microRNA(miRNA)是重要的转录后调节因子, 其生物合成途径、特征、功能和衰变的机制多有报道(如Krol等[1]发表的综述), 本文不再赘述。研究表明, 一方面, 在生理病理情况下,miRNA表达的改变可以调控氨基酸[2]、脂类[3]等的代谢, 另一方面,氨基酸[4]和脂肪酸[5]的供给变化,又可以通过对miRNA的调节, 发挥后续的生物学功能。可见,营养物质的代谢受到miRNA的广泛调控,同时, 饮食或饮食中特定的营养物质, 又是miRNA的重要调节物,并通过后者参与除代谢外更加广泛的生物学进程。
牛奶是由乳糖、乳脂肪、乳蛋白、维生素、矿物质、酶类、免疫体、色素及一些其他微量成分构成的复杂的胶体系[6]。乳腺利用各种前体物质合成包括乳脂、乳蛋白在内的营养成分,乳腺的脂类代谢,例如甘油三酯的合成及脂质小滴的形成等,各个环节均受到miRNA的广泛调控,而乳腺的miRNAs同样会对脂肪酸供给的改变发生应答,可见,乳腺既是营养物质的利用者,也是应答者。本综述拟从转录后调控的角度汇总分析脂肪酸对奶牛乳腺miRNAs表达的影响,探讨营养素改变乳腺功能的机制,为更好地调整日粮组成以保护乳腺健康、提高乳腺泌乳能力提供助益。
1 奶牛乳腺microRNAs表达特征miRNAs是一类广泛存在且具有负性基因调控功能的新型小RNA,已被证实可以控制多种生物功能, 如细胞的增殖、分化、凋亡[7]。miRNAs通过高度特异性的相互作用和复杂的调控网络,成为不同组织和发育阶段基因表达的关键转录后调控因子[8]。
乳腺是少数在出生后仍然保持发育、功能分化和退化循环的器官,其独特的发育特点和生理功能在miRNA表达上亦有所体现。Liu等[9]利用基因芯片技术对人不同组织中miRNAs的表达情况进行了研究,结果发现,miR-221、miR-214、miR-213、miR-206、miR-205、miR-197、miR-191、miR-146、miR-107、miR-103-1、miR-100-1/2、miR-92-2、miR-92-1、miR-30d、miR-30c、miR-30b、miR-26b、miR-26a、miR-24-2、miR-23b、miR-23a、miR-let-7a-1和miR-let-7b为人乳腺特征性miRNAs[9]。Gu等[10]研究发现,奶牛乳腺组织中共有54个miRNAs表达水平与脂肪组织存在差异。此外,奶牛乳腺miRNAs在各发育和泌乳时期表现出明显的时间和阶段特异性,如Wang和孙鹏[11]研究表明,多种miRNAs(如miR-31、miR-33b、miR-221等)在泌乳期表达显著高于其他时期,且与青春期和退化期相比,妊娠期和泌乳期有10余种miRNAs表达上调(包括miR-133、miR-133b、miR-17-5p等),20余种miRNAs表达下调(如miR-10b、miR-138、miR-152及miR-155等),提示,这些miRNAs在乳腺发育和泌乳周期中发挥重要的作用[12]。这些研究表明,乳腺miRNAs表达谱的变化体现了乳腺的发育特征和泌乳功能。此外,奶牛乳腺miRNAs还受细菌侵袭[13]、环境应激[14]、营养素变化[15]等因素的影响。
奶牛乳腺miRNA研究的重要性不仅在于其体现了乳腺功能的独特,更重要的是,乳汁中的miRNAs多数来源于乳腺,而乳腺miRNAs可能在调节摄取者免疫及代谢等方面发挥重要调节作用[16-17]。
2 调控奶牛乳腺乳脂合成的microRNAmiRNAs是物质代谢的有效调节分子,乳腺乳脂合成的各个层面均受到miRNAs及转录因子的调控。研究表明,奶牛乳腺miRNAs能够通过对转录因子表达的直接和间接调节,参与乳脂合成调控:如miR-130a[18]、miR-454[19]通过直接作用于过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptor γ, PPARG),抑制乳腺上皮细胞中甘油三酯的合成及脂质小滴的形成;miR-221[20]通过靶向过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator activated receptor γ coactivator 1 α, PPARGC1A),参与乳脂合成的负向调节;miR-152[21]、miR-29a/b/c[22]则通过对DNA甲基化转移酶(DNA methyltransferase, DNMT)家族成员的抑制,引起包括甾类固醇调节元件结合蛋白1(sterol regulatory element-binding protein 1, SREBPl)及PPARG在内的多个基因DNA甲基化水平降低,从而使其mRNA及蛋白质表达水平上调,最终促进乳腺甘油三酯合成。
