2. 西南大学医学研究院 免疫学研究中心, 重庆 402460
2. Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
鸭传染性浆膜炎是由鸭疫里默氏菌(Riemerella anatipestifer,R. anatipestifer)引起的一种急性、败血性传染病,该病发病率和死亡率均很高,而R. anatipestifer也已成为严重危害养鸭业的主要病原之一[1-5]。由于R. anatipestifer血清型众多,且各血清型菌株间缺少交叉免疫保护,耐药性严重[6-8],目前,疫苗免疫及药物防治鸭传染性浆膜炎均遇到了不同的困难,R. anatipestifer的致病机制及新的防治措施是当前研究热点[9-12]。R. anatipestifer可以逃避宿主补体系统的攻击,但其机制尚不清楚。
为成功感染宿主,病原微生物需要采取有效策略逃避或抵抗天然免疫系统的攻击。补体系统由30多种蛋白组成,是天然免疫系统的重要组成部分,在抵抗病原微生物入侵、炎症发生、细胞凋亡和免疫复合物清除以及增强适应性免疫反应等方面发挥了重要作用[13]。病原微生物进入机体后,补体系统可以通过3种途径激活:经典途径(classical pathway,CP)、凝集素途径(lectin pathway,LP)和旁路途径(alternate pathway,AP)。激活后进行主要补体分子C3、C5的裂解以及攻膜复合物(membrane attack complex,MAC)的组装,最终裂解靶细胞[14]。
病原微生物(包括R. anatipestifer)能够采取相应的措施抵御补体介导的杀伤和/或吞噬作用,其中一种策略是捕获宿主补体调节因子,例如C4结合蛋白(C4b-binding protein,C4BP)、补体因子H和玻连蛋白[15-24]。C4BP是一种约为570 ku的糖蛋白,作为血浆中含短同源重复序列(short consensus repeats,SCR)的可溶性补体调节因子,由6~ 8条α链和1条β链聚合而成,C4BP主要通过α链(C4BPα)SCR 1-3与C4b结合以干扰C3转化酶C4b2a的组装与衰变,并作为I因子的辅助因子抑制补体系统CP激活[25-27]。在前期研究中,本课题组成功对鸭C4BPα基因进行了克隆、表达并制备了相应的多克隆抗体[28]。
本研究以鸭C4BPα作为诱饵蛋白进行His pull-down及LC-MS/MS蛋白质谱鉴定,筛选与鸭C4BP可能发生互作的R. anatipestifer外膜蛋白,并且将各候选蛋白进行克隆、原核表达及多克隆抗体制备,利用Far-western blot进一步验证与鸭C4BP发生互作的R. anatipestifer外膜蛋白。同时针对候选蛋白及C4BPα各功能结构域进行克隆及原核表达,利用Far-western blot明确互作位点,并对补体因子C3b、C4b及C4BP在R. anatipestifer表面沉积情况进行检测,验证候选蛋白的功能。研究结果对于进一步阐明R. anatipestifer致病机制具有重要意义,同时,也将为后续开发针对R. anatipestifer新的疫苗靶点提供理论依据。
1 材料与方法 1.1 材料1.1.1 试验动物 10日龄健康雏鸭(樱桃谷鸭)购自重庆永健生物技术有限公司。6~8周龄SPF级雌性BALB/c小鼠购自西南医科大学实验动物中心。
1.1.2 菌株和载体 大肠杆菌DH5α和BL21(DE3)、R. anatipestifer AF株、原核表达载体pCold-TF均由西南大学动物医学院动物疫病防控与兽医公共卫生研究室保存。
1.1.3 主要试剂 Premix TaqTM DNA聚合酶、限制性内切酶BamH I和Hind Ⅲ及DNA Ligation Kit等购自宝日医生物技术(北京)有限公司;Bacterial outer membrane protein extraction kit购自BestBio生物公司;Ni-NTA SefinoseTM Resin试剂盒、EZ-10柱式DNA胶回收试剂盒、SanPrep柱式质粒DNA小量抽提试剂盒等购自生工生物工程(上海)股份有限公司;细菌基因组DNA提取试剂盒购自天根生化科技(北京)有限公司;HRP标记山羊抗鼠IgG和FITC标记山羊抗鼠IgG等购自Sigma公司;鼠抗鸭C4BPα、鼠抗C3b和鼠抗C4b多克隆抗体由西南大学动物医学院动物疫病防控与兽医公共卫生研究室制备并保存;健康鸭血清(normal duck serum,NDS)采自10日龄健康鸭。
1.2 方法1.2.1 R. anatipestifer外膜蛋白的提取 将-80 ℃保存的R. anatipestifer菌种划线接种于巧克力营养琼脂平板,37 ℃培养至单菌落形成;挑取单菌落接种于LB液体培养基中,37 ℃振荡培养至饱和;细菌悬液于4 ℃条件下5 000 r·min-1离心15 min,菌泥用0.01 mol·L-1 PBS(pH7.4)重悬洗涤2次。菌泥用Bacterial outer membrane protein extraction kit并按照操作说明提取R. anatipestifer外膜蛋白,-80 ℃保存备用。
