畜牧兽医学报  2020, Vol. 51 Issue (12): 2991-3000. DOI: 10.11843/j.issn.0366-6964.2020.12.009    PDF    
全基因组选择信号揭示绒山羊绒毛性状相关的候选基因
金美林1, 陆健2, 费晓娟1, 卢曾奎3, 权凯4, 储明星1, 狄冉1, 王慧华1, 魏彩虹1     
1. 中国农业科学院北京畜牧兽医研究所, 北京 100193;
2. 全国畜牧总站, 北京 100193;
3. 中国农业科学院兰州畜牧与兽药研究所, 兰州 730050;
4. 河南牧业经济学院, 郑州 450046
摘要:旨在对辽宁绒山羊和内蒙古绒山羊的基因组选择信号进行筛选。本研究利用Illumina 50K的山羊芯片,对内蒙古绒山羊、辽宁绒山羊和黄淮山羊进行基因型检测,质控后获得50 010个共同SNPs位点。通过群体分化系数Fst和XP-EHH,以黄淮山羊为参考群体分别对内蒙古绒山羊和辽宁绒山羊进行选择信号检测,Fst和XP-EHH值的top 5%作为阈值。结果,利用Fst在绒山羊基因组中筛选到501个候选基因,利用XP-EHH在绒山羊基因组中筛选到145个候选基因。其中有12个SNPs在绒山羊基因组中受到较强选择。通过基因注释筛选到21个候选基因,包括EXOC4、ASIC2、PCDH9、RHBDD1、IRS1和PDE10A等。这些基因主要富集在PI3K-Akt信号通路、蛋白质消化吸收和松弛素信号通路等。研究结果发现,绒山羊在驯化过程中其基因组很多与毛囊相关的基因受到了强烈的选择。这些发现也有助于更好地了解绒山羊的选择进展,为中国绒山羊品种的种质资源保护和利用提供重要参考。
关键词内蒙古绒山羊    辽宁绒山羊    Fst    XP-EHH    
Genome-wide Selection Signals Reveal Candidate Genes Associated with the Cashmere Traits of Cashmere Goats
JIN Meilin1, LU Jian2, FEI Xiaojuan1, LU Zengkui3, QUAN Kai4, CHU Mingxing1, DI Ran1, WANG Huihua1, WEI Caihong1     
1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. National Animal Husbandry Station, Beijing 100193, China;
3. Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
4. Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
Abstract: The purpose of this study was to screen the genome-wide selection signals of Liaoning cashmere goat and Inner Mongolia cashmere goat. Based on the Illumina Caprine 50K SNP chip, Liaoning cashmere goat, Inner Mongolia cashmere goat and Huanghuai goat were genotyped, and the common 50 010 SNPs were obtained after quality control. Using population differentiation coefficients Fst and XP-EHH, Huanghuai goats were used as reference populations to detect selection signals for Inner Mongolia cashmere goats and Liaoning cashmere goats. The top 5% of Fst and XP-EHH values was used as the threshold. The result showed that 501 candidate genes were selected by Fst and 145 candidate genes were selected by XP-EHH in cashmere goats. Based on these SNPs, we detected 12 SNPs under strong selection by Fst and XP-EHH. After gene annotation, 21 candidate genes were identified, such as EXOC4, ASIC2, PCDH9, RHBDD1, IRS1 and PDE10A. These genes were found to be mainly enriched in PI3K-Akt signaling pathway, protein digestion and absorption and relaxin signaling pathways. The study indicated that genes associated with cashmere traits were subjected to strong artificial selection pressure during domestication of the cashmere goats. These findings also help us better understand the selection progress of cashmere goats and provide a new theoretical basis for the protection and utilization of germplasm resources of Chinese cashmere goat breeds.
Key words: Inner Mongolia cashmere goat    Liaoning cashmere goat    Fst    XP-EHH    

