2. 广西壮族自治区兽医研究所 广西兽医生物技术重点实验室, 南宁 530001
2. Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
砷(As)广泛分布于自然界中,常以三价砷(As (III))和五价砷(As (V))的价态存在[1],两种价态砷均会引起急性或慢性疾病,且三价砷比五价砷毒性更强[2]。在生活中,人类和动物主要通过土壤、空气、饮水和食物接触到砷,进而对身体健康造成损伤。目前,砷及其化合物主要被运用在饲料添加剂、农药、医疗以及其他的合金中[3-6]。据报道,适量的砷能促进血红蛋白的合成,加快动物的生长发育,可作为动物的饲料添加剂[7]。然而,机体摄入过量的砷会引起砷中毒并严重损害生殖系统,导致动物繁殖障碍,造成畜牧养殖业的经济损失[8]。三氧化二砷(ATO)作为砷的氧化物,是一种公认的致癌物,长期接触可致皮肤癌和肺癌[9]。研究表明,ATO可以诱导机体产生大量的活性氧簇(ROS)[10],并引起线粒体功能障碍,进而诱导细胞自噬或凋亡[11]。
肝是机体重要的解毒器官之一,也是物质合成、胆汁分泌、能量储存的重要场所。有研究表明,鸡肝中含有大量的蛋氨酸,以维持肝细胞的增殖[12]。但蛋氨酸参与合成的蛋白质很容易被氧化,ROS介导的蛋白质氧化产物是机体氧化损伤的重要标志,而蛋氨酸亚砜还原酶(Msrs)系统可以逆转这种氧化,恢复蛋白质的功能[13]。Msrs不仅能清除体内多余的自由基,而且可以恢复已氧化的蛋白质,是机体内关键的抗氧化剂[14]。Zhong等[15]研究证明,ATO诱导氧化应激并影响小鼠肝中的Msrs水平。MsrA可以保护心肌细胞免受缺氧和复氧诱导的细胞死亡,研究发现,过量表达MsrA的细胞中凋亡细胞死亡减少45%以上[16]。同样,缺乏MsrB1会减弱对乙酰氨基酚(APAP)诱导的Nrf2激活从而增加APAP对肝造成的氧化损伤[17],其次,MsrB1对小鼠的空间学习和记忆能力至关重要,缺乏MsrB1导致小鼠大脑星形胶质细胞增生,影响其学习和记忆功能[18]。同时,MsrB3在控制癌细胞增殖中起着关键作用,其缺乏会引起癌细胞通过p53和内质网应激(ERS)途径发生凋亡,而过表达会促进癌细胞的增殖[19]。此外,Msrs的表达与肿瘤、炎症、衰老和诸多神经退行性疾病有关[20-23]。
ATO所引起的氧化损伤的研究多集中在硫氧还原蛋白抗氧化系统和谷胱甘肽抗氧化系统。然而,关于Msrs在鸡肝中抗氧化作用的具体机制还不清晰,本研究将通过ATO攻毒处理鸡,并探讨Msrs在鸡肝中的抗氧化机制。
1 材料与方法 1.1 试验动物及样品采集随机选取雏鸡(1日龄)32只,分为对照组(生理盐水)、低剂量组(1 mg·kg-1 ATO溶液)、中剂量组(3 mg·kg-1 ATO溶液)和高剂量组(9 mg·kg-1 ATO溶液),每组8只,每天配制相应浓度的ATO溶液灌胃处理各组雏鸡1次,持续5周,每周称重并记录。所有肉鸡前期统一饲养在温度为35 ℃左右(保温灯),湿度为60%的环境中,每天光照12 h。试验结束后,屠宰全部试验鸡,采样过程中,剖开腹腔后迅速分离肝组织并称重记录,用预冷的PBS(4 ℃)清洗,一部分切成适当大小放入4%的多聚甲醛中固定,用于肝组织病理形态学观察;另一部分肝组织用滤纸吸干水分,放入液氮中,随后转移到-80 ℃的冰箱中保存待测。
1.2 试验试剂与仪器多聚甲醛购自Sigma公司;2×ChamQ SYBR qPCR Master Mix和BCA蛋白检测试剂盒购自南京诺唯赞生物科技有限公司;Prime Script RT Master Mix和Trizol购自TaKaRa公司;PAGE凝胶快速制备试剂盒(12.5%)购自上海雅酶生物科技有限公司;ECL发光底物试剂盒购自新赛美生物科技有限公司;MsrA (1:1 000; Novus Biologicals, USA), MsrB1 (1:1 000; Shanghai Mei Lian, China)、丙二醛(MDA)测定试剂盒和总SOD活性检测试剂盒(NBT法)均购自南京建成有限公司;其他试剂均为国产分析纯。