1.2.2 His pull-down试验筛选R. anatipestifer外膜蛋白 利用Ni-NTA SefinoseTM Resin试剂盒进行His pull-down,主要步骤:用1.0 mL结合缓冲液溶解4.0 mg重组融合蛋白C4BPα,加样于亲和柱,控制0.1 mL·min-1流速,待样品液全部进入亲和凝胶中,关闭进样阀,室温静置30 min;用10倍柱床体积的洗涤缓冲液按0.2 mL·min-1流速洗涤;R. anatipestifer外膜蛋白溶液1.0 mL加样于柱中,控制0.1 mL·min-1流速,待样品液全部进入亲和凝胶中,关闭进样阀,室温静置30 min;用10倍柱床体积的洗涤缓冲液按0.2 mL·min-1流速洗涤后,用2倍柱床体积的洗脱缓冲液按0.2 mL·min-1流速进行洗脱;收集洗脱溶液,透析除咪唑,真空冻干,-20 ℃保存。
1.2.3 蛋白质谱鉴定R. anatipestifer外膜蛋白 蛋白质谱鉴定由武汉金开瑞生物工程有限公司完成。蛋白样品中加入终浓度为10 mmol·L-1的二硫苏糖醇还原蛋白质;加入终浓度为55 mmol·L-1的碘乙酸铵、1 μg的胰蛋白酶,过夜酶解8~16 h;酶解产生的多肽用C18柱子除盐,除盐后多肽用15 μL Loading Buffer(0.1%甲酸,3%乙腈)溶解;处理后多肽加入到LC-MS/MS(ekspertTM nano LC;AB Sciex TripleTOFTM 5600-plus)进行分析,然后将原始下机数据直接提交到与AB SCIEX Triple TOFTM 5600 plus质谱仪连接的Proteinpilot软件中进行检索。判定标准:在可信度conf≥95%,Unique peptides≥1时,分析检测样品中所含蛋白种类与数量。
1.2.4 候选蛋白编码基因原核表达及多克隆抗体制备 通过His pull-down及LC-MS/MS质谱分析,并与NCBI中R. anatipestifer蛋白数据库比对,筛选出3个候选外膜蛋白,分别命名为ECE-1、SODs及Omp62。为制备候选蛋白的多克隆抗体,以R. anatipestifer AF株细菌基因组DNA为模板进行PCR扩增,以质粒pCold-TF构建原核重组表达载体,以E. coli BL21 (DE3)为表达宿主菌进行原核表达。PCR特异性引物见表 1,由武汉金开瑞生物工程有限公司合成。50.0 μL的PCR体系包括25.0 μL 2×Premix Taq,10 μmol·L-1上、下游引物,100.0 ng模板DNA,剩余用双蒸水补足。PCR在Bio-RAD T100TMThermal Cycler进行,程序:95 ℃预变性5 min;在95 ℃变性30 s、54 ℃退火30 s和72 ℃延伸60 s或150 s条件下反应35个循环;延伸10 min。原核表达产物经SDS-PAGE,考马斯亮蓝R-250染色及脱色液脱色,在无菌条件下重组蛋白凝胶条带用灭菌生理盐水充分洗涤、烘干、研磨,用适量生理盐水制备的匀浆即为免疫抗原。6~8周龄BALB/c小鼠背部皮下分点注射免疫抗原,加强免疫2次,每次免疫间隔14 d;第2次加强免疫后14 d,摘眼球采血并分离血清,以亲和层析纯化的重组蛋白为抗原,利用间接ELISA检测多克隆抗体效价及使用Western blot检测抗体特异性。
![]() |
表 1 各候选蛋白编码基因引物序列 Table 1 The primer sequences of the coding genes of candidate proteins |
1.2.5 Far-western blot鉴定R. anatipestifer与C4BP的相互作用 利用Far-western blot鉴定与C4BP发生相互作用的R. anatipestifer外膜蛋白,步骤参照文献[29],并进行适当改进。重组TF-ECE-1、TF-SODs及TF-Omp62与凝血酶于37 ℃水浴孵育4 h后,进行非变性SDS-PAGE,转印至聚偏二氟乙烯(polyvinylidene difluoride,PVDF)膜,5%脱脂奶粉室温封闭l h,依次与10% NDS于37 ℃孵育4 h、鼠抗鸭C4BPα于4 ℃孵育过夜及HRP标记山羊抗鼠IgG于室温孵育1 h,ECL显色,拍照记录。
1.2.6 R. anatipestifer外膜蛋白ECE-1与C4BP相互作用的位点鉴定 为进一步明确ECE-1蛋白与C4BP互作位点,针对ECE-1各功能结构域(ECE-1-N端、ECE-1-C端、ECE-1688-2022、ECE-11-1713及ECE-1688-1713)及C4BPα各SCR区(SCR 1、SCR 2、SCR 3、SCR 1-2、SCR 2-3、SCR 1-3及SCR 4-6)进行克隆、原核表达,并用Far-western blot鉴定ECE-1与C4BP相互作用关键位点。由于ECE-1-N端和ECE-11-1713蛋白条带与TF标签大小相近,因此将这两个片段克隆至pET-32a(+)进行表达,其余片段克隆至pCold-TF进行表达。试验中,用凝血酶进行酶切以去除表达蛋白的标签序列,同时以标签蛋白为阴性对照。
Far-western blot鉴定ECE-1互作位点:将原核表达的ECE-1全长及部分片段经凝血酶处理,非变性SDS-PAGE,转印至PVDF膜,5%脱脂奶粉室温封闭l h,依次与10% NDS于37 ℃孵育4 h、鼠抗鸭C4BPα抗体于4 ℃孵育过夜,HRP标记山羊抗鼠IgG于室温孵育1 h,ECL显色,拍照记录。