绒山羊的粗毛是皮肤上初级毛囊的衍生物,细毛是次级毛囊的衍生物,这种特殊的细毛称之为山羊绒[1-3],它比羊毛细、轻和柔软,有着“纤维皇后”和“软黄金”的美称[4-5]。中国作为世界上主要的羊绒生产国家,有20个可以产绒的山羊品种[6],每年的绒产量可以达到全球山羊绒(无毛绒)总产量的75%, 其中, 优质山羊绒占到全球产量的95%, 山羊绒绝对出口量占到全球的80%以上[7]。内蒙古绒山羊和辽宁绒山羊作为我国优秀的绒山羊品种,以其绒毛品质优和产绒量高而享誉世界,这也使得它们成为识别与绒毛性状相关基因组区域的绝佳模型[8]

随着高通量分型技术的发展,选择信号分析已经成为检测自然和人工选择的一种重要方法。目前,选择信号检测的方法有很多种,较为经典的是群体分化系数Fst[9]和XP-EHH[10](cross population extend haplotype homozygosity test)法。这两种方法在山羊上已经鉴定出许多与表型相关的重要候选基因。Islam等[11]利用Fst和XP-EHH对6个中国山羊群体进行选择信号分析,确定了11个与繁殖性状相关的候选基因, 其中,MARF1和SF1受到较强的正向选择。Guo等[12]对波尔山羊、美姑山羊、金堂黑山羊、南江黄山羊、藏山羊、藏绒山羊进行选择信号分析,发现几个可能与山羊重要性状有关的基因,如被毛颜色(IRF4、EXOC2、RALYEIF2S2、KITLG)、高海拔适应性(EPAS1)、生长(LDB2)和繁殖性状(KHDRBS2)。Li等[13]对70只绒山羊和14只非绒山羊的重测序数据进行选择信号分析(Fstθπ),在基因组区域筛选出了一些可能参与羊绒纤维形成的基因(FGF5、SGK3、IGFBP7、OXTRROCK1)。研究者们在绒山羊基因组中已经找到一些与绒毛性状相关的候选基因,但对其遗传机制的研究还不够深入。因此,利用选择信号法探究绒山羊的基因组变化,可以鉴定绒山羊在自然和人为选择过程中在基因组上留下的印记,这对于揭示绒山羊的遗传机制具有重要意义。

本研究利用Illumina 50K高密度山羊芯片[14], 对内蒙古绒山羊、辽宁绒山羊和黄淮山羊用群体分化系数Fst和XP-EHH进行选择信号检测。旨在挖掘绒山羊绒毛性状相关的候选基因,探究绒山羊产绒的遗传机制,为培育优秀的绒山羊品种提供参考依据。

1 材料与方法 1.1 试验材料

从原产地保种场和保种的核心区域采集3个山羊品种的53个个体,其中内蒙古绒山羊17只、辽宁绒山羊20只和黄淮山羊16只,详细信息见表 1。采用颈静脉采血的方式收集血样,并用EDTA抗凝,于-20 ℃冰箱中保存,用于后续基因组DNA的提取。

表 1 本研究的中国山羊种群信息 Table 1 Information of the Chinese goat populations in this study
1.2 试验方法

1.2.1 绒山羊与非绒山羊的基因型检测   利用天根生化科技有限公司的血液基因组DNA提取试剂盒提取血样DNA,用Nanodrop 2000核酸蛋白分析仪对基因组DNA的纯度进行测定。合格的DNA纯度OD260 nm/OD280 nm应为1.7~1.9,每个DNA样品测3次,取平均值。并去除低质量的DNA样本,合格的样品置于-20 ℃冰箱中保存备用。用Illumina 50K山羊芯片对符合标准的样本进行基因分型,都获得53 347个SNPs位点。利用PLINK1.90软件进行质控[15],标准为:1)群体间平均最小等位基因频率(MAF)大于0.01;2)SNP的平均检出率大于95%,最终获得50 010个SNPs位点。

