畜牧兽医学报  2020, Vol. 51 Issue (11): 2895-2902. DOI: 10.11843/j.issn.0366-6964.2020.11.028    PDF    
牛支原体NOX2的原核表达及黏附特性
包世俊, 朱彩宏, 邢小勇, 丁小琴, 温峰琴, 武小椿, 薛惠文     
甘肃农业大学动物医学院, 兰州 730070
摘要:旨在探究牛支原体(Mycoplasma bovis,Mb)NADH氧化酶NOX2的生物学功能,本研究参照GenBank中Mb湖北分离株(Mb Hubei-1 strain)nox2基因序列设计引物,应用PCR扩增获得Mb临洮分离株的nox2基因,在测序及序列优化的基础上,构建原核表达载体pET-nox2,并在大肠杆菌Rosetta(DE3)中诱导表达,进而对表达产物rMbNOX2的酶促活性、免疫原性,NOX2在Mb内的分布,rMbNOX2抗血清的补体介导体外杀菌活性和对Mb黏附宿主细胞的抑制活性进行了分析。结果表明,Mb临洮株nox2基因全长1 350 bp,与GenBank中已知序列的Mb nox2基因序列比较,除Mb JF4278株相似性为97.93%外,其余均为99.93%。SDS-PAGE结果显示,优化的nox2基因在大肠杆菌中成功表达,重组蛋白rMbNOX2相对分子质量约为67 ku,且具有良好的酶促活性;ELISA与Western blot结果显示,rMbNOX2具有良好的免疫原性,且Mb NOX2在细胞浆中的分布多于细胞膜;补体介导的体外杀菌试验及黏附抑制试验证实,rMbNOX2抗血清具有明显的补体介导杀支原体活性,并可有效抑制Mb对宿主细胞的黏附。本研究为深入探讨Mb NOX2生物学功能奠定了基础。
关键词牛支原体    nox2基因    原核表达    功能分析    
Prokaryotic Expression of NOX2 of Mycoplasma bovis and Its Adherence Characterization
BAO Shijun, ZHU Caihong, XING Xiaoyong, DING Xiaoqin, WEN Fengqin, WU Xiaochun, XUE Huiwen     
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract: To explore the biological function of NADH oxidase NOX2 from Mycoplasma bovis (Mb), according to the nox2 gene sequence of Mb strain Hubei (GenBank.CP002513.1), the primers were designed and the nox2 gene of Mb strain Lintao was amplified by PCR. Based on sequencing and gene optimization, the prokaryotic expression vector pET-nox2 was constructed, and was expressed in Escherichia coli Rosetta (DE3). Subsequently, the analysis of the enzymatic activity and the immunogenicity of recombinant proteins rMbNOX2 were completed. And then the subcellular localization of NOX2, complement-dependent bactericidal activity of anti-rMbNOX2 serum, and as well as inhibition effect of anti-rMbNOX2 serum to Mb adhering to host cells was determined. The results showed that the CDS sequence of the nox2 gene of Mb Lintao strain was 1 350 bp, and showed 99.93% homology with nox2 gene of all Mb except Mb JF4278 strain in GenBank. The result of SDS-PAGE displayed the optimized nox2 was successfully expressed in E. coli. The recombinant protein rMbNOX2 was about 67 ku. Enzyme activity analysis showed that the purified rMbNOX2 had good enzymatic activity. The results of ELISA and Western blot showed that the rMbNOX2 has excellent immunogenicity, and the Mb NOX2 distribute both in the cell membrane and cytoplasm, but it's more distributed in the cytoplasm. Complement-dependent mycoplasmacidal assay and adherence inhibition assay confirmed anti-rMbNOX2 serum has distinct complement-dependent mycoplasmacidal activity and can also effectively inhibit the adherence of Mb to host cells. The results of this study lay a foundation for further study on the biological function of Mb NOX2.
Key words: Mycoplasma bovis    nox2 gene    prokaryotic expression    function analysis    