Far-western blot鉴定C4BP互作位点:将凝血酶处理的ECE-1融合蛋白经非变性SDS-PAGE,转印至PVDF膜,5%脱脂奶粉室温封闭l h,依次与去除融合标签序列的SCR蛋白于37 ℃孵育1 h、鼠抗鸭C4BPα抗体于4 ℃过夜孵育,HRP标记山羊抗鼠IgG于室温孵育1 h,ECL显色,拍照记录。1.2.7 R. anatipestifer菌体表面补体因子的沉积检测R. anatipestifer AF株细菌经巧克力营养琼脂培养基复苏,单菌落于LB培养基中培养至对数生长中期,4 ℃离心收集菌泥,用0.01 mol·L-1 pH7.4 PBS洗涤3次,制备OD600 nm≈0.5的菌悬液。菌悬液离心后的菌泥用等体积NDS重悬,37 ℃孵育1 h;用0.01 mol·L-1 pH7.4 PBS洗涤3次后的菌泥用3 mol·L-1 KSCN溶液重悬,室温孵育10 min后10 000 r·min-1离心3 min,上清即为待检样品[30]。利用ELISA方法检测样品中补体因子C3b、C4b及C4BP含量。将待检样品用0.02 mol·L-1 pH9.6碳酸盐缓冲液稀释后于4 ℃过夜包被聚苯乙烯酶标板,5%脱脂奶粉室温封闭1 h,鼠抗补体因子血清4 ℃作用过夜,HRP标记山羊抗鼠IgG于37 ℃孵育1 h,TMB避光显色15 min,2 mol·L-1 H2SO4终止反应后测定OD450 nm值。
为了测定ECE-1抗体对补体因子C3b、C4b及C4BP在R. anatipestifer菌体表面沉积的影响,将菌悬液离心后的菌泥与一定浓度的鸡源ECE-1抗体(由本实验室制备保存)于37 ℃孵育1 h,期间每10 min混匀一次,用缓冲液(2 mmol·L-1 MgCl2,50 mmol·L-1 Tris,100 mmol·L-1 NaCl,pH 7.5)洗涤3次,再与NDS作用,制备样品用于ELISA检测。
补体因子沉积以ELISA的OD450 nm值表示。试验数据均由3次独立试验得出,数据统计为“平均值±标准差”,利用Student’s t检验统计各组数据,P < 0.05为差异显著。
2 结果 2.1 与C4BP互作的R. anatipestifer候选外膜蛋白的筛选以鸭C4BPα为诱饵蛋白对R. anatipestifer AF株细菌外膜蛋白进行His pull-down及LC-MS/MS蛋白质谱鉴定,获得二级谱图数为22 540,其中解析的二级谱图数为88、肽段数为56条、潜在直接或间接相互作用的蛋白16个。在16个蛋白中,唯一肽段数为1、2、3和大于3的蛋白数分别为10、2、2和2个。根据肽段覆盖率、蛋白鉴定得分、蛋白定位及相关功能综合分析,筛选出与鸭C4BPα可能发生互作的候选蛋白3个,分别命名为ECE-1、SODs及Omp62(表 2)。
![]() |
表 2 质谱鉴定与C4BPα发生互作的靶蛋白 Table 2 Target proteins interacting with C4BPα analyzed by mass spectrometry |
ECE-1、SODs及Omp62这3种候选蛋白编码基因经PCR扩增、测序正确后,连接到原核表达载体pCold-TF上,利用pCold-TF载体通用引物进行PCR鉴定,pCold-TF阴性对照为215 bp,3个目的片段大小与预期一致(图 1)。将构建的重组表达载体转化E.coli BL21(DE3),IPTG诱导产物经SDS-PAGE检测,结果显示,重组融合蛋白与预期大小一致(图 2)。重组融合蛋白经SDS-PAGE,蛋白凝胶抗原免疫小鼠制备抗血清,间接ELISA检测的抗体效价大于1:6 400(表 3),Western blot检测结果显示抗血清的特异性良好(图 3)。
![]() |
M.DNA相对分子质量标准;1. pCold-TF;2. pCold-TF-ECE-1;3. pCold-TF-SODs;4. pCold-TF;5. pCold-TF;6.pCold-TF-Omp62 M. DL2000 DNA marker; 1. pCold-TF; 2. pCold-TF-ECE-1; 3. pCold-TF-SODs; 4. pCold-TF; 5. pCold-TF; 6. pCold-TF-Omp62 图 1 重组表达载体pCold-TF-ECE-1、pCold-TF-SODs及pCold-TF-Omp62 PCR鉴定 Fig. 1 Identification of recombinant expression vectors of pCold-TF-ECE-1, pCold-TF-SODs and pCold-TF-Omp62 by PCR |
![]() |
M.双色预染蛋白Marker;1. pCold-TF-ECE-1/BL21未诱导;2. pCold-TF/BL21空质粒诱导;3. pCold-TF-ECE-1/BL21诱导;4. pCold-TF-SODs/BL21未诱导;5. pCold-TF/BL21空质粒诱导;6. pCold-TF-SODs/BL21诱导;7. pCold-TF-Omp62/BL21未诱导;8. pCold-TF/BL21空质粒诱导;9. pCold-TF-Omp62/BL21诱导。三角形代表各蛋白目的条带 M. Two-color pre-stained protein Marker; 1. Non-induced pCold-TF-ECE-1/BL21; 2. Induced pCold-TF/BL21; 3. Induced pCold-TF-ECE-1/BL21; 4. Non-induced pCold-TF-SODs/BL21; 5. Induced pCold-TF/BL21; 6. Induced pCold-TF-SODs/BL21; 7. Non-induced pCold-TF-Omp62/BL21; 8. Induced pCold-TF/BL21; 9. Induced pCold-TF-Omp62/BL21. Triangle refer to the targeted bands of 3 proteins 图 2 pCold-TF-ECE-1、pCold-TF-SODs及pCold-TF-Omp62重组表达SDS-PAGE分析 Fig. 2 Identification of pCold-TF-ECE-1, pCold-TF-SODs and pCold-TF-Omp62 by SDS-PAGE |