此外,奶牛乳腺miRNAs还能够通过靶向乳脂合成关键酶参与乳脂合成调节,如miR-181a通过靶向长链脂酰辅酶A合成酶1(acyl-CoA synthetase long chain family member 1, ACSL1)[23]、miR-34b靶向脱帽酶1A(decapping enzyme 1A, DCP1A)[24]、miR-106b靶向ATP结合盒亚家族A成员1(ATP binding cassette subfamily A member1, ABCA1)[25]、miR-224靶向中链酰基辅酶A脱氢酶(medium-chain acyl-CoA dehydrogenase, MCAD)和乙醛脱氢酶(aldehyde dehydrogenase, ALDH2)[26]等,抑制乳腺甘油三酯的合成及脂质小滴的形成。虽然大量研究证实,多种miRNAs可以通过靶向乳脂合成相关基因影响乳脂合成,但其对脂肪酸转运、脂肪酸从头合成、乳脂组成等具体生物学过程及表型的影响还有待进一步明确。
可见,乳腺合成乳脂的过程均受到miRNAs的调控,miRNAs是乳脂合成的重要调节因子。
3 脂肪酸对microRNAs表达谱的调控 3.1 多不饱和脂肪酸与miRNAs多不饱和脂肪酸(polyunsaturated fatty acids, PUFAs)是指化学式中包含两个以上双键的不饱和脂肪酸,在生物体的生长和发育中发挥着重要的作用[27]。其中,研究较多的为两类必需脂肪酸:ω-3多不饱和脂肪酸(包括docosahexaenoic acid, DHA和eicosatetraenoic acid, EPA等)和共轭亚油酸(conjugated linoleic acid, CLA)[28]。研究表明,这些功能性脂肪酸能够通过对miRNA的调节发挥刺激免疫[29]、缓解心脑血管疾病[30]、对抗癌症[31-32]等作用。
Cetrullo等[33]使用大鼠H9c2心室成肌细胞,通过棕榈酸酯构建脂毒性的细胞模型,而ω-3 PUFA的添加阻止了棕榈酸酯的作用并保护H9c2细胞免受脂毒性侵袭,这一过程主要通过PUFA对miR-33a的调节来完成。该研究表明,ω-3 PUFA可以通过对miRNAs的调控对心的代谢和功能障碍的控制发挥影响,从而对饮食习惯的调整和脂肪酸摄入的组成提出建议。
棕色脂肪组织(brown adipose tissue, BAT)通过生热作用将化学能作为热量散发,并通过增加能量消耗来预防肥胖[34-35]。研究证实,饮食中EPA的添加可以改变BAT的代谢[36]。该研究采用RNA和miRNA测序的方法,联合分析EPA对BAT生物学功能的影响,结果表明,EPA能够增加9种miRNAs的丰度并抑制6种miRNAs的表达, 其中多种可以靶向生热基因, 如miR-455-3p和miR-129-5p。转录组和miRNAs的联合分析揭示了BAT中新型的mRNA-miRNA互作网络可参与BAT的生热作用,并受EPA调节。该研究表明,EPA可能通过对miRNA的调控预防肥胖发生。