1.2.2 绒山羊与非绒山羊的主成分分析   为了解3个品种群体间的聚类情况,本研究进行了主成分分析(principal component analysis, PCA)。利用PLINK1.90软件对50 010个SNPs进行主成分分析(PCA) [16],以识别品种间的遗传关系。在R软件包中使用plot函数来描述PCA的图形表示(https://www.rdocument.org/packages/ggplot2)。

1.2.3 绒山羊与非绒山羊的选择信号分析   群体间选择信号的检测能够反映不同群体的进化历史[17]。本试验采用较为经典的选择信号方法,基于Fst和XP-EHH的方法来检测绒山羊和非绒山羊群体间分化程度。根据Weir和Cockerham[9]描述的无偏估计方法,用Genepop 4.2.2软件[17]对质控后的SNPs位点进行计算,得到的是绒山羊和非绒山羊两个群体间每个SNPs位点的Fst值。XP-EHH是基于单倍型的思想,并引入了iHS方法(integrated haplotype score)中群体比较的策略[18]。XP-EHH统计量的正负表示了选择发生的群体, 正值表明选择发生在试验群体中, 负值表明选择发生在对照群体中[10]。假设选择的位点定义为具有极高Fst值(top 5%)和极高XP-EHH值(top 5%)的重叠窗区域。

1.2.4 候选基因检测和注释   将Fst和XP-EHH筛选出前5%的“候选位点”作为本次试验的“离群位点”,位点上下50K的区域被认为是候选区域,参照山羊的基因组信息数据库,将选择信号发生区域核心的SNP作为中心,上下游各扩展50 kb作为选择区域,注释出来的基因即为“候选基因”。

2 结果 2.1 绒山羊与非绒山羊的主成分分析

对3个品种的山羊进行主成分分析,结果见图 1。3个山羊品种间没有交互的现象,也说明了3个群体的血缘关系较远,相互没有杂交现象,与品种所处的地理位置相符。并且3个群体都没有离群的个体。这也为后续的选择信号分析奠定了基础。

图 1 3个山羊品种的主成分分析 Fig. 1 Principal component analysis (PCA) of 3 goat breeds
2.2 绒山羊与非绒山羊的选择信号检测

2.2.1 Fst分析   用Genepop4.2.2软件对质控后的50 010个SNPs位点进行计算,得到3个群体之间所有成对的遗传分化指数Fst值。并绘制了绒山羊与非绒山羊两个群体间每个位点的Fst值经验分布图,见图 2所示。有很多位点位于Fst分布的尾端(Fst>0.25), 表明绒山羊与非绒山羊之间存在很强的群体分化。在全基因组水平分别取内蒙古绒山羊和辽宁绒山羊前5%的SNPs作为受选择位点,分别有2 400个(Fst值>0.281 5)和2 396个(Fst值>0.321 1)SNPs位点高于阈值线。

图 2 绒山羊与非绒山羊群体间Fst值经验分布图 Fig. 2 The empirical distribution of cashmere goat population and non-cashmere goat population

2.2.2 XP-EHH分析   将HHG作为参考群体,两个绒山羊品种分别作为试验群体,对绒山羊和非绒山羊群体进行选择信号分析。其中内蒙古绒山羊和辽宁绒山羊XP-EHH值的频率分布直方图见图 3图 4,可以看出,绒山羊与非绒山羊群体间XP-EHH统计量近似服从正态分布。取前5%作为绒山羊群体中受选择的SNPs位点,分别有2 446 (XP-EHH值>1.157 6)和2 445(XP-EHH值>1.451 2)个SNPs位点高于阈值线。

图 3 内蒙古绒山羊与黄淮山羊的XP-EHH频数分布 Fig. 3 The distribution of statistics frequency for XP-EHH in Inner Mongolia cashmere goat and Huanghuai goat
图 4 辽宁绒山羊与黄淮山羊的XP-EHH频数分布 Fig. 4 The distribution of statistics frequency for XP-EHH in Liaoning cashmere goat and Huanghuai goat
2.3 绒山羊基因组候选基因的注释