TDZ5-WS型冷冻离心机,购自湖南湘仪实验室仪器开发有限公司;5200型凝胶成像系统,购自上海医科大学仪器厂;LightCycler480型荧光定量PCR仪,购自美国Bio-Rad公司;Unique-R10型超纯水仪,购自厦门锐思捷科学仪器有限公司;DM1000型光学显微镜,购自广州德真科学仪器有限公司。
1.3 肝组织重量分析分离出来的肝组织,滤纸吸干表面血液,称重并记录。并如下计算肝脏系数:肝脏系数=肝重量(g)×100%/体重(kg)。
1.4 肝组织病理切片制备肝组织在4%的多聚甲醛中固定36 h后,流水过夜,梯度酒精进行脱水,随后二甲苯透明,石蜡包埋。然后进行肝组织切片(5 μm)、37 ℃烘片机过夜。并用苏木精和伊红(H & E)染色、中性树脂封片,用光学显微镜观察组织病理学变化。
1.5 肝组织MDA、SOD水平检测称取肝组织50 mg,加2 mL预冷的PBS,使用匀浆机匀浆,1 000 g离心10 min,取上清液进行MDA水平、SOD活性的测定。测定过程严格按照说明书进行。
1.6 实时荧光定量PCR称取肝组织50 mg提取总RNA,步骤如下:Trizol裂解,冰上匀浆静止5 min,离心(4 ℃,12 000 g,15 min),氯仿萃取,异丙醇洗涤,离心(4 ℃,12 000 g,10 min),弃上清加75 %乙醇摇匀,离心(4 ℃,12 000 g,10 min),倒掉乙醇,晾干。操作严格按照TaKaRa说明书进行。在GenBank获得目标基因序列,选用β-actin作为看家基因,由上海生工生物有限公司合成。其中引物序列见表 1。
![]() |
表 1 引物序列 Table 1 Primer sequences |
将RNA反转录成cDNA,操作严格按照反转录说明书进行。获得的cDNA进行RT-PCR扩增,反应总体系为10 μL:cDNA 1 μL, 2× Cham Q SYBR qPCR Master Mix 5 μL,上下游引物均为0.4 μL。反应条件:预变性95 ℃ 5 min,95 ℃ 30 s,60 ℃ 30 s;循环40次;检测MsrA, MsrB1, MsrB3的mRNA水平。
1.7 蛋白免疫印迹称取肝组织20 mg,RIPA裂解、冰上匀浆、离心(12 000 g,4 ℃,10 min)加入200 μL的RIPA裂解液,匀浆后12 000 g 4 ℃离心15 min,取上清获得总蛋白,测定蛋白浓度后稀释至同一浓度。采用12.5% SDS-聚丙酰胺凝胶电泳分离目的蛋白,通过转膜将目的蛋白转移到PVDF膜上,TBST摇床洗涤3次,5%的脱脂牛奶封闭1.5 h,目的蛋白相应的一抗4 ℃摇床孵育过夜。TBST充分洗涤,然后与相应二抗摇床室温孵育1 h。ECL显影液显影,拍照并分析。
1.8 数据分析数据先用Excel 2019进行初步处理。采用单因素方差分析方法(one-way ANOVA)进行差异性分析。采用SPSS,GraphPad Prism 8软件做图。数据以“平均值±标准差(Mean±SD)”表示,P < 0.05被认为差异有统计学意义。
2 结果 2.1 ATO对鸡的体重及肝脏系数影响如图 1所示,鸡的体重随砷剂量的增加降低,而肝脏系数增加,其中,中剂量组(3 mg·kg-1)和高剂量组(9 mg·kg-1)的肝脏系数相对于对照组极显著升高(P < 0.01)。低剂量组(1 mg·kg-1)与对照组差异不明显。