在影响癌症病理变化的周围细胞中,血小板是新发现的参与者。一旦将活化的血小板释放微囊泡(platelet microvesicles, MVs)输送到癌细胞中,就会调节与细胞生长和扩散有关的信号通路[37]。在血小板衍生的MV中包含的组分中,miRNAs高度参与了癌症的发展。Gasperi等[38]探讨了ω-3(DHA)和ω-6(花生四烯酸, arachidonic acid, AA)PUFA作为抗癌治疗佐剂的效果。研究表明,AA改变血小板特异性miRNA(miR-223和miR-126)的表达,DHA的存在进一步增强了这种效果,而血小板中miR-223和miR-126的生理传递在乳腺癌细胞中诱导包括细胞周期停滞、迁移抑制和对顺铂的敏感性等多种生理功能。该研究表明,通过调节EV的miRNAs传递,补充ω-6及ω-3 PUFA可增强血小板的抗肿瘤活性,从而为癌症患者的附加疗法开辟新途径。此外,在免疫增强型肠内营养中添加ω-3 PUFA有利于恶性肿瘤的术后恢复,改善免疫功能,减少术后感染等并发症的发生[39-42]。
以上研究表明,饮食中PUFA的添加有益于肥胖的预防、心功能的维护及肿瘤的辅助治疗,这些功能均通过对miRNA的影响发挥作用。
3.2 短链饱和脂肪酸与miRNA有研究表明,微生物来源的短链脂肪酸也可以对miRNAs的表达产生影响[43]。微生物对膳食纤维进行厌氧发酵形成短链脂肪酸丁酸,79%的结肠癌肿瘤中观察到激酶抑制剂p21与癌变有关[44-45], 而丁酸的抗癌活性部分就是通过诱导P21基因表达来介导的。Hu等[43]评估了miRNAs在丁酸诱导P21表达中的作用,结果表明,丁酸改变44种miRNAs在HCT-116细胞中的表达,其中,多种在结肠癌组织中异常表达。此外,丁酸盐可通过p53非竞争性抑制组蛋白去乙酰化酶(histone deacetylase, HDAC)的途径诱导p21基因转录[46-47]。在多种恶性肿瘤中,HDAC抑制剂也参与了miRNAs的调控。使用羟肟酸HDAC抑制剂LAQ824治疗乳腺癌细胞系SKBr3,导致40%的细胞miRNAs表达发生显著变化[48]。
目前,针对功能性PUFA的研究较多, 而其他脂肪酸对miRNAs和其他非编码RNAs表达的影响研究较少,需要未来不断地挖掘脂肪酸在非编码RNAs调节方面的精确作用。
4 外源添加脂肪酸对奶牛乳腺microRNAs的调控牛奶的品质取决于它的成分,特别是脂肪酸组成。乳脂不仅对牛乳的结构特性、物理特性、传热性和非感官效果起关键作用,还是全脂牛奶的重要能量来源[49]。奶牛乳脂通常由70%的饱和脂肪酸(saturated fatty acid, SFA)和25%的单不饱和脂肪酸(monounsaturated fatty acids, MUFA)以及5%的PUFA组成,当人们过量食用时可能会对人体健康造成负面影响[50]。在反刍动物中,调查营养对miRNAs表达影响的研究相对较少。有研究表明,牛的背脂和肾周脂肪中有8种miRNAs的表达受到高脂日粮的强烈影响[51]。
Li等[5]的研究证实,亚麻籽油和红花油处理分别影响了泌乳母牛乳腺中14和22个miRNAs的表达。近年研究表明,日粮中添加植物油可引起牛奶乳脂率降低,同时,CLA的含量显著升高[52]。因此,饲粮中添加植物油来改善乳脂成分为提高牛奶品质提供了新的研究方向。
4.1 葵花籽油的添加葵花籽油是典型富含不饱和脂肪酸的植物油之一,新鲜葵花籽油主要包含亚油酸(63.80%)、油酸(29.48%)、棕榈酸(5.73%)、亚麻酸(0.54%)和山嵛酸(0.43%)[53]。奶牛日粮中添加油脂用于调节乳脂成分以及乳脂生成基因的表达,其调控机制尚不清楚。miRNA被认为是基因表达的关键调节剂,可提供解释基因营养调控机制的线索。近年来,有研究采用RT-PCR技术验证日粮中添加4%葵花籽油相对于不添加葵花籽油对奶牛乳腺中miRNAs表达谱的影响,结果显示,牛乳腺上皮细胞系中miR-142-5p和miR-20a-5p显著下调,预测其靶基因可能为参与脂质代谢的超长链脂肪酸延伸酶6(elongase of very long chain fatty acids6, ELOVL6)基因[54],提示葵花籽油的添加可以通过对miRNAs的调控,参与乳脂代谢。
