1490. (in Chinese)
[34] 朱芷葳, 郝庆玲, 侯淑宁, 等. 牛卵泡TEDDM1表达特点及其功能分析[J]. 畜牧兽医学报, 2019, 50(6): 1189–1197.
ZHU Z W, HAO Q L, HOU S N, et al. Expression characteristic and function analysis of TEDDM1 in bovine follicle[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1189–1197. (in Chinese)
[35] BARROWMAN J, MICHAELIS S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders[J]. Biol Chem, 2009, 390(8): 761–773.
[36] RAGNAUTH C D, WARREN D T, LIU Y W, et al. Prelamin a acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging[J]. Circulation, 2010, 121(20): 2200–2210.