![]() |
表 3 ECE-1、SODs及Omp62多克隆抗体ELISA结果 Table 3 ELISA results of polyclonal antibodies of ECE-1, SODs and Omp62 |
![]() |
A. ECE-1多克隆抗体特异性鉴定;B. SODs多克隆抗体特异性鉴定;C. Omp62多克隆抗体特异性鉴定。1. ECE-1;2. TF标签;3. TF标签;4. SODs;5. Omp62;6. TF标签。三角形代表各多克隆抗体;正方形代表TF标签 A. Identification of the specificity of polyclonal antibody of ECE-1; B. Identification of the specificity of polyclonal antibody of SODs; C. Identification of the specificity of polyclonal antibody of Omp62. 1. ECE-1; 2. TF tag; 3. TF tag; 4. SODs; 5. Omp62; 6. TF tag. Triangles refer to 3 polyclonal antibodies; Squares refer to TF tag 图 3 Western blot鉴定ECE-1、SODs及Omp62多克隆抗体特异性 Fig. 3 The specificity of polyclonal antibodies of ECE-1, SODs and Omp62 identified by Western blot |
原核表达的重组融合蛋白经凝血酶处理后进行Far-western blot,ECE-1经SDS-PAGE后转膜,依次10% NDS、鼠抗鸭C4BPα抗体和HRP标记山羊抗鼠IgG作用,ECL显色,在70~100 ku间有单一条带,而pCold-TF标签蛋白(~52 ku)、SODs(~18 ku)及Omp62(~23 ku)均无条带(图 4)。以上结果表明,ECE-1蛋白能与鸭C4BP互作。
![]() |
图 4 Far-western blot鉴定ECE-1、SODs及Omp62与C4BP的相互作用 Fig. 4 The interaction between ECE-1, SODs, Omp62 and C4BP identified by Far-western blot |
利用Far-western blot鉴定ECE-1全长、ECE-1-N端、ECE-1-C端、ECE-1688-2022、ECE-11-1713及ECE-1688-1713与C4BP相互作用的位点。结果显示,ECE-1全长组出现目的条带(~74 ku),而ECE-1-C端(~29 ku)、ECE-1-N端(~50 ku)、ECE-11-1713(~62 ku)、ECE-1688-2022(~48 ku)及ECE-1688-1713(~37 ku)组均未检测到目的条带,pCold-TF和pET32a(+)对照组成立(图 5)。说明仅ECE-1全长能与C4BP发生相互作用。
![]() |
M.双色预染蛋白Marker;1. pCold-TF;2. ECE-1全长;3. ECE-1-C端;4. ECE-1-N端;5. pCold-TF;6. ECE-1688-1713;7. ECE-1688-2022;8. ECE-11-1713;9. pET32a(+);10. ECE-1-N端;11. pET32a(+)。箭头指向ECE-1全长组目的条带 M. Two-color pre-stained protein Marker; 1. pCold-TF; 2. Full-length of ECE-1; 3. C-terminus of ECE-1; 4. N-terminus of ECE-1; 5. pCold-TF; 6. ECE-1688-1713; 7. ECE-1688-2022; 8. ECE-11-1713; 9. pET32a(+); 10. N-terminus of ECE-1; 11. pET32a(+). Arrow refers to target band of full-length of ECE-1 图 5 Far-western blot验证C4BP与ECE-1结合区域 Fig. 5 The binding domains between C4BP and ECE-1 verified by Far-western blot |
利用Far-western blot鉴定C4BPα各SCR区(SCR 1、SCR 2、SCR 3、SCR 1-2、SCR 2-3、SCR 1-3及SCR 4-6)与ECE-1相互作用的位点。结果显示,SCR 2、SCR 3、SCR 1-2、SCR 2-3、SCR 1-3、SCR 1-4组均出现目的条带(~74 ku),SCR 4-6组未检测到目的条带,pCold-TF对照组成立(图 6)。说明ECE-1与鸭C4BP的结合区域位于鸭C4BPα的SCR 2和SCR 3。