4.2 亚麻籽油及红花油的添加亚麻籽油来自于亚麻,富含丰富的omega-3脂肪酸,是日常中最常见的用于提高乳脂中不饱和脂肪酸含量的植物油。亚麻籽通常含有40%油脂、30%粗纤维、20%蛋白质、4%无机物和6%的水分[55]。研究发现,日粮中添加亚麻籽油可以通过抑制脂肪酸从头合成来降低奶牛的脂肪产量,从而导致牛奶中CLA、omega-3脂肪酸以及其他PUFA水平的升高[56-57]。在奶牛日粮中添加亚麻籽油可显著提高乳脂中的α-亚麻酸的含量,可提高29%~88%[58-59]。红花油是从红花籽中提取所得,红花油主要分为两类:一类含有高达80%的油酸,称之为油酸型;另一类为含有69%~79%的亚油酸及10%~ 15%的油酸,被称为亚油酸型[56]。而亚油酸经常被用作奶牛的日粮补充剂,用于提高乳脂中不饱和脂肪酸的含量。而Ibeagha-Awemu等[60]的研究表明,在奶牛日粮中添加亚麻籽油或者红花油会抑制乳脂合成相关基因的表达[60],从而影响乳脂的合成。
miRNAs调节基因表达,但是其在奶牛乳腺脂肪形成中的具体作用尚不清楚。Li等[5]利用下一代RNA测序的方法,确定乳腺日粮中添加5%的亚麻籽油或者红花油后miRNAs的表达模式发生变化。该研究以泌乳中期加拿大荷斯坦奶牛为研究对象,利用高通量测序技术结合RT-PCR方法,研究外源脂肪酸添加后乳腺miRNAs表达谱的变化。结果显示,红花油处理组和亚麻籽油处理组乳脂率均较对照饲粮组显著降低,分别降低了29.9%和34.2%。另外,在测得的7个饱和脂肪酸和1个不饱和脂肪酸(C18:2n6t)中,红花油处理组和亚麻籽油处理组中C4:0、C6:0、C8:0、C14:0和C16:0浓度均显著下降,而C18:0浓度在7 d内显著上升,之后下降。13个多不饱和脂肪酸中C14:1、C18:1n11t、CLA:10t12c、C20:3n3和C20:5n3水平则显著升高。这表明,日粮中按一定比例添加外源性的植物油,通过影响乳腺miRNAs表达谱的变化,导致乳中脂肪酸的组成构象中,饱和脂肪酸和不饱和脂肪酸的合成表现出相反的规律,前者显著下降,而后者显著升高,实际上影响了乳中乳脂的内在品质。
4.3 油茶籽油的添加油茶籽油被人们称之为东方橄榄油,其中,单不饱和脂肪酸含量高达90%以上[61],含有丰富的油酸、亚油酸、亚麻酸、维生素等营养物质[62]。研究表明,油茶籽具有抗氧化[63]、预防肥胖及护肝[64]的作用。徐子娴等[65]以奶牛乳腺上皮细胞的MAC-T为模型,利用PCR技术,检测添加油茶籽油对奶牛乳腺上皮细胞乳脂合成相关基因表达的影响。结果显示,添加油茶籽油可以显著促进与乳脂合成的相关基因ACACA、SREBP1C、AGPAT3的表达,极显著促进FASN、SCD基因的表达,同时显著抑制 PPARG基因的表达, 而PPARG基因在脂肪代谢过程中负责脂肪合成有关基因的转录调控[66]。奶牛乳腺miRNAs能够通过靶向乳脂合成关键酶参与乳脂合成调节。有研究确定,ACACA和FASN(从头合成脂肪酸的关键酶)为miR-195的直接靶点,进一步发现,miR-195在MCF-7和MAD-MB-231细胞中的异位表达不仅显著改变了细胞胆固醇和甘油三酯水平,而且导致细胞增殖、迁移和侵袭,这可能为乳腺癌的治疗另辟新径[66]。另外,bta-miR-130a和bta-miR-130b通过靶向PPARG和CYP2U1的3′UTR,在调控牛肉肌肉脂肪细胞分化中发挥类似的作用[67]。以上研究结果说明,乳脂合成相关基因可能作为miRNAs的靶点,通过miRNAs来发挥调控作用,从而进一步调控乳脂以及动物的健康状况。添加油茶籽油可能会通过影响与乳脂合成相关的基因来调控miRNA的表达,这为研究日粮组成改善乳品质提供了思路。
4.4 不同链长和饱和度的脂肪酸添加不同链长和饱和度的脂肪酸对奶牛乳腺乳脂合成的效应并不相同[68-69]。Yan等[70]对乙酸、β-羟丁酸、硬脂酸及trans-10、cis-12 CLA对奶牛乳腺上皮细胞乳脂合成的影响进行了研究,结果表明,不同链长和饱和度的脂肪酸可以改变细胞表面超微结构(包括微绒毛长度和丰度)及脂肪酸转运蛋白的mRNA表达,对细胞内甘油三酯的聚积没有显著影响。细胞通路分析表明,长链脂肪酸调节细胞外基质受体相互作用及miRNA和核糖体生物形成等过程,提示其可能对奶牛乳腺上皮细胞miRNA表达谱具有调节作用,但是该结果仍需充分的实验验证。