利用Fst在绒山羊基因组中筛选到121个SNPs, 注释出501个候选基因,利用XP-EHH在绒山羊基因组中筛选到85个SNPs, 注释出145个候选基因。其中,内蒙古绒山羊和辽宁绒山羊在Fst和XP-EHH两种方法中有12个“离群位点”均受到选择,并绘制曼哈顿图(图 5)。对“离群位点”上下游各50 kb进行注释,得到21个候选基因(表 2)。并对注释的基因进行KEGG富集分析,这些基因主要集中在PI3K-Akt信号通路、蛋白质消化吸收松弛素信号通路等(表 3)。

A.MGR的Fst分析;B. LNR的Fst分析; C. MGR的XP-EHH分析; D. LNR的XP-EHH分析 A.Fst analysis of MGR; B. Fst analysis of LNR; C. XP-EHH analysis of MGR; D. XP-EHH analysis of LNR 图 5 绒山羊常染色体上选择信号分布分析 Fig. 5 Distribution of selection signals identified on autosome of cashmere goats
表 2 绒山羊中受选择基因 Table 2 Genes selected in cashmere goats
表 3 绒山羊受选择基因KEGG分析 Table 3 KEGG analysis of selected genes in cashmere gaots

此外,还有一些与绒毛性状相关的重要基因(表 4)。利用Fst筛选出的ABCA5、TRPS1、IGF1R、DLX5、WNT10A和CSN3基因也与绒毛性状相关。在XP-EHH方法中,也筛选出的一些基因与绒毛性状相关,如CXCR2和FOXN3基因。

表 4 绒山羊中与绒毛性状相关的基因 Table 4 Candidate genes associated with cashmere traits in cashmere goats
3 讨论

在哺乳动物中,被毛可以作为一种抵御环境变化的保护物质。绒山羊被毛是由粗毛和绒毛组成,而粗毛由初级毛囊产生,绒毛是由次级毛囊产生[19],可以说毛囊决定毛发的表型。毛囊是处于动态循环的,包括3个阶段:生长期(4~11月)、退化期(12月至次年1月)和休眠期(次年2~3月),它们在整个生命周期中不断地重塑自己[20-21]。在相关基因的控制下,羊绒在生长期迅速生长[5]。而生长期又可分为生长早期(4~8月)和生长旺盛期(9~ 11月)。早期研究表明, 老鼠的次级毛囊进入成长阶段仅限于生长期早期阶段, 一旦次级毛囊周期进入了生长旺盛期, 毛囊会失去回到生长早期阶段的能力[22]。生长早期和生长旺盛期之间的过渡受到许多抑制剂的表达调节,如骨形态发生蛋白(BMPs)[22]等。目前,尚不清楚次级毛囊的生长周期中是否存在明显的由生长早期向生长旺盛期过渡的过程,哪些基因在这一过程中起着重要的作用。本研究也筛选出一些候选基因:如EXOC4参与胰岛素刺激的葡萄糖转运[23]ASIC2在外周和中枢神经系统中起着机械感受器和酸感受器的作用[24]PCDH9属于钙粘着蛋白超家族的基因,在胚胎发育过程中,钙粘蛋白控制着不同组织层的分离、组织边界的形成和神经元间突触的形成,也影响着众多信号通路, 包括Wnt-受体酪氨酸激酶, NFκB-等通路[25]RHBDD1通过调控β-catenin丝氨酸552和丝氨酸675的磷酸化来影响Wnt信号通路[26]。胰岛素是重要的生长调节剂,通过与受体结合启动作用,受体发生酪氨酸自磷酸化,进一步增强其对其他中间分子的酪氨酸激酶活性,如胰岛素受体1(IRS1),在表皮和毛囊的细胞体中表达[27]