![]() |
与对照组相比,*表示P < 0.05,**表示P < 0.01,***表示P < 0.001,n≥3。下同 Compared with control group, * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001, n≥3.The same as below 图 1 鸡的体重及肝脏系数变化 Fig. 1 The changes in body weight and liver coefficient of chickens |
如图 2所示,对照组的肝细胞分界明显,轮廓清晰,肝索呈放射状分布于肝小叶,肝血窦无淤血,中央静脉正常,无明显病变。低剂量组(1 mg·kg-1)的肝血窦轻微淤血,病变不明显;肝细胞正常,肝索分布清晰,未见脂肪变性及其他肉眼可见病变。在400×镜下,中剂量组(3 mg·kg-1)的肝小叶较为凌乱,肝血窦中有大量红细胞淤积(用黑色箭头标识);部分肝细胞细胞核紧贴细胞壁,出现空泡化,有脂肪变性的痕迹;有的肝细胞出现细胞膜破裂的溶解现象。在高剂量组(9 mg·kg-1)中,大量的肝细胞出现水泡变性(用黄色箭头标识),细胞核浓缩或碎裂,聚集于细胞边缘;渗出性素质严重,主要渗出的为红细胞;肝组织结构基本被破坏完全。
![]() |
A.对照组;B.低剂量组(1 mg·kg-1);C.中剂量组(3 mg·kg-1);D.高剂量组(9 mg·kg-1)。黑色箭头指红细胞;黄色箭头指肝细胞水泡变性 A. Control group; B. Low-dose group (1 mg·kg-1); C. Medium-dose group (3 mg·kg-1); D. High-dose group (9 mg·kg-1). Black arrows indicate red blood cells; The yellow arrows indicate vesicular degeneration of liver cells 图 2 肝组织病理切片图(HE染色,400×) Fig. 2 Pathological section of liver tissues (HE staining, 400×) |
鸡肝抗氧化指标如图 3所示,随着ATO浓度的增加,MDA的水平显著升高,试验组与对照组相比差异极显著(P < 0.01, 图 3A)。所有砷处理组的SOD的活性均呈下降趋势,极显著低于对照组(P < 0.01,图 3B)。
![]() |
图 3 ATO对鸡肝抗氧化指标的影响 Fig. 3 Effect of arsenic trioxide on antioxidant indexes of chicken liver |
Msrs相关基因的表达水平如图 4所示。与对照组相比,低、中、高剂量组中的MsrA基因mRNA水平极显著升高(P < 0.001,图 4A)。此外,随着ATO浓度的升高,试验组中MsrB1、MsrB3基因mRNA表达水平相对于对照组极显著增加(P < 0.01,图 4B、C)。
![]() |
图 4 ATO对肝细胞Msrs相关基因的表达影响 Fig. 4 Effects of arsenic trioxide on the expression of Msrs related genes in hepatocytes |
ATO对鸡肝中的Msrs蛋白表达的影响如图 5所示。与对照组相比,随着ATO浓度的增加,MsrA蛋白水平呈下降趋势,且呈剂量依赖性效应(P < 0.01,图 5B)。相对于对照组,所有砷处理组的MsrB1蛋白水平均显著增加(P < 0.05或P < 0.01,图 5C)。
![]() |