牛支原体(Mycoplasma bovis, Mb)是牛的重要致病性支原体之一,可引起牛的肺炎、乳房炎、关节炎、角膜结膜炎、耳炎、生殖道炎症、流产与不孕等多种病症,给世界养牛业造成了巨大的经济损失[1]。1961年,美国人Hale首次从患乳腺炎病牛的乳汁中分离并鉴定出Mb[2],但直到1976年才根据16S rRNA序列将其命名为Mb[3]。不同品种的牛对Mb易感性不同,以圈养牛、北美野牛和水牛最为易感[1, 4]。2008年,我国湖北首次暴发了由Mb引起的肺炎重大疫情,其发病率达50%~100%,病死率为10%~50%,给我国养牛业造成了惨重经济损失,并已成为我国犊牛和育肥牛发病和死亡的重要病原之一[5-7]。因此,开展Mb相关研究,将为其相关疾病诊断方法及防控措施的建立提供技术支持,也可为深入研究其致病机制奠定基础。

研究表明,多种酶在支原体的细胞膜有分布,并参与其对宿主的感染和免疫应答,如烯醇化酶[8-13],鸡毒支原体和肺炎支原体的丙酮酸脱氢酶[14-15],Mb的果糖二磷酸醛缩酶、亚甲基四氢叶酸-tRNA-(尿嘧啶-5)-甲基转移酶等[16-18]。NADH氧化酶(NADH oxidase, NOX)是一类催化NADH氧化为NAD+的氧化还原酶,其在O2存在条件下,催化NADH氧化为NAD+,同时将O2还原为H2O2或H2O,前者为产H2O2型NADH氧化酶(NOX1),主要存在于需氧菌,后者为产H2O型NADH氧化酶(NOX2),存在于厌氧菌或兼性厌氧菌[19-21]。大多数生物NADH氧化酶基本上都是同型二聚体分子,单体相对分子质量约为45~55 ku,亚基大多以1分子黄素腺嘌呤二核苷酸(FAD)为辅基[22]。研究证实,除催化作用外,某些生物NADH氧化酶尚具有其他功能,如鼠肝中NADH氧化酶参与铜的吸收[23],链球菌NADH氧化酶与其生物被膜的形成和对宿主的感染有关[24-26],甲烷杆菌的NOX2有控制其定植的作用[27],Mb NADH氧化酶(NOX1)参与其对宿主细胞的黏附[28]。但尚无Mb NOX2相关的研究报道。因此,本研究在Mb临洮株nox2基因扩增及原核表达的基础上,对表达产物rMbNOX2的酶促活性、抗原性、rMbNOX2抗体补体依赖的杀支原体活性和对Mb黏附宿主细胞的抑制作用进行了分析,为深入研究Mb NOX2生物学功能奠定了基础。

1 材料与方法 1.1 材料

1.1.1 菌株、载体及实验动物   Mb临洮株为本实验室分离保存;Mb兔抗血清为本实验室制备;大肠杆菌感受态细胞购自全式金生物公司;pET-32a(+)购自Novagen公司;新西兰兔购自中国农业科学院兰州兽医研究所实验动物中心。

1.1.2 主要试剂   支原体培养基购自青岛海博生物公司;DNA聚合酶、限制性内切酶与T4 DNA连接酶购自TaKaRa公司;质粒小提试剂盒、DNA纯化回收试剂盒购自北京天根生物公司;DNA Marker购自北京康为世纪公司;预染蛋白分子量标准、蛋白定量试剂盒购自碧云天公司;Ni-NAT His Bind购自Novagen公司;NADH购自Roche公司,FAD购自TCI公司,弗氏佐剂购自Sigma公司,羊抗兔IgG-HRP购自Solarbio公司,Bovine plasminogen(PLG)购自Innovative Research公司,NADH oxidase (H2O-forming)购自Creative Enzymes公司,酵母提取物、胰蛋白胨购自OXOID公司,马血清购自兰州民海生物公司。

1.1.3 主要仪器   洁净工作台为苏州安泰产品;CO2培养箱购自Thermo Fisher Scientific公司;PCR仪购自Eppendorf公司,电泳系统、凝胶成像系统购自Bio-Rad公司。