5 小结对奶牛而言,除追求产奶量外,乳品质也占有重要的地位。乳品质的好坏除了受品种、环境、泌乳期等因素的影响外,还受日粮营养结构的制约。脂类代谢是一个复杂的过程,一方面,miRNAs能够通过对乳腺脂代谢相关基因的调控影响乳脂合成;另一方面,日粮中的脂肪酸能够改变乳腺miRNAs表达谱,从而进一步调节乳脂合成过程,最终改善乳脂量及乳脂组成。目前,日粮中添加外源性脂肪酸对miRNAs表达的影响研究并不充分,且添加过程中也会受环境以及奶牛自身等条件的限制从而影响到研究结果的真伪,这就需要未来加强这方面的研究力度,通过大数据分析,将有关的miRNAs调控脂肪代谢及脂肪酸合成的理论与实践结合起来,以期更好地改善生乳品质。
[1] | KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597–610. |
[2] | SENGUPTA D, CASSEL T, TENG K Y, et al. Regulation of hepatic glutamine metabolism by miR-122[J]. Mol Metab, 2020, 34: 174–186. |
[3] | LI X H, JIANG P, YU H B, et al. miR-21-3p targets Elovl5 and regulates triglyceride production in mammary epithelial cells of cow[J]. DNA Cell Biol, 2019, 38(4): 352–357. |
[4] | ZHANG X, WANG Y F, WANG M Z, et al. Arginine supply impacts the expression of candidate microRNA controlling milk casein yield in bovine mammary tissue[J]. Animals, 2020, 10(5): 797. |
[5] | LI R, BEAUDOIN F, AMMAH A A, et al. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil[J]. BMC Genomics, 2015, 16(1): 884. |
[6] |
马占峰, 刘洪芳. 影响牛奶成分的因素[J]. 中国奶牛, 2012(1): 44–46.
MA Z F, LIU H F. Factors affecting milk composition[J]. China Dairy Cattle, 2012(1): 44–46. (in Chinese) |
[7] | ESQUELA-KERSCHER A, SLACK F J. Oncomirs—microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4): 259–269. |
[8] | CATALANOTTO C, COGONI C, ZARDO G. MicroRNA in control of gene expression:an overview of nuclear functions[J]. Int J Mol Sci, 2016, 17(10): 1712. |
[9] | LIU C G, CALIN G A, MELOON B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues[J]. Proc Natl Acad Sci U S A, 2004, 101(26): 9740–9744. |
[10] | GU Z L, ELESWARAPU S, JIANG H L. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland[J]. FEBS Lett, 2007, 581(5): 981–988. |
[11] |
WANGM, 孙鹏. 泌乳阶段对奶牛乳腺microRNA表达模式的影响[J]. 中国畜牧兽医, 2012, 39(11): 93.