图 5 ATO对鸡肝的Msrs蛋白表达的影响 Fig. 5 Effects of arsenic trioxide on the expression of Msrs proteins in hepatocytes |
机体内的ROS水平时刻处于动态变化过程中,低水平的ROS是机体内重要的信号调节分子,而过量的ROS是造成氧化应激的直接引物[24]。MDA作为脂质过氧化的标志物,其含量可反映机体的氧化损伤程度[25]。SOD是体内主要的活性氧清除剂,其可以加速O2-转化为H2O2, 而过氧化氢酶(CAT)将H2O2转化成O2和H2O,因此,SOD的水平可反映机体的抗氧化能力[26]。砷能够诱导线粒体产生大量的ROS,打破机体内氧化与抗氧化的动态平衡,产生氧化应激,引起细胞自噬和凋亡[27],并且与多种疾病发生相关。据报道,砷暴露与皮肤癌、肺癌、膀胱癌以及心血管疾病和糖尿病的发生密切相关[28]。ATO通过增加精原细胞中丙二醛(MDA)、过氧化氢酶(CAT)和活性氧(ROS)的水平,同时降低谷胱甘肽(GSH)和总抗氧化能力(T-AOC),严重影响人类与动物的生育能力[29]。本试验中,砷暴露组的MDA水平随砷剂量的增加而增加,说明ATO引起了肝细胞脂质过氧化,可能是砷暴露影响肝细胞线粒体的功能,产生大量的活性氧所致。试验组的SOD活力显著低于对照组,说明ATO作用于肝并使之产生大量的自由基,SOD作为自由基清除剂其活力显著降低。王丛丛等[30]研究表明,砷暴露会造成肝细胞毒性,诱导肝细胞脂肪变性,细胞结构损坏。本研究中,鸡肝脏系数随着砷暴露剂量的增加而呈上升趋势,通过鸡肝组织病理切片观察发现,在中剂量组和高剂量组中,肝结构损坏严重,伴有红细胞渗出现象,尤其在高剂量组中鸡肝细胞呈蜂窝状或网状,水泡变性严重。由此推测,ATO可能诱导鸡肝细胞水泡变性,肝细胞内水分含量增加,导致肝脏系数升高;肝细胞结构被破坏,导致渗出性素质的出现。
蛋氨酸亚砜还原酶(MsrA和MsrB)可以保护易被氧化的蛋氨酸残基氧化,保持蛋白质的生物活性,蛋氨酸(Met)的残基易被ROS氧化成蛋氨酸亚砜(MetO)[31],而MetO的左旋异构体(Met-S-O)和右旋异构体(Met-R-O)可以被对应的酶MsrA和MsrB还原[32]。Msrs存在于多种生物中,包括细菌、酵母菌和哺乳动物,其中哺乳动物含有MsrA基因和3个MsrB基因[33]。先前的研究发现,敲除MsrA基因,老龄鼠听力降低,而对青年鼠听力影响较小[34],证明Msrs在神经退行性疾病中起着重要的保护作用。增加日粮中的蛋氨酸,可提高鸭蛋的卵黄重量,并减少肝脂质过氧化[35]。有研究表明,在酸性(pH=6.4)环境中,细胞MsrA基因转录水平增加一倍,但MsrA的蛋白表达量却没有增加[36];缺乏硒元素导致小鼠肝和肾组织中MsrB蛋白和MsrB mRNA的水平大大降低[37],而姜黄素处理后的Wistar大鼠,其SOD、CAT和GSH活性升高,且MsrA的基因表达和蛋白水平显著增加[38]。本研究中,经ATO处理后,在Msrs基因转录方面,MsrA、MsrB1和MsrB3三个基因的mRNA水平均显著增加,呈剂量依赖效应;MsrB1蛋白水平也呈升高趋势,值得注意的是,MsrA蛋白表达水平却降低,与ATO的浓度呈负相关。这与本试验预期不相同,推测可能原因是:高浓度砷影响MsrA蛋白合成酶或调控分子的活性或者MsrA的还原性较MsrB强,MsrA优先消耗;亦或肝在高浓度砷的作用下,产生大量的ROS,MsrA的消耗增加,具体机制还有待研究。
4 结论本研究表明,ATO可诱导鸡肝发生氧化应激,同时通过促进Msrs表达清除ROS,从而减轻肝氧化损伤。
[1] |
罗婷, 孙健雄, 夏科, 等. 土壤砷污染研究综述[J]. 环境与发展, 2017, 29(8): 11–12.