1.2 引物的设计

参照Mb Hubei-1株nox2基因序列(GenBank No. CP002513.1)设计引物对nox2-F1/nox2-R1与nox2-F2/nox2-R2(表 1),且nox2-F1和nox2-R2 5′端分别引入BamHⅠ和XhoⅠ酶切位点,由金唯智生物公司合成。

表 1 Overlap PCR引物 Table 1 Primers used for overlap PCR
1.3 Mb nox2基因的扩增

取Mb培养物5 mL,12 000 r·min-1离心10 min,200 μL PBS重悬并置沸水中10 min后, 迅速冰浴5 min,12 000 r·min-1离心10 min,上清即为Mb基因组粗提物。

nox2-F1/nox2-R1与nox2-F2/nox2-R2引物对分别扩增nox2基因上、下游片段,进而以nox2-F1/nox2-R2,经overlap PCR扩增nox2基因全长。反应体系40 μL:Mb基因组DNA 2 μL,上、下游引物(10 nmol·mL-1)各1 μL,2×PrimeSTAR® Max DNA聚合酶20 μL,ddH2O 16 μL。扩增条件:98 ℃ 5 min;98 ℃ 25 s, 56 ℃ 25 s, 72 ℃ 50 s, 30个循环;72 ℃延伸5 min,产物回收备用。

1.4 nox2原核表达载体的构建及原核表达

nox2扩增产物与pET-32a(+)分别用Bam HⅠ和XhoⅠ双酶切后连接,鉴定正确的质粒转化大肠杆菌Rosetta(DE3), 并经IPTG诱导后,SDS-PAGE分析表达结果。

经SDS-PAGE分离的表达产物转印至NC膜后于5%脱脂乳中,4 ℃过夜封闭,进而浸入1:5 000稀释的Mb兔抗血清中室温孵育2 h,PBST洗涤3次后,于1:8 000稀释的羊抗兔IgG-HRP中室温孵育1.5 h,PBST洗涤后,DAB显色并观察结果。

1.5 表达产物酶促活性的分析

200 mL诱导菌液12 000 r·min-1离心10 min,菌体沉淀参照高翔等[29]所述方法纯化重组蛋白,并利用BCA法定量后分析酶活性。

酶促反应体系为2 mL:0.1 mol·L-1,pH 7.5的磷酸钾缓冲液[含1 mmol/L的二硫苏糖醇(DTT)]1.5 μL,rMbNOX2终质量浓度5 μg·mL-1,FAD终浓度10 μmol·L-1,混匀于25 ℃,孵育5 min后, 加入NADH至终质量浓度为500 μmol·L-1,补充缓冲液至2 mL,混匀后,测定不同时间点反应体系在340 nm处的吸光值。同时设无NADH空白对照组、无rMbNOX2阴性对照组和NADH oxidase阳性对照组。计算公式:

$ \begin{aligned} &\text { 比活力 }\left(\mathrm{u} \cdot \mathrm{mg}^{-1}\right)=\\ &\frac{\Delta \mathrm{A} \cdot \min ^{-1} \times \text {测试体积 } \times \text { 稀释倍数 }}{\text { 吸收系数 } \times \text { 酶体积 } \times \text { 蛋白质 }\left(\mathrm{mg} \cdot \mathrm{mL}^{-1}\right)} \end{aligned} $
1.6 rMbNOX2多抗的制备

取纯化的rMbNOX2适量,参照高翔等[29]所述方法免疫2只新西兰白兔,制备rMbNOX2抗血清并测定抗体效价。

1.7 Mb细胞膜与胞质中NOX2的Western blot检测

参照高翔等[29]所述方法,提取Mb膜蛋白,并应用Western blot检测Mb细胞膜与胞质中的NOX2。

1.8 补体介导的体外杀支原体试验

取5 mL对数生长中后期的Mb液体培养物,4 ℃、12 000 r·min-1离心5 min,无菌PBS洗涤3次,重悬至1.5×109CFU·mL-1。试验用血清56 ℃灭活30 min。试验体系300 μL:Mb悬液180 μL、rMbNOX2抗血清60 μL,于1.5 mL离心管混匀后,37 ℃孵育,期间轻轻振荡2次,30 min后,加入60 μL补体,混匀于37 ℃,孵育1 h后,10倍比稀释,选择103、104、105稀释度的悬液各取100 μL涂布60 mm培养皿,每个稀释度平行3个重复。37 ℃,5% CO2培养箱中培养5~7 d计数菌落。试验重复3次,并设Mb菌体抗血清对照组、免疫前血清对照组、补体对照组和空白组。杀菌率计算公式:

$ \text { 杀菌率 }(\%)=\frac{\mid \text { 试验组 } \mathrm{CFU}-\text { 阴性组 } \mathrm{CFU} \mid}{\text { 补体组 } \mathrm{CFU}} \times 100 \% $
1.9 细胞黏附及黏附抑制试验

EBL细胞于6孔细胞板长至单层后,随机取2孔胰酶消化并计数细胞,其余细胞孔用终浓度2.5 U·mL-1PLG处理2 h。期间,取5 mL对数生长中后期的Mb菌液,12 000 r·min-1离心5 min,无菌PBS洗涤3次,用37 ℃预热的无菌DMEM悬浮后,按MOI为200取样,无菌DMEM定容至980 μL后,加入20 μL灭活rMbNOX2抗血清(1:50),混匀,并37 ℃水浴1 h后离心,用1 mL无菌DMEM重悬后感染预处理的细胞(感染前用无抗生素无血清DMEM洗3次),37 ℃孵育2 h。无菌PBS充分洗涤后,加1 mL 0.25%胰酶消化裂解,10 min后,加1 mL预热的Mb培养基,混匀后,室温静置10 min,取100 μL细胞裂解物加入到400 μL预热Mb液体培养基中,依次10倍比稀释,选择103、104、105稀释度悬液各取100 μL涂布固体培养基。5% CO2,37 ℃培养5~7 d后,计数菌落,并计算黏附抑制率。分别设免疫前兔血清对照组、无血清空白组及Mb抗血清对照组。试验重复3次,每次分别设3个重复。

$\begin{aligned} &\text { 黏附抑制率(%) = }\\ &\frac{\mid \text { 试验组 } \mathrm{CFU}-\text { 阴性组 } \mathrm{CFU} \mid}{\text { 空 白组 } \mathrm{CFU}} \times 100 \% \end{aligned} $
2 结果 2.1 nox2基因的扩增及表达载体的构建

Overlap PCR扩增产物与pET-32a(+)分别经BamHⅠ/XhoⅠ双酶切后连接并转化大肠杆菌Trans5α,涂布氨苄抗性LB平板后长出的单菌落扩增培养后提取质粒酶切,目的条带约1 350 bp(图 1)。测序正确的质粒命名为pET-nox2。比较Mb临洮株与GenBank中其他菌株nox2基因序列,结果表明,除与Mb JF4278 株相似性为98%外,与其余Mb菌株相似性均为99.93%,而与无乳支原体的相关基因,相似性仅为81%~82%。因此,nox2基因可作为建立基于核酸的Mb检测或相关疾病诊断方法的候选靶标。

M. DNA相对分子质量标准; 1、2. pET-nox2经BamHⅠ、XhoⅠ双酶切的产物 M. DNA marker; 1, 2. Products from pET-nox2 digested with BamHⅠ and Xho 图 1 pET-nox2的双酶切鉴定 Fig. 1 Identification of pET-nox2 by double endonucleases digestion
2.2 rMbNOX2原核表达

pET-nox2转化的大肠杆菌Rosetta(DE3)感受态细胞经IPTG诱导后,应用SDS-PAGE检测,结果显示,重组蛋白rMbNOX2呈可溶性表达,其大小约为67 ku(图 2A)。Western blot结果显示,重组蛋白rMbNOX2可被Mb兔抗血清有效识别(图 2B)。