WANG M, SUN P. Effect of lactation stage on microRNA expression pattern in mammary gland of dairy cows[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(11): 93. (in Chinese) |
[12] | AVRIL-SASSEN S, GOLDSTEIN L D, STINGL J, et al. Characterisation of microRNA expression in post-natal mouse mammary gland developmen[J]. BMC Genomics, 2009, 10: 548. |
[13] | LUORENG Z M, WANG X P, MEI C G, et al. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. Int J Biol Sci, 2018, 14(1): 87–99. |
[14] | LI Q L, YANG C H, DU J, et al. Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress[J]. BMC Genomics, 2018, 19(1): 975. |
[15] | SALAMA A A K, DUQUE M, WANG L, et al. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro[J]. J Dairy Sci, 2019, 102(3): 2469–2480. |
[16] | IZUMI H, TSUDA M, SATO Y, et al. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages[J]. J Dairy Sci, 2015, 98(5): 2920–2933. |
[17] | ZEMPLENI J, AGUILAR-LOZANO A, SADRI M, et al. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants[J]. J Nutr, 2017, 147(1): 3–10. |
[18] | YANG W C, GUO W L, ZAN L S, et al. Bta-miR-130a regulates the biosynthesis of bovine milk fat by targeting peroxisome proliferator-activated receptor gamma[J]. J Anim Sci, 2017, 100(9): 2898–2906. |
[19] | ZHANG M Q, GAO J L, LIAO X D, et al. miR-454 regulates triglyceride synthesis in bovine mammary epithelial cells by targeting PPAR-γ[J]. Gene, 2019, 691: 1–7. |
[20] | WANG M, MOISÁ S, KHAN M J, et al. MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation[J]. J Dairy Sci, 2012, 95(11): 6529–6535. |
[21] | WANG J, BIAN Y J, WANG Z R, et al. MicroRNA-152 Regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows[J]. PLoS One, 2014, 9(7): e101358. |
[22] | BIAN Y J, LEI Y, WANG C M, et al. Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells[J]. J Cell Physiol, 2015, 230(9): 2152–2163. |
[23] | LIAN S, GUO J R, NAN X M, et al. MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1[J]. J Dairy Sci, 2016, 99(5): 3916–3924. |
[24] | WANG Y J, GUO W L, TANG K Q, et al. Bta-miR-34b regulates milk fat biosynthesis by targeting mRNA decapping enzyme 1A (DCP1A) in cultured bovine mammary epithelial cells[J]. J Anim Sci, 2019, 97(9): 3823–3831. |
[25] | CHEN Z, CHU S F, WANG X L, et al. MicroRNA-106b regulates milk fat metabolism via ATP binding cassette subfamily A member 1 (ABCA1) in bovine mammary epithelial cells[J]. J Agric Food Chem, 2019, 67(14): 3981–3990. |
[26] | SHEN B L, ZHANG L Y, LIAN C J, et al. Deep sequencing and screening of differentially expressed microRNAs related to milk fat metabolism in bovine primary mammary epithelial cells[J]. Int J Mol Sci, 2016, 17(2): 200. |
[27] |
辛雨.n-3多不饱和脂肪酸调节饮食诱导肥胖大鼠miRNA表达变化[D].青岛: 青岛大学, 2013.
XIN Y.Identification of miRNA expression pattern induced by n-3 PUFA in obesity rats[D].Qingdao: Qingdao University, 2013.(in Chinese) |
[28] | VISIOLI F, GIORDANO E, NICOD N M, et al. Molecular targets of omega 3 and conjugated linoleic fatty acids - "Micromanaging" cellular response[J]. Front Physiol, 2012, 3: 42. |
[29] | ZHENG Z, GE Y L, ZHANG J Y, et al. PUFA diets alter the microRNA expression profiles in an inflammation rat model[J]. Mol Med Rep, 2015, 11(6): 4149–4157. |
[30] | DELGADO-LISTA J, PEREZ-MARTINEZ P, LOPEZ-MIRANDA J, et al. Long chain omega-3 fatty acids and cardiovascular disease:a systematic review[J]. Brit J Nutr, 2012, 107(S2): S201–S213. |
[31] | ASLAN C, MARALBASHI S, KAHROBA H, et al. Docosahexaenoic acid (DHA) inhibits pro-angiogenic effects of breast cancer cells via down-regulating cellular and exosomal expression of angiogenic genes and microRNAs[J]. Life Sci, 2020, 258: 118094. |
[32] | LEMAY-NEDJELSKI L, MASON-ENNIS J K, TAIBI A, et al. Omega-3 polyunsaturated fatty acids time-dependently reduce cell viability and oncogenic microRNA-21 expression in estrogen receptor-positive breast cancer cells (MCF-7)[J]. Int J Mol Sci, 2018, 19(1): 244. |
[33] | CETRULLO S, D'ADAMO S, PANICHI V, et al. Modulation of fatty acid-related genes in the response of H9c2 cardiac cells to palmitate and n-3 polyunsaturated fatty acids[J]. Cells, 2020, 9(3): 537. |