![]() |
箭头指向各组目的条带 Arrows refer to target bands of each group 图 6 Far-western blot验证ECE-1与鸭C4BPα结合区域 Fig. 6 The binding domains between ECE-1 and C4BPα verified by Far-western blot |
为探究ECE-1抗体对补体因子C3b、C4b及C4BP在R. anatipestifer表面沉积作用的影响,鸡源ECE-1抗体预先与R. anatipestifer孵育后,与不同稀释度(1.562 5%、3.125%、6.25%、12.5%和25%)NDS孵育,利用Elution buffer将R. anatipestifer表面沉积蛋白进行洗脱,通过ELISA检测洗脱液中C3b、C4b及C4BP含量。结果显示,ECE-1抗体组C3b、C4b沉积量均大于其他组,与对照组相比,当NDS稀释度为3.125%时,ECE-1抗体能够显著促进补体因子C3b、C4b在R. anatipestifer表面的沉积作用(P < 0.05,图 7A、B);随着血清浓度增加,ECE-1抗体组C4BP沉积量逐渐增加,与对照组相比,增加当NDS浓度为6.25%时,ECE-1抗体能够显著抑制C4BP在R. anatipestifer表面的沉积作用(P < 0.05,图 7C)。
![]() |
A.C3b沉积量测定;B.C4b沉积量测定;C.C4BP沉积量测定。所有数据均由3次独立试验得出,以“平均值±标准差”表示,*表示差异显著(P < 0.05) A. Determination of C3b deposition; B. Determination of C4b deposition; C. Determination of C4BP deposition. All data was obtained from 3 independent experiments, data were presented as the "mean±SD". The asterisk (*) shows the statistically significant difference (P < 0.05) 图 7 补体因子沉积测定 Fig. 7 Determination of complement deposition |
R. anatipestifer感染是危害养鸭业最为严重的细菌性疾病之一,主要危害2~8周龄雏鸭[1]。由于R. anatipestifer血清型多且复杂,各血清型菌株间缺少交叉免疫保护,同一鸭群可存在多个血清型菌株混合感染,因此, 现有疫苗在生产中应用受到限制;R. anatipestifer容易产生耐药性,使得化学药物在临床中对该病的防治效果较差[31-34],同时随着我国对环境保护工作的日益重视以及对兽用抗生素类药物管控越来越严格,因此亟需阐明R. anatipestifer致病机制,才能找到新的防治措施。病原性细菌逃避补体系统的免疫清除是引起宿主发病的先决条件。对于R. anatipestifer感染也同样如此,前期研究发现,R. anatipestifer可以招募宿主补体调节因子C4BP, 并与其发生相互作用[28]。在此基础之上,本研究以鸭C4BPα作为诱饵蛋白进行His pull-down及LC-MS/MS蛋白质谱鉴定,筛选出3个与鸭C4BP可能发生互作的R. anatipestifer候选外膜蛋白,即ECE-1、SODs和Omp62,利用Far-wes-tern blot验证仅ECE-1能与鸭C4BP发生互作,并且明确了两者相互作用位点;补体因子沉积试验结果表明,ECE-1抗体能够抑制C4BP在R. anatipestifer表面的沉积作用,进一步说明ECE-1能与C4BP发生相互作用。
ECE-1是一种新型锌离子结合金属蛋白酶,属于M13肽酶家族[35]。为探究与鸭C4BP互作的ECE-1多肽结构域,本研究对ECE-1 N端、ECE-1 C端及部分截短片段进行克隆及原核表达,并应用Far-western blot进行验证,结果表明,只有完整的ECE-1可以与鸭C4BP相互作用,而各截短的片段均未发现与C4BP的结合。分析原因可能是ECE-1是一种金属蛋白酶,而酶的本质是由活细胞产生的、对其底物具有高度特异性的蛋白质或RNA[36],其能否正常发挥作用取决于酶活性中心的结合基团、催化基团和空间结构[37],ECE-1的生物学活性可能依赖于该蛋白分子的一级结构或空间结构的完整性,若分子变性或亚基解聚都可能导致酶活性丧失。因此,在本试验中,仅当ECE-1在完整状态下时才能与鸭C4BP发生结合。
部分病原性细菌在进入宿主体内后,为逃避宿主补体系统的免疫清除,通过招募不同补体系统调节因子来干扰补体系统激活进而得以存活[38],而C4BP就是其中之一。C4BP与C4b结合区域主要位于C4BPα的SCR 1-3上,C4BP-C4b的相互作用能够干扰C3转化酶(C4b2a)的组装和降解,并作为I因子的辅因子抑制CP激活[25-26]。本研究中,鸭C4BPα和人C4BPα之间的差异主要位于C端疏水性寡聚化结构域的37 aa。尽管不同病原性细菌可以募集并结合C4BP,但结合区域却不同。淋病奈瑟氏菌只能结合SCR 1,但大多数细菌可以结合多个SCR,例如流感嗜血杆菌(SCR 2和SCR 7)、肺炎链球菌(SCR 1-2和SCR 8)、假结核耶尔森菌(SCR 6-8)、卡他莫拉菌(SCR 2、SCR 5和SCR 7)及脑膜炎奈瑟菌(SCR 2、SCR 5和SCR 7)[17, 39-43]。本研究针对C4BPα各SCR区进行克隆及原核表达,以验证ECE-1与鸭C4BP的结合区域,结果表明,结合区位于C4BPα的SCR 2和SCR 3。