A. SDS-PAGE分析;B. Western blot分析。M.蛋白质分子质量标准;1.诱导的pET-32a(+)转化E.coli (DE3); 2.诱导的pET-nox2转化E. coli (DE3); 3.诱导的pET-nox2转化E. coli (DE3)裂解上清;4.诱导的pET-nox2转化E.coli (DE3)裂解沉淀;5.纯化的重组蛋白rMbNOX2 A. SDS-PAGE analysis; B. Western blot analysis. M. Protein molecular weight marker; 1. Induced pET-32a(+)/DE3; 2. Induced pET-nox2/DE3; 3. Supernatant of pET-nox2/DE3; 4. Sediment of pET-nox2/DE3; 5. Purified recombinant protein rMbNOX2 图 2 重组蛋白rMbNOX2的SDS-PAGE与Western blot分析 Fig. 2 SDS-PAGE and Western blot analysis of the recombinant protein rMbNOX2
2.3 rMbNOX2活性分析

酶促活性检测结果显示,重组蛋白rMbNOX2具有良好的酶促活性(图 3),且其比活力为194.9 U·mg-1

图 3 rMbNOX2的酶促活性分析 Fig. 3 Analysis of enzymatic activity of rMbNOX2
2.4 Mb细胞膜与胞质中NOX2的Western blot检测

Mb胞质蛋白和膜蛋白等体积上样后, 应用Western blot分析NOX2在Mb细胞膜及细胞质中的分布,结果显示,Mb NOX2在其细胞膜和细胞质中均有分布,但在细胞质中的分布量多于细胞膜(图 4)。

M.蛋白质分子质量标准;1~2.牛支原体菌体蛋白;3.牛支原体膜蛋白;4.牛支原体胞质蛋白 A. Western blot analysis. M. Protein molecular weight marker; 1-2. Total cellular proteins of Mb; 3. The membrane proteins of Mb; 4. The cytosolic proteins of Mb 图 4 Mb细胞中NOX2定位的Western blot检测 Fig. 4 Determination of the localization of Mb NOX2 by Western blot
2.5 补体依赖的体外杀支原体试验

补体介导的杀支原体试验中,计数菌落并计算出各组CFU值,结果表明,rMbNOX2兔抗血清具有明显的补体介导杀支原体作用,且杀菌率高达57.86%(表 3)。

表 3 兔抗rMbNOX2抗血清的杀菌率 Table 3 Bactericidal rate of rabbit anti-rMbNOX2 serum
2.6 黏附及黏附抑制活性

根据菌落生长情况选择适当培养皿计数菌落并计算黏附抑制率。结果显示,rMbNOX2抗血清可抑制Mb对EBL细胞的黏附,且抑制率高达84.20%(表 4),提示NOX2可能参与Mb对宿主细胞的黏附,进而与Mb对宿主的感染相关。

表 4 不同处理组CFU值 Table 4 CFU values of different treatment groups
3 讨论

目前,Mb感染呈世界性流行,其感染牛所致病情复杂,难于防控[30-32],给全球养牛业造成了巨大经济损失[33-38]。因此,Mb相关的研究,必将为相关疫情的预防和控制奠定理论和技术基础。

研究发现,某些微生物的NADH氧化酶与其致病性相关[25, 39-40],Mb NOX1亦参与其对宿主细胞的黏附[28],但尚无Mb NOX2的研究报道。因此,本研究基于Mb临洮分离株nox2基因的原核表达,对NOX2在其细胞内的分布和其免疫原及感染相关特性进行了研究。

序列分析表明,Mb nox2基因具有1个编码色氨酸的密码子TGA,但TGA密码子在大肠杆菌中的作用是终止密码子[18]。因此,为在大肠杆菌中有效表达nox2基因,本研究采用overlap PCR技术将密码子TGA突变为同义密码子TGG,从而使该基因在大肠杆菌中获得有效表达,所获得的重组蛋白相对分子质量约为67 ku,从而为相关研究工作的顺利开展和完成奠定了基础。