[34] | CHECHI K, NEDERGAARD J, RICHARD D. Brown adipose tissue as an anti-obesity tissue in humans[J]. Obes Rev, 2014, 15(2): 92–106. |
[35] | MEALE S J, ROMAO J M, HE M L, et al. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues[J]. J Anim Sci, 2014, 92(8): 3328–3337. |
[36] | PAHLAVANI M, WIJAYATUNGA N N, KALUPAHANA N S, et al. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(12): 1523–1531. |
[37] | GOUBRAN H A, KOTB R R, STAKIW J, et al. Regulation of tumor growth and metastasis:the role of tumor microenvironment[J]. Cancer Growth Metastasis, 2014, 7: 9–18. |
[38] | GASPERI V, VANGAPANDU C, SAVINI I, et al. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines[J]. J Nutr Biochem, 2019, 74: 108242. |
[39] | ZHEN Z Z, WANG J X, ZHANG Z, et al. Efficacy of early enteral immunonutrition on immune function and clinical outcome for postoperative patients with gastrointestinal cancer[J]. JPEN J Parenter Enteral Nutr, 2018, 42(4): 758–765. |
[40] | CHENG Y, ZHANG J F, ZHANG L W, et al. Enteral immunonutrition versus enteral nutrition for gastric cancer patients undergoing a total gastrectomy:a systematic review and meta-analysis[J]. BMC Gastroenterol, 2018, 18(1): 11. |
[41] | RODRIGUES V D, DE PINHO N B, ABDELHAY E, et al. Nutrition and immune-modulatory inter-vention in surgical patients with gastric cancer[J]. Nutr Clin Pract, 2017, 32(1): 122–129. |
[42] |
郭志学, 王颖, 朱娅, 等. 胃癌胃大部分切除术后早期免疫增强型肠内营养支持治疗效果分析[J]. 河北医药, 2017, 39(3): 388–389, 393.
GUO Z X, WANG Y, ZHU Y, et al. Analysis of the effect of early immune enhanced enteral nutritional support after most gastrectomy for gastric cancer[J]. Hebei Medical Journal, 2017, 39(3): 388–389, 393. (in Chinese) |
[43] | HU S E, DONG T S, DALAL S R, et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer[J]. PLoS One, 2011, 6(1): e16221. |
[44] | XIONG Y, HANNON G J, ZHANG H, et al. P21 is a universal inhibitor of cyclin kinases[J]. Nature, 1993, 366(6456): 701–704. |
[45] | OGINO S, NOSHO K, SHIMA K, et al. P21 expression in colon cancer and modifying effects of patient age and body mass index on prognosis[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(9): 2513–2521. |
[46] | DAVIE J R. Inhibition of histone deacetylase activity by butyrate[J]. J Nutr, 2003, 133(7): 2485S–2493S. |
[47] | NAKANO K, MIZUNO T, SOWA Y, et al. Butyrate activates the WAF1/Cip1 gene promoter through Sp1 sites in a p53-negative human colon cancer cell line[J]. J Biol Chem, 1997, 272(35): 22199–22206. |
[48] | SCOTT G K, MATTIE M D, BERGER C E, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition[J]. Cancer Res, 2006, 66(3): 1277–1281. |
[49] | GERMAN J B, DILLARD C J. Composition, structure and absorption of milk lipids:a source of energy, fat-soluble nutrients and bioactive molecules[J]. Crit Rev Food Sci, 2006, 46(1): 57–92. |
[50] | SALTER A M. Dietary fatty acids and cardiovascular disease[J]. Animal, 2013, 7(S1): 163–171. |
[51] | ROMAO J M, JIN W W, HE M L, et al. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet[J]. PLoS One, 2012, 7(7): e40605. |
[52] |
ALTENHOFERC, SPORNRAFTM, KIENBERGERH, 等. 日粮添加菜籽油和大豆油对牛脂肪代谢、脂肪酸组成以及乳汁胆固醇水平的影响[J]. 饲料博览, 2015(1): 5.
ALTENHOFER C, SPORNRAFT M, KIENBERGER H, et al. Effects of dietary supplementation with rapeseed oil and soybean oil on bovine fat metabolism, fatty acid composition and milk cholesterol level[J]. Feed Review, 2015(1): 5. (in Chinese) |
[53] |
夏义苗, 王欣, 陈利华, 等. 不同氧化条件下葵花籽油脂肪酸含量与低场核磁共振弛豫特性的相关性[J]. 中国食品学报, 2018, 18(7): 286–294.
XIA Y M, WANG X, CHEN L H, et al. The Correlation between fatty acids and LF-NMR relaxation properties in sunflower oil during different oxidation processes[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(7): 286–294. (in Chinese) |
[54] | MOBUCHON L, LE GUILLOU S, MARTHEY S, et al. Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland[J]. PLoS One, 2017, 12(12): e0185511. |
[55] |
李冉.亚麻籽油与红花油对奶牛乳腺ncRNA的影响及牛奶miRNA表达谱研究[D].杨凌: 西北农林科技大学, 2016.