在羊绒非生长期对成年绒山羊进行褪黑激素处理,通过褪黑激素受体可以诱导羊绒生长,从而延长绒山羊整个绒毛生长期,提高羊绒产量[28]。褪黑激素是光周期和羊绒生长之间的关键中介[29],在绒山羊中,光照信号主要是作用于神经系统,经神经调节传至松果体,可以使松果体分泌褪黑激素,从而启动绒山羊绒毛的生长。此外,褪黑激素还参与了干细胞的分化途径[30]。本研究也发现了一些与褪黑素相关的基因,如PDE10A的表达受昼夜节律和季节调节,对松果体信号转导和基因表达起调节作用[31]

利用Fst筛选出的ABCA5、TRPS1、IGF1R、DLX5、WNT10A和CSN3基因也与绒毛性状相关。ABCA5可能直接或间接地在亚细胞水平上控制毛发生长[32]TRPS1是多毛症基因,直接抑制毛囊干细胞调节剂Sox9的表达,控制毛囊上皮细胞的增殖,在毛囊的循环中起重要作用[33]IGF1R对皮肤发育和体内平衡很重要,IGF1R通过激活BMP4影响干细胞突起和毛囊周期来调控其生长期[34]DLX5正向调节Wnt信号通路和干细胞多能性信号通路[35];WNT信号通路被认为是刺激真皮乳头细胞毛发生长的关键因素[36],并在毛囊诱导和形态发生过程中起重要作用[37-39]WNT10A基因是WNT基因家族的成员[40],在以往的研究中也发现,WNT10A在毛囊发育中起重要作用[41]。本研究还发现一个新的与绒毛性状相关的基因,在以往的研究中发现,CSN3基因主要的功能是影响牛的产奶量特性[42]。而本研究发现,CSN3还可能有其他与毛囊相关的生物学功能。有研究表明,CSN3在发育后毛囊循环中触发天然的生长期,STAT5缺失导致CSN3、Dkk3、Dlk1基因表达明显的上调,而Dkk3和Dlk1基因是WNT和Notch信号的抑制剂。相反,WNT6、FGF7、FGF10等已知的生长期诱导/进程调节剂均被显著下调[43-44]。因此推断,CSN3在毛囊发育中可能也具有重要作用[45],但是与毛囊相关的功能还需要在以后的研究中进行验证。在XP-EHH方法中,也筛选出的一些基因与绒毛性状相关,如CXCR2基因,在白细胞中强烈表达,但它也存在于内皮细胞、胚胎和成人角质形成细胞中[46],研究表明,CXCR2在皮肤创面愈合过程中起重要作用[47]FOXN3基因在肝脏中对调节葡萄糖起重要作用[48]。在人类雄激素性脱发的病例对照研究中也被发现表达差异。同时,在卡塞塔纳猪基因组中发现FOXN3基因可能与无毛表型相关[49]

4 结论

该研究利用山羊SNPs芯片的基因组数据,应用Fst和XP-EHH方法进行绒山羊基因组选择信号检测。共获得12个受到强烈选择的SNPs位点,在这些位点中注释到21个可能受选择的基因,其中包含IRS1和PDE10A等基因。这些发现有助于对内蒙古绒山羊和辽宁绒山羊遗传机制深入的挖掘提供基础,为种质资源的保护和利用提供重要的参考依据。