rMbNOX2的酶促活性检测证实该蛋白具有良好的酶促活性,能够有效催化NADH的氧化脱氢,为试验研究的可靠性提供了保障。动物免疫试验及间接ELISA和Western blot结果表明,重组蛋白rMbNOX2具有良好的免疫原性与反应原性,可作为Mb新型疫苗的候选抗原。而图 3B中的一些杂带,可能是大肠杆菌与Mb的某些蛋白具有相关的抗原表位所致,或免疫兔体内本身存在一定水平的大肠杆菌抗体效价。Western blot检测结果证实,NOX2在Mb细胞膜上亦有分布,因而可能参与Mb对宿主细胞的感染及其免疫应答。抗体介导的补体杀菌试验表明,rMbNOX2抗体与支原体特异性结合后有效激活补体,从而发挥细胞毒性作用,导致Mb的崩解,进一步证实了Mb NOX2与宿主对其免疫应答有关。黏附和黏附抑制试验结果显示,NOX2抗体可抑制Mb对宿主细胞EBL的黏附,因此可能参与该病原对宿主的感染过程。而已有研究亦证实,不同动物源性支原体的多种酶都参与支原体对宿主细胞的黏附[10-15, 18, 28]

4 结论

本研究在nox2基因的克隆和原核表达的基础上,证实Mb NOX2蛋白是一种膜蛋白抗原,其抗体可介导补体依赖性的细胞毒性杀支原体作用,并可抑制Mb对宿主细胞的黏附,从而可能与Mb的免疫应答和感染相关。研究结果为该蛋白生物学功能的深入研究奠定了基础。

