畜牧兽医学报  2020, Vol. 51 Issue (11): 2794-2801. DOI: 10.11843/j.issn.0366-6964.2020.11.018    PDF    
重组产气荚膜梭菌β毒素突变体的表达与免疫保护性分析
杜吉革1, 朱真1, 徐中清1, 李倩琳1, 姚文生1, 李启红1, 印春生1, 杨柳2, 付利芝2, 陈小云1, 刘莹1, 薛麒1     
1. 中国兽医药品监察所, 北京 100081;
2. 重庆市畜牧科学院, 重庆 402460
摘要:旨在获得产气荚膜梭菌β毒素(CPB)的重组突变体,并评价其毒力及免疫保护性。对已知的产气荚膜梭菌CPB编码基因进行优化设计,同时引入4个氨基酸突变位点,分别是第212位的精氨酸突变为谷氨酸,第268位的亮氨酸突变为甘氨酸,266位的酪氨酸和275位的色氨酸突变为丙氨酸。此外,在该基因5'端添加Th细胞表位(T)和鞭毛蛋白(flagellin)N末端的编码序列,经人工合成获得重组基因片段(GTFNCPBm4)。将GTFNCPBm4克隆至原核表达载体pET-30a(+)中进行表达与纯化,获得重组蛋白rTFNCPBm4。利用Western blot方法检测rTFNCPBm4与C型产气荚膜梭菌毒素抗血清的反应性,并检测rTFNCPBm4对小鼠的毒力。随后,以rTFNCPBm4免疫家兔,按照《中华人民共和国兽药典》(2015年版)规定的方法检测家兔血清对C型产气荚膜梭菌毒素的中和抗体效价。结果表明,rTFNCPBm4主要以包涵体的形式表达且能与C型产气荚膜梭菌毒素抗血清反应。小鼠安全性试验显示,50 μg的rTFNCPBm4对小鼠仍无致死性;免疫rTFNCPBm4后,每毫升家兔二免抗血清可中和10~20个小鼠最小致死量(MLD)的C型产气荚膜梭菌毒素;1个家兔MLD的C型产气荚膜梭菌毒素攻毒后,对照组家兔4/4死亡,免疫组家兔得到了100%(4/4)的保护。以上结果说明,rTFNCPBm4在丧失毒力的同时保留了良好的免疫原性,从而为C型产气荚膜梭菌病基因工程疫苗的研制提供了重要的数据。
关键词产气荚膜梭菌CPB    突变    Th细胞表位    鞭毛蛋白    毒力    免疫保护性    
Expression and Protective Efficacy of Clostridium perfringens β toxin Derivative
DU Jige1, ZHU Zhen1, XU Zhongqing1, LI Qianlin1, YAO Wensheng1, LI Qihong1, YIN Chunsheng1, YANG Liu2, FU Lizhi2, CHEN Xiaoyun1, LIU Ying1, XUE Qi1     
1. China Institute of Veterinary Drug Control, Beijing 100081, China;
2. Chongqing Academy of Animal Sciences, Chongqing 402460, China
Abstract: This study was conducted to obtain the Clostridium perfringens β toxin (CPB) derivative and to evaluate its virulence and immunoprotection. Based on the known sequence, four amino acid mutations, R212E, L268G, Y266A and W275A, were introduced into the gene of Clostridium perfringens CPB. Meanwhile, genes of Th cell and N-terminal of flagellin were added to 5' of the CPB gene, respectively. Then the gene GTFNCPBm4 was optimized and synthesized, and was subsequently cloned into the prokaryotic expression vector pET-30a (+) for expression and purification to get the recombinant protein, rTFNCPBm4. Reactivity of rTFNCPBm4with antiserum of Clostridium perfringens type C crude toxins was detected by Western blot. Meanwhile, the toxicity of rTFNCPBm4 to mice was evaluated. According to the method prescribed in Chinese Veterinary Pharmacopoeia (2015), rabbits were immunized with rTFNCPBm4 to prepare antiserum and detect the neutralizing titer against Clostridium perfringens type C crude toxins. Results showed that rTFNCPBm4 was presented predominantly in an insoluble form (inclusion bodies), and it could react with the antiserum of Clostridium perfringens type C crude toxins. rTFNCPBm4 with an injection volume of 50 μg was still not fatal to mice. Sera from rabbits immunized with rTFNCPBm4can neutralize 10-20 mouse minimum lethal doses (MLD) of Clostridium perfringens type C crude toxins after twice immunization. Moreover, rabbits immunized with rTFNCPBm4 can fully resist 1 rabbit MLD of Clostridium perfringens type C crude toxins challenge, whereas all of the rabbits died (4/4) in the control groups. These data suggest that rTFNCPBm4 is a potential vaccine candidate for the subunit vaccine of Clostridium perfringens type C.
Key words: Clostridium perfringens CPB    mutation    Th cell epitope    flagellin    virulence    immunoprotection    