参考文献
[1] DAI B, ZHANG M, YUAN J L, et al. Integrative analysis of methylation and transcriptional profiles to reveal the genetic stability of cashmere traits in the Tβ4 overexpression of cashmere goats[J]. Animals (Basel), 2019, 9(12): 1002.
[2] GAO Y, WANG X L, YAN H L, et al. Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats[J]. PLoS One, 2016, 11(3): e0151118. DOI: 10.1371/journal.pone.0151118
[3] LIU Y, WANG L L, LI X Y, et al. High-throughput sequencing of hair follicle development-related micrornas in cashmere goat at various fetal periods[J]. Saudi J Biol Sci, 2018, 25(7): 1494–1508. DOI: 10.1016/j.sjbs.2017.12.009
[4] SU R, FAN Y X, QIAO X, et al. Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen[J]. PLoS One, 2018, 13(10): e0204404. DOI: 10.1371/journal.pone.0204404
[5] LIU B, GAO F Q, GUO J, et al. A microarray-based analysis reveals that a short photoperiod promotes hair growth in the Arbas cashmere goat[J]. PLoS One, 2016, 11(1): e0147124. DOI: 10.1371/journal.pone.0147124
[6] 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志·羊志[M]. 北京: 中国农业出版社, 2011.
National Livestock and Poultry Genetic Resources Committee. Animal Genetic Resources in China·Sheep and Goats[M]. Beijing: China Agricultural Press, 2011. (in Chinese)
[7] 周占琴. 中国绒山羊业发展现状、前景与对策[J]. 中国畜牧杂志, 2008, 44(4): 42–45.
ZHOU Z Q. The present situation and future and countermeasures of the fine-wool purpose goat development in China[J]. Chinese Journal of Animal Science, 2008, 44(4): 42–45. (in Chinese)
[8] GUO J Z, TAO H X, LI P F, et al. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds[J]. Sci Rep, 2018, 8(1): 10405. DOI: 10.1038/s41598-018-28719-w
[9] WEIR B S, COCKERHAM C C. Estimating f-statistics for the analysis of population structure[J]. Evolution, 1984, 38(6): 1358–1370.
[10] 马云龙, 张勤, 丁向东. 利用高密度SNP检测不同猪品种间X染色体选择信号[J]. 遗传, 2012, 34(10): 1251–1260.
MA Y L, ZHANG Q, DING X D. Detecting selection signatures on X chromosome in pig through high density SNPs[J]. Hereditas, 2012, 34(10): 1251–1260. (in Chinese)
[11] ISLAM R, LI Y F, LIU X X, et al. Genome-wide runs of homozygosity, effective population size, and detection of positive selection signatures in six Chinese goat breeds[J]. Genes, 2019, 10(11): 938. DOI: 10.3390/genes10110938
[12] GUO J Z, TAO H X, LI P F, et al. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds[J]. Sci Rep, 2018, 8(1): 10405. DOI: 10.1038/s41598-018-28719-w
[13] LI X K, SU R, WAN W T, et al. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats[J]. Sci Rep, 2017, 7(1): 15142. DOI: 10.1038/s41598-017-15516-0
[14] KIJAS J W, ORTIZ J S, MCCULLOCH R, et al. Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs[J]. Anim Genet, 2013, 44(3): 325–335. DOI: 10.1111/age.12011
[15] PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK:a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3): 559–575. DOI: 10.1086/519795
[16] BARENDSE W, HARRISON B E, BUNCH R J, et al. Genome wide signatures of positive selection:the comparison of independent samples and the identification of regions associated to traits[J]. BMC Genomics, 2009, 10: 178. DOI: 10.1186/1471-2164-10-178
[17] 刘雪雪, 阿地力江·卡德尔, 董坤哲, 等. 德保矮马X染色体选择信号筛选[J]. 畜牧兽医学报, 2015, 46(12): 2161–2168.
LIU X X, ADLIJIANG H, DONG K Z, et al. Detecting selection signatures on X chromosome of Debao pony[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(12): 2161–2168. DOI: 10.11843/j.issn.0366-6964.2015.12.006 (in Chinese)