参考文献
[1] NICHOLAS R A J, AYLING R D. Mycoplasma bovis: disease, diagnosis, and control[J]. Res Vet Sci, 2003, 74(2): 105–112. DOI: 10.1016/S0034-5288(02)00155-8
[2] HALE H H, HELMBOLDT C F, PLASTRIDGE W N, et al. Bovine mastitis caused by a Mycoplasma species[J]. Cornell Vet, 1962, 52: 582–591.
[3] ASKAA G, ERNØ H. NOTE:Elevation of Mycoplasma agalactiae subsp. bovis to Species Rank:Mycoplasma bovis (Hale et al.) comb. nov[J]. Int J Syst Evol Microbiol, 1976, 26(3): 323–325.
[4] PFVTZNER H, SACHSE K. Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle[J]. Rev Sci Tech, 1996, 15(4): 1477–1494. DOI: 10.20506/rst.15.4.987
[5] 胡长敏, 石磊, 龚瑞, 等. 牛支原体病研究进展[J]. 动物医学进展, 2009, 30(8): 73–77.
HU C M, SHI L, GONG R, et al. Progress on bovine Mycoplasmosis[J]. Progress in Veterinary Medicine, 2009, 30(8): 73–77. (in Chinese)
[6] 辛九庆, 李媛, 郭丹, 等. 国内首次从患肺炎的犊牛肺脏中分离到牛支原体[J]. 中国预防兽医学报, 2008, 30(9): 661–664.
XIN J Q, LI Y, GUO D, et al. First isolation of Mycoplasma bovis from calf lung with pneumoniae in China[J]. Chinese Journal of Preventive Veterinary Medicine, 2008, 30(9): 661–664. (in Chinese)
[7] MENGHWAR H, HE C F, ZHANG H, et al. Genotype distribution of Chinese Mycoplasma bovis isolates and their evolutionary relationship to strains from other countries[J]. Microb Pathog, 2017, 111: 108–117. DOI: 10.1016/j.micpath.2017.08.029
[8] YAVLOVICH A, RECHNITZER H, ROTTEM S. α-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen[J]. Infect Immun, 2007, 75(12): 5716–5719. DOI: 10.1128/IAI.01049-07
[9] CHUMCHUA V, PORNPUTTAPONG N, THAMMARONGTHAM C, et al. Homology modeling of Mycoplasma pneumoniae enolase and its molecular interaction with human- plasminogen[J]. Bioinformation, 2008, 3(1): 18–23. DOI: 10.6026/97320630003018
[10] CHEN H J, YU S Q, SHEN X Y, et al. The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen[J]. Microb Pathog, 2011, 51(4): 285–290. DOI: 10.1016/j.micpath.2011.03.012
[11] SCHREINER S A, SOKOLI A, FELDER K M, et al. The surface-localised α-enolase of Mycoplasma suis is an adhesion protein[J]. Vet Microbiol, 2012, 156(1-2): 88–95. DOI: 10.1016/j.vetmic.2011.10.010
[12] SONG Z Q, LI Y, LIU Y, et al. α-Enolase, an adhesion-related factor of Mycoplasma bovis[J]. PLoS One, 2012, 7(6): e38836. DOI: 10.1371/journal.pone.0038836
[13] BAO S J, GUO X Q, YU S Q, et al. Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein[J]. BMC Vet Res, 2014, 10(1): 223. DOI: 10.1186/s12917-014-0223-6
[14] QI J J, ZHANG F Q, WANG Y, et al. Characterization of Mycoplasma gallisepticum pyruvate dehydrogenase alpha and beta subunits and their roles in cytoadherence[J]. PLoS One, 2018, 13(12): e0208745. DOI: 10.1371/journal.pone.0208745
[15] GRVNDEL A, FRIEDRICH K, PFEIFFER M, et al. Subunits of the pyruvate dehydrogenase cluster of Mycoplasma pneumoniae are surface-displayed proteins that bind and activate human plasminogen[J]. PLoS One, 2015, 10(5): e0126600. DOI: 10.1371/journal.pone.0126600
[16] SONG Z Q, LI Y, LIU Y, et al. α-Enolase, an adhesion-related factor of Mycoplasma bovis[J]. PLoS One, 2012, 7(6): e38836. DOI: 10.1371/journal.pone.0038836
[17] GUO Y P, ZHU H M, WANG J Y, et al. TrmFO, a Fibronectin-binding Adhesin of Mycoplasma bovis[J]. Int J Mol Sci, 2017, 18(8): 1732. DOI: 10.3390/ijms18081732
[18] GAO X, BAO S J, XING X Y, et al. Fructose-1, 6-bisphosphate aldolase of Mycoplasma bovis is a plasminogen-binding adhesin[J]. Microb Pathog, 2018, 124: 230–237. DOI: 10.1016/j.micpath.2018.08.032
[19] 卿三红, 方柏山. NADH氧化酶的研究进展[J]. 华侨大学学报(自然科学版), 2011, 32(5): 554–559.
QING S H, FANG B S. Recent progress in research of NADH oxidase[J]. Journal of Huaqiao University (Natural Science), 2011, 32(5): 554–559. (in Chinese)
[20] JIANG R R, BOMMARIUS A S. Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis[J]. Tetrahed Asymm, 2004, 15(18): 2939–2944. DOI: 10.1016/j.tetasy.2004.07.057
[21] 李林波, 罗宇, 屈凌波, 等. NADH氧化酶研究进展[J]. 河南工业大学学报(自然科学版), 2010, 31(4): 80–88.