LUO T, SUN J X, XIA K, et al. A research review of arsenic pollution in soil[J]. Inner Mongolia Environmental Sciences, 2017, 29(8): 11–12. (in Chinese) |
[2] | BJØRKLUND G, OLⅡNYK P, LYSIUK R, et al. Arsenic intoxication:general aspects and chelating agents[J]. Arch Toxicol, 2020, 94(6): 1879–1897. DOI: 10.1007/s00204-020-02739-w |
[3] |
袁慧, 陈竞峰, 向建洲, 等. 畜禽配合饲料中砷的污染量及其分析报告[J]. 湖南饲料, 2000(3): 2–3.
YUAN H, CHEN J F, XIANG J Z, et al. Pollution amount of arsenic in livestock and poultry compound feed and its analysis report[J]. Hunan Feed, 2000(3): 2–3. (in Chinese) |
[4] |
游玉萍, 岳伟, 张小琴, 等. 砷铜合金中铜的电解测定[J]. 南方金属, 2008(6): 12–13.
YOU Y P, YUE W, ZHANG X Q, et al. Determination of copper in copper-arsenic alloys by electrolytic gravimetry[J]. Southern Metals, 2008(6): 12–13. (in Chinese) |
[5] | CAI X N, YU L L, CHEN Z, et al. Arsenic trioxide-induced upregulation of miR-1294 suppresses tumor growth in hepatocellular carcinoma by targeting TEAD1 and PIM1[J]. Cancer Biomark, 2020, 28(2): 221–230. DOI: 10.3233/CBM-190490 |
[6] | COCHET C, SIMONET M, CATTIN J, et al. Arsenic trioxide treatment during pregnancy for acute promyelocytic leukemia in a 22-year-old woman[J]. Case Rep Hematol, 2020, 2020: 3686584. |
[7] |
褚海义, 闫贵龙, 岳春旺, 等. 三氧化二砷促进肥育猪生长的研究[J]. 河北畜牧兽医, 2001, 17(2): 14–15.
CHU H Y, YAN G L, YUE C W, et al. Study on the promotion of arsenic trioxide to the growth of finishing pigs[J]. Hebei Animal Husbandry and Veterinary Medicine, 2001, 17(2): 14–15. (in Chinese) |
[8] | OMMATI M M, HEIDARI R, MANTHARI R K, et al. Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring[J]. Chemosphere, 2019, 236: 124325. DOI: 10.1016/j.chemosphere.2019.07.056 |
[9] |
李文珍, 杨洪莉. 浅谈砷污染[J]. 环境保护科学, 1995, 21(3): 57.
LI W Z, YANG H L. Review on arsenic pollution[J]. Environmental Protection Science, 1995, 21(3): 57. (in Chinese) |
[10] | ZENG Q, YI H L, HUANG L Q, et al. Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice[J]. Toxicology, 2019, 411: 122–132. DOI: 10.1016/j.tox.2018.09.010 |
[11] | NGO T C, MAI T V T, PHAM T T, et al. Natural acridones and coumarins as free radical scavengers:mechanistic and kinetic studies[J]. Chemical Physics Letters, 2020, 746: 137312. DOI: 10.1016/j.cplett.2020.137312 |
[12] |
李灵珺, 经鸿宇, 彭西, 等. 蛋氨酸缺乏对雏鸡肝细胞周期的影响[J]. 西华师范大学学报:自然科学版, 2020, 41(1): 17–22.