宿主补体调节因子可以抑制补体系统的过度激活,保护宿主自身免受补体攻击,但病原微生物同样可以采用这种策略来逃避补体介导的杀伤作用。本研究发现,R. anatipestifer进行免疫逃避可能通过ECE-1招募C4BP得以实现,而C4BP又作为CP和LP补体抑制剂,可有效抑制C3转化酶的形成,阻断整个补体系统激活过程。因此,本研究利用ECE-1特异性抗体直接阻断ECE-1与C4BP的结合,测定ECE-1对补体因子C3b、C4b及C4BP在R. anatipestifer表面沉积作用的影响,进一步验证ECE-1与C4BP的互作关系。试验结果表明,ECE-1抗体在一定血清浓度下,虽然能够促进C3b、C4b沉积于R. anatipestifer表面,但却抑制C4BP沉积于R. anatipestifer表面,间接说明ECE-1能够与C4BP发生互作。在相关研究中,肺炎链球菌的表面蛋白PspA或PspC靶向缺失后,C4BP沉积显著下降[44];假结核耶尔森氏菌的外膜蛋白Ail可通过招募C4BP逃避补体攻击,但对于Ail缺失的菌株,C4BP于细菌表面的沉积量显著降低[45]。通过对靶基因定向缺失能够更加直观地反映靶蛋白的生物学功能,但由于前期试验基础的限制,通过利用特异性抗体阻断靶蛋白与C4BP结合的方式,从另一角度间接探究并证实ECE-1能够通过结合C4BP,抑制C3b、C4b在R. anatipestifer表面的沉积。
4 结论本研究成功筛选到1个与鸭C4BP结合的R. anatipestifer外膜蛋白ECE-1;只有ECE-1全长能与鸭C4BP互作,而鸭C4BP与ECE-1的相互作用区域位于C4BPα的SCR 2和SCR 3;在一定血清浓度下,ECE-1抗体虽然能够促进C3b、C4b沉积于R. anatipestifer表面,但却抑制C4BP沉积于R. anatipestifer表面,间接说明ECE-1能够与C4BP发生互作。本研究为进一步阐明R. anatipestifer免疫逃逸机制奠定了基础。
[1] | LI J X, TANG Y, GAO J Y, et al. Riemerella anatipestifer infection in chickens[J]. Pak Vet J, 2011, 31(1): 65–69. |
[2] |
覃宗华, 蔡建平, 吕敏娜, 等. 鸭疫里默氏菌病和大肠杆菌病鉴别诊断双重PCR方法的建立和应用[J]. 畜牧兽医学报, 2008, 39(4): 517–521.
QIN Z H, CAI J P, LV M N, et al. Establishment and application of dulex PCR assay for differentiating Riemerella anatipestifer and Escherichia coli infection in ducks[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39(4): 517–521. DOI: 10.3321/j.issn:0366-6964.2008.04.024 (in Chinese) |
[3] | GONG Y S, YANG Y S, CHEN Y, et al. Characteri-zation of the hemolytic activity of Riemerella anatipestifer[J]. Microbiology, 2020, 166(5): 436–439. DOI: 10.1099/mic.0.000896 |
[4] | CAMMAYO P L T, FERNANDEZ-COLORADO C P, FLORES R A, et al. IL-17A treatment influences murine susceptibility to experimental Riemerella anatipestifer infection[J]. Dev Comp Immunol, 2020, 106: 103633. DOI: 10.1016/j.dci.2020.103633 |
[5] | PHONVISAY M, LEE J W, LIOU J J, et al. Evaluation of long-term antibody response and cross-serotype reaction in ducks immunised with recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN[J]. J Vet Res, 2019, 63(4): 543–548. |
[6] | PATHANASOPHON P, PHUEKTES P, TANTICHAROENYOS T, et al. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand[J]. Avian Pathol, 2002, 31(3): 267–270. DOI: 10.1080/03079450220136576 |
[7] |
张先福, 韦强, 鲍国连, 等. 黄连汤对鸭疫里默氏菌的抑菌作用及对菌体形态的影响[J]. 畜牧兽医学报, 2010, 41(4): 489–494.