LI L B, LUO Y, QU L B, et al. Research progress of NADH oxidase[J]. Journal of Henan University of Technology (Natural Science Edition), 2010, 31(4): 80–88. (in Chinese)
[22] 李林波.乳酸菌NADH氧化酶的筛选与基因克隆研究[D].郑州: 河南工业大学, 2011.
LI L B. Screening and gene cloning study of NADH oxidase from lactic acid bacteria[D]. Zhengzhou: Henan University of Technology, 2011. (in Chinese)
[23] VAN DEN BERG G J, MCARDLE H J. A plasma membrane NADH oxidase is involved in copper uptake by plasma membrane vesicles isolated from rat liver[J]. Biochim Biophys Acta, 1994, 1195(2): 276–80. DOI: 10.1016/0005-2736(94)90267-4
[24] GE X C, SHI X L, SHI L M, et al. Involvement of NADH oxidase in biofilm formation in Streptococcus sanguinis[J]. PLoS One, 2016, 11(3): e0151142. DOI: 10.1371/journal.pone.0151142
[25] AKEDA Y. NADH oxidase, a new player in the field of Streptococcus suis infection[J]. Virulence, 2017, 8(1): 11–12. DOI: 10.1080/21505594.2016.1218593
[26] GE X C, YU Y, ZHANG M, et al. Involvement of NADH oxidase in competition and endocarditis virulence in Streptococcus sanguinis[J]. Infect Immun, 2016, 84(5): 1470–1477. DOI: 10.1128/IAI.01203-15
[27] YAN M G, YIN W B, FANG X, et al. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut[J]. Biosci Rep, 2016, 36(6): e00410. DOI: 10.1042/BSR20160357
[28] ZHAO G, ZHANG H, CHEN X, et al. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O2 reducing enzyme and an adhesin[J]. Sci Rep, 2017, 7(1): 44.
[29] 高翔, 邢小勇, 冯娜, 等. 牛支原体武威株fba基因的克隆、表达及亚细胞定位[J]. 农业生物技术学报, 2017, 25(2): 274–281.
GAO X, XING X Y, FENG N, et al. Cloning, expression and subcellular localization of fba gene in Mycoplasma bovis Wuwei strain[J]. Journal of Agricultural Biotechnology, 2017, 25(2): 274–281. (in Chinese)
[30] MEHINAGIC K, PILO P, VIDONDO B, et al. Coinfection of Swiss cattle with bovine parainfluenza virus 3 and Mycoplasma bovis at acute and chronic stages of bovine respiratory disease complex[J]. J Vet Diagn Invest, 2019, 31(5): 674–680. DOI: 10.1177/1040638719861686
[31] BVRGI N, JOSI C, BURKI S, et al. Mycoplasma bovis co-infection with bovine viral diarrhea virus in bovine macrophages[J]. Vet Res, 2018, 49(1): 2. DOI: 10.1186/s13567-017-0499-1
[32] OLIVEIRA T E S, PELAQUIM I F, FLORES E F, et al. Mycoplasma bovis and viral agents associated with the development of bovine respiratory disease in adult dairy cows[J]. Transbound Emerg Dis, 2020, 67(S2): 82–93. DOI: 10.1111/tbed.13223
[33] BRAS A L, SULEMAN M, WOODBURY M, et al. A serologic survey of Mycoplasma spp. in farmed bison (Bison bison) herds in western Canada[J]. J Vet Diagn Invest, 2017, 29(4): 513–521. DOI: 10.1177/1040638717710057
[34] LYSNYANSKY I, FREED M, ROSALES R S, et al. An overview of Mycoplasma bovis mastitis in Israel (2004-2014)[J]. Vet J, 2016, 207: 180–183. DOI: 10.1016/j.tvjl.2015.10.057
[35] REGISTER K B, JELINSKI M D, WALDNER M, et al. Comparison of multilocus sequence types found among North American isolates of Mycoplasma bovis from cattle, bison, and deer, 2007-2017[J]. J Vet Diagn Invest, 2019, 31(6): 899–904. DOI: 10.1177/1040638719874848
[36] GILLE L, CALLENS J, SUPRÉ K, et al. Use of a breeding bull and absence of a calving pen as risk factors for the presence of Mycoplasma bovis in dairy herds[J]. J Dairy Sci, 2018, 101(9): 8284–8290. DOI: 10.3168/jds.2018-14940
[37] POTHMANN H, SPERGSER J, ELMER J, et al. Severe Mycoplasma bovis outbreak in an Austrian dairy herd[J]. J Vet Diagn Invest, 2015, 27(6): 777–783. DOI: 10.1177/1040638715603088
[38] KLEIN U, DE JONG A, YOUALA M, et al. New antimicrobial susceptibility data from monitoring of Mycoplasma bovis isolated in Europe[J]. Vet Microbiol, 2019, 238: 108432. DOI: 10.1016/j.vetmic.2019.108432
[39] AUZAT I, CHAPUY-REGAUD S, LE BRAS G, et al. The NADH oxidase of Streptococcus pneumoniae:its involvement in competence and virulence[J]. Mol Microbiol, 1999, 34(5): 1018–1028. DOI: 10.1046/j.1365-2958.1999.01663.x
[40] MUCHNIK L, ADAWI A, OHAYON A, et al. NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice[J]. PLoS One, 2013, 8(4): e61128. DOI: 10.1371/journal.pone.0061128