LI L J, JING H Y, PENG X, et al. Effect of methionine deficiency on hepatic cell cycle of broiler chicken[J]. Journal of China West Normal University:Natural Sciences, 2020, 41(1): 17–22. (in Chinese) |
[13] | REITERER M, SCHMIDT-KASTNER R, MILTON S L. Methionine sulfoxide reductase (Msr) dysfunction in human brain disease[J]. Free Radic Res, 2019, 53(11-12): 1144–1154. DOI: 10.1080/10715762.2019.1662899 |
[14] | LEE B C, DIKIY A, KIM H Y, et al. Functions and evolution of selenoprotein methionine sulfoxide reductases[J]. Biochim Biophys Acta Gen Subj, 2009, 1790(11): 1471–1477. DOI: 10.1016/j.bbagen.2009.04.014 |
[15] | ZHONG G L, WAN F, YAN H, et al. Methionine sulfoxide reductases are related to arsenic trioxide-induced oxidative stress in mouse liver[J]. Biol Trace Elem Res, 2020, 195(2): 535–543. DOI: 10.1007/s12011-019-01881-6 |
[16] | PRENTICE H M, MOENCH I A, RICKAWAY Z T, et al. MsrA protects cardiac myocytes against hypoxia/reoxygenation induced cell death[J]. Biochem Biophys Res Commun, 2008, 366(3): 775–778. DOI: 10.1016/j.bbrc.2007.12.043 |
[17] | KIM K Y, KWAK G H, SINGH M P, et al. Selenoprotein MsrB1 deficiency exacerbates acetaminophen- induced hepatotoxicity via increased oxidative damage[J]. Arch Biochem Biophys, 2017, 634: 69–75. DOI: 10.1016/j.abb.2017.09.020 |
[18] | SHI T R, YANG Y J, ZHANG Z H, et al. Loss of MsrB1 perturbs spatial learning and long-term potentiation/long-term depression in mice[J]. Neurobiol Learn Mem, 2019, 166: 107104. DOI: 10.1016/j.nlm.2019.107104 |
[19] | KWAK G H, KIM H Y. MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways[J]. Arch Biochem Biophys, 2017, 621: 1–5. DOI: 10.1016/j.abb.2017.04.001 |
[20] | BULVIK B E, BERENSHTEIN E, KONIJN A M, et al. Aging is an organ-specific process:changes in homeostasis of iron and redox proteins in the rat[J]. AGE(Dordr), 2012, 34(3): 693–704. |
[21] | ACHILLI C, CIANA A, ROSSI A, et al. Neutrophil granulocytes uniquely express, among human blood cells, high levels of Methionine-sulfoxide-reductase enzymes[J]. J Leukoc Biol, 2008, 83(1): 181–189. DOI: 10.1189/jlb.0707492 |
[22] | CABREIRO F, PICOT C R, FRIGUET B, et al. Methionine sulfoxide reductases:relevance to aging and protection against oxidative stress[J]. Ann N Y Acad Sci, 2006, 1067(1): 37–44. DOI: 10.1196/annals.1354.006 |
[23] | DE LUCA A, SACCHETTA P, NIEDDU M, et al. Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1) promoter[J]. BMC Mol Biol, 2007, 8: 39. DOI: 10.1186/1471-2199-8-39 |
[24] |
高婷, 王子旭, 陈祝茗, 等. ROS介导的氧化应激与自噬[J]. 中国畜牧兽医, 2018, 45(3): 656–662.