[18] SABETI P C, REICH D E, HIGGINS J M, et al. Detecting recent positive selection in the human genome from haplotype structure[J]. Nature, 2002, 419(6909): 832–837. DOI: 10.1038/nature01140
[19] 李长青, 尹俊, 张燕军, 等. 内蒙古绒山羊与辽宁绒山羊皮肤毛囊周期性变化的比较研究[J]. 畜牧兽医学报, 2005, 36(7): 674–679.
LI C Q, YIN J, ZHANG Y J, et al. Comparative study on skin and hair follicles cycling between Inner Mongolia and Liaoning cashmere goats[J]. Acta Veterinaria et Zootechnica Sinica, 2005, 36(7): 674–679. DOI: 10.3321/j.issn:0366-6964.2005.07.007 (in Chinese)
[20] STEFAN B.Means for stimulation and activation of hair growth by il-15: US, 2008069791A1[P]. 2008-03-20.
[21] BAI W L, YIN R H, YIN R L, et al. IGF1 mRNA splicing variants in liaoning cashmere goat:identification, characterization, and transcriptional patterns in skin and visceral organs[J]. Anim Biotechnol, 2013, 24(2): 81–93. DOI: 10.1080/10495398.2012.750245
[22] PLIKUS M V, MAYER J A, DE LA CRUZ D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008, 451(7176): 340–344. DOI: 10.1038/nature06457
[23] LARAMIE J M, WILK J B, WILLIAMSON S L, et al. Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; the NHLBI family heart study[J]. BMC Med Genet, 2008, 9: 46.
[24] KIKUCHI S, NINOMIYA T, KAWAMATA T, et al. Expression of ASIC2 in ciliated cells and stereociliated cells[J]. Cell Tissue Res, 2008, 333(2): 217–224. DOI: 10.1007/s00441-008-0635-3
[25] CHIARELLI N, CARINI G, ZOPPI N, et al. Transcriptome-wide expression profiling in skin fibroblasts of patients with joint hypermobility syndrome/ehlers-danlos syndrome hypermobility type[J]. PLoS One, 2016, 11(8): e0161347. DOI: 10.1371/journal.pone.0161347
[26] ZHANG M M, MIAO F, HUANG R, et al. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1[J]. J Exp Clin Cancer Res, 2018, 37(1): 22. DOI: 10.1186/s13046-018-0687-5
[27] PELEGRINELLI F F F, THIRONE A C P, GASPARETTI A L, et al. Early steps of insulin action in the skin of intact rats[J]. J Invest Dermatol, 2001, 117(4): 971–976. DOI: 10.1046/j.0022-202x.2001.01473.x
[28] DUAN C H, XU J H, SUN C M, et al. Effects of melatonin implantation on cashmere yield, fibre characteristics, duration of cashmere growth as well as growth and reproductive performance of Inner Mongolian cashmere goats[J]. J An Sci Biotechnol, 2015, 6(1): 22. DOI: 10.1186/s40104-015-0023-2
[29] 王林枫, 杨改青, 杨耀胜, 等. 光照和褪黑激素对非生绒期绒山羊激素分泌和绒毛生长的影响[J]. 中国畜牧兽医, 2008, 35(12): 29–32.
WANG L F, YANG G Q, YANG Y S, et al. Effects of photoperiod and melatonin on endocrine and cashmere growth in cashmere goats in telogen[J]. China Animal Husbandry & Veterinary Medicine, 2008, 35(12): 29–32. (in Chinese)
[30] GE W, WANG S H, SUN B, et al. Melatonin promotes cashmere goat (Capra hircus) secondary hair follicle growth:a view from integrated analysis of long non-coding and coding RNAs[J]. Cell Cycle, 2018, 17(10): 1255–1267. DOI: 10.1080/15384101.2018.1471318
[31] SPIWOKS-BECKER I, WOLLOSCHECK T, RICKES O, et al. Phosphodiesterase 10A in the rat pineal gland:localization, daily and seasonal regulation of expression and influence on signal transduction[J]. Neuroendocrinology, 2011, 94(2): 113–123. DOI: 10.1159/000327138
[32] DESTEFANO G M, KURBAN M, ANYANE-YEBOA K, et al. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth[J]. PLoS Genet, 2014, 10(5): e1004333. DOI: 10.1371/journal.pgen.1004333