ZHANG X F, WEI Q, BAO G L, et al. Inhibition activity of Coptidis rhizoma Dicoction against Riemerella anatipestifer and its effects on morphology of Bacterial body[J]. Acta Veterinaria et Zootechnica Sinica, 2010, 41(4): 489–494. (in Chinese) |
[8] | TSAI H J, LIU Y T, TSENG C S, et al. Genetic variation of the ompA and 16S rRNA genes of Riemerella anatipestifer[J]. Avian Pathol, 2005, 34(1): 55–64. DOI: 10.1080/03079450400025471 |
[9] | CHEN Z C, WANG X L, REN X M, et al. Riemerella anatipestifer GldM is required for bacterial gliding motility, protein secretion, and virulence[J]. Vet Res, 2019, 50(1): 43. DOI: 10.1186/s13567-019-0660-0 |
[10] | XU X X, XU Y H, MIAO S, et al. Evaluation of the protective immunity of Riemerella anatipestifer OmpA[J]. Appl Microbiol Biotechnol, 2020, 104(3): 1273–1281. |
[11] | FLORES R A, FERNANDEZ-COLORADO C P, AFRIN F, et al. Riemerella anatipestifer infection in ducks induces IL-17A production, but not IL-23p19[J]. Sci Rep, 2019, 9(1): 13269. |
[12] | YANG S F, DONG W W, LI G M, et al. A recombinant vaccine of Riemerella anatipestifer OmpA fused with duck IgY Fc and Schisandra chinensis polysaccharide adjuvant enhance protective immune response[J]. Microb Pathog, 2019, 136: 103707. DOI: 10.1016/j.micpath.2019.103707 |
[13] | WALPORT M J. Complement[J]. N Engl J Med, 2001, 344(14): 1058–1066. DOI: 10.1056/NEJM200104053441406 |
[14] | SHARMA S, BHATNAGAR R, GAUR D. Bacillus anthracis Poly-γ-D-Glutamate capsule inhibits opsonic phagocytosis by impeding complement activation[J]. Front Immunol, 2020, 11: 462. DOI: 10.3389/fimmu.2020.00462 |
[15] | LAMBRIS J D, RICKLIN D, GEISBRECHT B V. Complement evasion by human pathogens[J]. Nat Rev Microbiol, 2008, 6(2): 132–142. DOI: 10.1038/nrmicro1824 |
[16] | ATTIA A S, RAM S, RICE P A, et al. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade[J]. Infect Immun, 2006, 74(3): 1597–1611. DOI: 10.1128/IAI.74.3.1597-1611.2006 |
[17] | KRAICZY P, WVRZNER R. Complement escape of human pathogenic bacteria by acquisition of complement regulators[J]. Mol Immunol, 2006, 43(1-2): 31–44. DOI: 10.1016/j.molimm.2005.06.016 |
[18] | HALLSTROM T, BLOM A M, ZIPFEL P F, et al. Nontypeable Haemophilus influenzae protein E binds vitronectin and is important for serum resistance[J]. J Immunol, 2009, 183(4): 2593–2601. DOI: 10.4049/jimmunol.0803226 |
[19] | XIA X J, QIN W H, ZHU H L, et al. How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses[J]. J Microbiol Immunol Infect, 2019, 52(4): 516–525. DOI: 10.1016/j.jmii.2019.03.003 |
[20] | GHOSH P. Variation, indispensability, and masking in the M protein[J]. Trends Microbiol, 2018, 26(2): 132–144. DOI: 10.1016/j.tim.2017.08.002 |
[21] | MORENO-TORRES A, MALVIDO-JIMÉNEZ I R, DE LA PEÑA-MOCTEZUMA A, et al. Culture-attenuated pathogenic Leptospira lose the ability to survive to complement-mediated-killing due to lower expression of factor H binding proteins[J]. Microbes Infect, 2019, 21(8-9): 377–385. DOI: 10.1016/j.micinf.2019.03.001 |
[22] | GEORGIEVA M, KAGEDAN L, LU Y J, et al. Antigenic variation in Streptococcus pneumoniae PspC promotes immune escape in the presence of variant-specific immunity[J]. mBio, 2018, 9(2): e00264–18. |
[23] | MARCINKIEWICZ A L, LIEKNINA I, KOTELOVICA S, et al. Eliminating factor H-binding activity of Borrelia burgdorferi CspZ combined with virus-Like particle conjugation enhances its efficacy as a Lyme Disease vaccine[J]. Front Immunol, 2018, 9: 181. DOI: 10.3389/fimmu.2018.00181 |
[24] | SIKORSKI P M, COMMODARO A G, GRIGG M E. Toxoplasma gondii recruits factor H and C4b-binding protein to mediate resistance to serum killing and promote parasite persistence in vivo[J]. Front Immunol, 2020, 10: 3105. DOI: 10.3389/fimmu.2019.03105 |
[25] | SCHARFSTEIN J, FERREIRA A, GIGLI I, et al. Human C4-binding protein.I.Isolation and characteri-zation[J]. J Exp Med, 1978, 148(1): 207–222. DOI: 10.1084/jem.148.1.207 |
[26] | GIGLI I, FUJITA T, NUSSENZWEIG V. Modulation of the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator[J]. Proc Natl Acad Sci U S A, 1979, 76(12): 6596–6600. DOI: 10.1073/pnas.76.12.6596 |
[27] | HOVINGH E S, VAN DEN BROEK B, JONGERIUS I. Hijacking complement regulatory proteins for bacterial immune evasion[J]. Front Microbiol, 2016, 7: 2004. |
[28] |
李德龙, 谭理娟, 谷九龙, 等. 鸭C4BPα的克隆、表达及其与鸭疫里默氏菌的互作[J]. 生物工程学报, 2020, 36(4): 693–699.