GAO T, WANG Z X, CHEN Z M, et al. Oxidative stress and autophagy mediated by Reactive Oxygen Species[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(3): 656–662. (in Chinese) |
[25] | XU T T, LI H, DAI Z, et al. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice[J]. Aging (Albany NY), 2020, 12(7): 6401–6414. |
[26] | ARUOMA O I. Free radicals, oxidative stress, and antioxidants in human health and disease[J]. J Am Oil Chem Soc, 1998, 75(2): 199–212. DOI: 10.1007/s11746-998-0032-9 |
[27] | MU M Y, ZHAO H J, WANG Y, et al. Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy[J]. Ecotoxicol Environ Saf, 2019, 185: 109678. DOI: 10.1016/j.ecoenv.2019.109678 |
[28] | SARKAR S, MUKHERJEE S, CHATTOPADHYAY A, et al. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide[J]. Ecotoxicol Environ Saf, 2017, 135: 173–182. DOI: 10.1016/j.ecoenv.2016.09.025 |
[29] | CHEN H M, LIU G Y, QIAO N, et al. Toxic effects of arsenic trioxide on spermatogonia are associated with oxidative stress, mitochondrial dysfunction, autophagy and metabolomic alterations[J]. Ecotoxicol Environ Saf, 2020, 190: 110063. DOI: 10.1016/j.ecoenv.2019.110063 |
[30] |
王丛丛, 孙叶娴, 宁芷君, 等. 三氧化二砷对肉鸡原代肝细胞氧化应激和甲硫氨酸亚砜还原酶基因表达的影响[J]. 中国兽医科学, 2018, 48(3): 379–385.
WANG C C, SUN Y X, NING Z J, et al. Effects of arsenic trioxide on the oxidative stress and expression of methionine sulfoxide reductases' genes in chicken primary hepatocytes[J]. Chinese Veterinary Science, 2018, 48(3): 379–385. (in Chinese) |
[31] | ALQUDAH S, CHERTOFF M, DURHAM D, et al. Methionine sulfoxide reductase a knockout mice show progressive hearing loss and sensitivity to acoustic trauma[J]. Audiol Neurootol, 2018, 23: 20–31. DOI: 10.1159/000488276 |
[32] | RUAN D, FOUAD A M, FAN Q L, et al. Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders[J]. Br J Nutr, 2018, 119(2): 121–130. DOI: 10.1017/S0007114517003397 |
[33] | KIM H Y. The methionine sulfoxide reduction system:selenium utilization and methionine sulfoxide reductase enzymes and their functions[J]. Antioxid Redox Signal, 2013, 19(9): 958–969. DOI: 10.1089/ars.2012.5081 |
[34] | TARRAGO L, OHEIX E, PÉTERFI Z, et al. Monitoring of methionine sulfoxide content and methionine sulfoxide reductase activity[J]. Methods Mol Biol, 2018, 1661: 285–299. |
[35] | TARRAGO L, GLADYSHEV V N. Recharging oxidative protein repair:catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates[J]. Biochemistry (Mosc), 2012, 77(10): 1097–1107. DOI: 10.1134/S0006297912100021 |
[36] | ZHANG C, JIA P P, JIA Y Y, et al. Anoxia, acidosis, and intergenic interactions selectively regulate methionine sulfoxide reductase transcriptions in mouse embryonic stem cells[J]. J Cell Biochem, 2011, 112(1): 98–106. DOI: 10.1002/jcb.22876 |
[37] | MOSKOVITZ J, STADTMAN E R. Selenium-deficient diet enhances protein oxidation and affects methionine sulfoxide reductase (MsrB) protein level in certain mouse tissues[J]. Proc Natl Acad Sci U S A, 2003, 100(13): 7486–7490. DOI: 10.1073/pnas.1332607100 |
[38] | MESHKIBAF M H, MALEKNIA M, NOROOZI S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund's adjuvant inflammation-induced male rats[J]. J Inflamm Res, 2019, 12: 241–249. DOI: 10.2147/JIR.S212577 |