[33] FANTAUZZO K A, KURBAN M, LEVY B, et al. Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis[J]. PLoS Genet, 2012, 8(11): e1003002. DOI: 10.1371/journal.pgen.1003002
[34] CASTELA M, LINAY F, ROY E, et al. Igf1r signalling acts on the anagen-to-catagen transition in the hair cycle[J]. Exp Dermatol, 2017, 26(9): 785–791. DOI: 10.1111/exd.13287
[35] RAKOWIECKI S, EPSTEIN D J. Divergent roles for Wnt/β-catenin signaling in epithelial maintenance and breakdown during semicircular canal formation[J]. Development, 2013, 140(8): 1730–1739. DOI: 10.1242/dev.092882
[36] GENTILE P, GARCOVICH S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss:wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development[J]. Cells, 2019, 8(5): 466. DOI: 10.3390/cells8050466
[37] RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development[J]. Int J Mol Sci, 2014, 15(1): 1647–1670. DOI: 10.3390/ijms15011647
[38] HE N, DONG Z G, TAI D P, et al. The role of Sox9 in maintaining the characteristics and pluripotency of Arbas cashmere goat hair follicle stem cells[J]. Cytotechnology, 2018, 70(4): 1155–1165. DOI: 10.1007/s10616-018-0206-8
[39] VELTRI A, LANG C, LIEN W H. Concise review:wnt signaling pathways in skin development and epidermal stem cells[J]. Stem Cells, 2018, 36(1): 22–35. DOI: 10.1002/stem.2723
[40] KIMURA R, WATANABE C, KAWAGUCHI A, et al. Common polymorphisms in WNT10A affect tooth morphology as well as hair shape[J]. Hum Mol Genet, 2015, 24(9): 2673–2680. DOI: 10.1093/hmg/ddv014
[41] SULAYMAN A, TIAN K C, HUANG X X, et al. Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development[J]. Sci Rep, 2019, 9(1): 8501. DOI: 10.1038/s41598-019-44600-w
[42] REALE S, YAHYAOUI M H, FOLCH J M, et al. Genetic polymorphism of the K-casein (CSN3) gene in goats reared in Southern Italy[J]. Ital J Anim Sci, 2005, 4(1): 97–101. DOI: 10.4081/ijas.2005.97
[43] LEGRAND J M D, ROY E, ELLIS J J, et al. STAT5 activation in the dermal papilla is important for hair follicle growth phase induction[J]. J Invest Dermatol, 2016, 136(9): 1781–1791. DOI: 10.1016/j.jid.2016.04.014
[44] LEGRAND J M D.Mesenchymal-epidermal interactions in hair follicle cycling and regeneration[D].Brisbane: The University of Queensland, 2015.
[45] SHIN H Y, HENNIGHAUSEN L, YOO K H. STAT5-driven enhancers tightly control temporal expression of mammary-specific genes[J]. J Mammary Gland Biol Neoplasia, 2019, 24(1): 61–71. DOI: 10.1007/s10911-018-9418-y
[46] CATAISSON C, OHMAN R, PATEL G, et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis[J]. Cancer Res, 2009, 69(1): 319–328. DOI: 10.1158/0008-5472.CAN-08-2490
[47] YU Y C, SU Y J, OPALENIK S R, et al. Short tail with skin lesion phenotype occurs in transgenic mice with keratin-14 promoter-directed expression of mutant CXCR2[J]. J Leukoc Biol, 2008, 84(2): 406–419. DOI: 10.1189/jlb.0807544
[48] KARANTH S, ZINKHAN E K, HILL J T, et al. FOXN3 regulates hepatic glucose utilization[J]. Cell Rep, 2016, 15(12): 2745–2755. DOI: 10.1016/j.celrep.2016.05.056
[49] SCHIAVO G, BERTOLINI F, UTZERI V J, et al. Taking advantage from phenotype variability in a local animal genetic resource: identification of genomic regions associated with the hairless phenotype in Casertana pigs[J]. Anim Genet, 2018, 49(4): 321–325. DOI: 10.1111/age.12665