LI D L, TAN L J, GU J L, et al. Cloning and expression of duck C4BPα and verification of its interaction with Riemerella anatipestifer[J]. Chinese Journal of Biotechnology, 2020, 36(4): 693–699. (in Chinese) |
[29] | BARBOSA A S, MONARIS D, SILVA L B, et al. Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. That binds the human complement regulator C4BP[J]. Infect Immun, 2010, 78(7): 3207–3216. DOI: 10.1128/IAI.00279-10 |
[30] | KARNCHANAPHANURACH P, MIRCHEV R, GHIRAN I, et al. C3b deposition on human erythrocytes induces the formation of a membrane skeleton-linked protein complex[J]. J Clin Invest, 2009, 119(4): 788–801. |
[31] | HU Q H, DING C, TU J, et al. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer[J]. Vet Microbiol, 2012, 157(3-4): 428–438. DOI: 10.1016/j.vetmic.2012.01.009 |
[32] | HUANG B, SUBRAMANIAM S, FREY J, et al. Vaccination of ducks with recombinant outer membrane protein (OmpA) and a 41 kDa partial protein (P45 N') of Riemerella anatipestifer[J]. Vet Microbiol, 2002, 84(3): 219–230. DOI: 10.1016/S0378-1135(01)00456-4 |
[33] | CHEN Y P, LEE S H, CHOU C H, et al. Detection of florfenicol resistance genes in Riemerella anatipestifer isolated from ducks and geese[J]. Vet Microbiol, 2012, 154(3-4): 325–331. DOI: 10.1016/j.vetmic.2011.07.012 |
[34] | CHEN Y P, TSAO M Y, LEE S H, et al. Prevalence and molecular characterization of chloramphenicol resistance in Riemerella anatipestifer isolated from ducks and geese in Taiwan[J]. Avian Pathol, 2010, 39(5): 333–338. DOI: 10.1080/03079457.2010.507761 |
[35] | SCHULZ H, DALE G E, KARIMI-NEJAD Y, et al. Structure of human endothelin-converting enzyme I complexed with phosphoramidon[J]. J Mol Biol, 2009, 385(1): 178–187. |
[36] | JUNG H I, BOWDEN S J, COOPER A, et al. Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus[J]. Protein Sci, 2002, 11(5): 1091–1100. DOI: 10.1110/ps.4970102 |
[37] | BAR-EVEN A, MILO R, NOOR E, et al. The moderately efficient enzyme:futile encounters and enzyme floppiness[J]. Biochemistry, 2015, 54(32): 4969–4977. DOI: 10.1021/acs.biochem.5b00621 |
[38] | MERLE N S, CHURCH S E, FREMEAUX-BACCHI V, et al. Complement system part I- molecular mechanisms of activation and regulation[J]. Front Immunol, 2015, 6: 262. |
[39] | HALLSTRÖM T, JARVA H, RIESBECK K, et al. Interaction with C4b-binding protein contributes to nontypeable Haemophilus influenzae serum resistance[J]. J Immunol, 2007, 178(10): 6359–6366. DOI: 10.4049/jimmunol.178.10.6359 |
[40] | SCHNEIDER M C, EXLEY R M, RAM S, et al. Interactions between Neisseria meningitidis and the complement system[J]. Trends Microbiol, 2007, 15(5): 233–240. DOI: 10.1016/j.tim.2007.03.005 |
[41] | HALLSTROM T, NORDSTRÖM T, TAN T T, et al. Immune evasion of Moraxella catarrhalis involves ubiquitous surface protein A-dependent C3 d binding[J]. J Immunol, 2011, 186(5): 3120–3129. DOI: 10.4049/jimmunol.1002621 |
[42] | AGARWAL V, HAMMERSCHMIDT S, MALM S, et al. Enolase of Streptococcus pneumoniae binds human complement inhibitor C4b-binding protein and contributes to complement evasion[J]. J Immunol, 2012, 189(7): 3575–3584. DOI: 10.4049/jimmunol.1102934 |
[43] | HO D K, RIVA R, KIRJAVAINEN V, et al. Functional recruitment of the human complement inhibitor C4BP to Yersinia pseudotuberculosis outer membrane protein Ail[J]. J Immunol, 2012, 188(9): 4450–4459. DOI: 10.4049/jimmunol.1103149 |
[44] | LI J, GLOVER D T, SZALAI A J, et al. PspA and PspC minimize immune adherence and transfer of pneumococci from erythrocytes to macrophages through their effects on complement activation[J]. Infect Immun, 2007, 75(12): 5877–5885. DOI: 10.1128/IAI.00839-07 |
[45] | BIEDZKA-SAREK M, VENHO R, SKURNIK M. Role of YadA, Ail, and Lipopolysaccharide in Serum Resistance of Yersinia enterocolitica Serotype O:3[J]. Infect Immun, 2005, 73(4): 2232–2244. DOI: 10.1128/IAI.73.4.2232-2244.2005 |