LI R.Effects of linseed oil and safflower oil on mammary gland mirnome of dairy cows and study on milk mirnome[D].Yangling: Northwest A&F University, 2016.(in Chinese) |
[56] | NEVILLE M C. Regulation of milk fat synthesis[J]. J Pediatr Gastroenterol Nutr, 1989, 8(4): 426–429. |
[57] | LERCH S, FERLAY A, SHINGFIELD K J, et al. Rapeseed or linseed supplements in grass-based diets:effects on milk fatty acid composition of Holstein cows over two consecutive lactations[J]. J Dairy Sci, 2012, 95(9): 5221–5241. |
[58] | LOOR J J, FERLAY A, UEDA K, et al. High-concentrate diets and polyunsaturated oils alter trans and conjugated isomers in bovine rumen, blood, and milk[J]. J Dairy Sci, 2005, 88(11): 3986–3999. |
[59] | BELL J A, GRⅡNARI J M, KENNELLY J J. Effect of Safflower Oil, Flaxseed Oil, Monensin, and Vitamin E on Concentration of Conjugated Linoleic Acid in Bovine Milk Fat[J]. J Dairy Sci, 2006, 89(2): 733–748. |
[60] | IBEAGHA-AWEMU E M, LI R, AMMAH A A, et al. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways[J]. BMC Genomics, 2016, 17(1): 104. |
[61] |
龙伶俐, 薛雅琳, 张东, 等. 油茶籽油主要特征成分的研究分析[J]. 中国油脂, 2012, 37(4): 78–81.
LONG L L, XUE Y L, ZHANG D, et al. Investigation on main characteristic composition of Camellia oleifera seed oil[J]. China Oils and Fats, 2012, 37(4): 78–81. (in Chinese) |
[62] |
赖梅生, 杨柳. 茶油的药理与临床应用研究进展[J]. 中医外治杂志, 2007, 16(3): 6–7.
LAI M S, YANG L. Research progress of pharmacological action of tea oil and the clinic application[J]. Journal of External Therapy of TCM, 2007, 16(3): 6–7. (in Chinese) |
[63] |
张东生, 金青哲, 王兴国, 等. 油茶籽及油营养品质研究现状[J]. 粮油食品科技, 2013, 21(4): 53–56.
ZHANG D S, JIN Q Z, WANG X G, et al. Research status of nutrition quality of camellia oleifera seed and oil[J]. Science and Technology of Cereals, Oils and Foods, 2013, 21(4): 53–56. (in Chinese) |
[64] |
沈建福, 姜天甲. 山茶油的营养价值与保健功能[J]. 粮食与食品工业, 2006, 13(6): 6–8, 21.
SHEN J F, JIANG T J. Nutritional value and health care function of camellia seed oil[J]. Cereal and Food Industry, 2006, 13(6): 6–8, 21. (in Chinese) |
[65] |
徐子娴, 张涛, 雷志良, 等. 不同功能性油脂对乳腺上皮细胞乳脂合成基因表达的影响[J]. 中国兽医学报, 2017, 37(5): 949–954.
XU Z X, ZHANG T, LEI Z L, et al. Effects of different functional oils on the synthesis of milk fat in mammary epithelial cells[J]. Chinese Journal of Veterinary Science, 2017, 37(5): 949–954. (in Chinese) |
[66] | SINGH R, YADAV V, KUMAR S, et al. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1[J]. Sci Rep, 2015, 5(1): 17454. |
[67] | MA X Y, WEI D W, CHENG G, et al. Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle[J]. Mol Cell Probe, 2018, 42: 10–17. |
[68] | SUN X D, LUO S B, JIANG C H, et al. Sodium butyrate reduces bovine mammary epithelial cell inflammatory responses induced by exogenous lipopolysaccharide, by inactivating NF-κB signaling[J]. J Dairy Sci, 2020, 103(9): 8388–8397. |
[69] | SHARMIN M M, MIZUSAWA M, HAYASHI S, et al. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells[J]. J Dairy Sci, 2020, 103(9): 8643–8654. |
[70] | YAN Q X, TANG S X, ZHOU C S, et al. Effects of free fatty acids with different chain lengths and degrees of saturability on the milk fat synthesis in primary cultured bovine mammary epithelial cells[J]. J Agric Food Chem, 2019, 67(31): 8485–8492. |