产气荚膜梭菌是一种严重危害人类健康和畜牧业发展的人畜共患病原[1-4]。由于产气荚膜梭菌病的发病时间急、病程短[5],一旦发病,往往来不及治疗而发生猝死,因此免疫接种成为防控该病的有效方法[6]。目前的主要疫苗是通过灭活梭菌培养物上清而制备的类毒素疫苗,导致该类疫苗有效抗原含量低,免疫效果不尽理想[7]。因此,筛选安全、有效、纯净的抗原,对于研制新型产气荚膜梭菌病疫苗具有重要意义。

已有的研究表明,产气荚膜梭菌的主要致病因子是其产生的外毒素,如α、β、ε和ι等[8]。其中,CPB是一种具有细胞毒性和致死性的外毒素,能引起人和动物的坏死性肠炎[9]。虽然重组CPB分子具有一定的免疫保护作用[10-14],但需要考虑蛋白的毒性。已有的研究表明,以可溶形式表达的重组CPB具有较强的毒力[15-16],以包涵体形式表达的重组CPB的毒力基本上可以忽略[10-14],但仍存在一定的安全隐患。Nagahama等[16]和Steinthorsdottir等[17]发现,突变CPB的氨基酸位点,如第121、203、212、265、266、268及275位氨基酸,可以使CPB毒力下降,甚至丧失,但这些无毒突变体的免疫保护性还没有得到验证。

为了降低单个氨基酸突变在未来基因工程疫苗大规模生产中可能造成的生物安全隐患,本文对我国现行C型产气荚膜梭菌制苗用菌株(C59-2株)的CPB的第212、266、268和275位共4个氨基酸位点同时进行突变。此外,在亚单位疫苗的研制中,增加Th细胞表位和佐剂分子能够提高蛋白的免疫原性。已有的研究表明,口蹄疫病毒VP4蛋白的第20—35位氨基酸是一种良好的Th细胞表位[18],而作为一种应用较为广泛的免疫佐剂分子,细菌的鞭毛蛋白(flagellin)能够通过其高度保守的N端来激动TLR-5受体,从而诱发机体产生更强的体液免疫与细胞免疫应答[19]。因此,笔者在重组CPB突变体编码基因的5′端同时添加了VP4蛋白Th细胞表位和细菌的鞭毛蛋白(flagellin)N末端第84—101位氨基酸(FN)的编码序列,最后通过原核系统表达重组蛋白并纯化,然后对其毒力和免疫原性进行研究。

1 材料与方法 1.1 试验材料

C型产气荚膜梭菌C59-2株、C型产气荚膜梭菌C59-2株的天然毒素、C型产气荚膜梭菌的毒素抗血清均为中国兽医药品监察所牛羊病实验室保存;1.5~2.0 kg普通级日本大耳白兔、16~18 g ICR小鼠均购自北京维通利华实验动物技术有限公司;其余所需试剂均为常规试剂,详同文献[20]。

1.2 基因合成及密码子优化

按照杜吉革等[21]所述方法,以已知的C型产气荚膜梭菌C59-2株的CPB编码基因为模板,引入R212E、L268G、Y266A和W275A共4个氨基酸突变位点,并在该编码基因的5′端添加Th细胞表位和鞭毛蛋白(flagellin)N末端第84—101位氨基酸(FN)的编码序列,在3′端添加6*His标签蛋白编码序列,获得人工合的基因片段GTFNCPBm4

1.3 重组CPB原核表达载体的构建

以GTFNCPBm4为模板,采用引物对MF/MR进行PCR扩增。引物序列及酶切位点详见表 1

表 1 本文所用引物 Table 1 The primers used in this paper

按照杜吉革等[21]所述方法,将扩增获得的片段构建到pET-30a(+)中,下文简称为pET,获得原核表达质粒pTFNCPBm4

1.4 重组蛋白的表达与鉴定

将空载体pET和pTFNCPBm4分别转化BL21(DE3)感受态细胞, 按照杜吉革等[21]所述方法进行诱导表达和鉴定。

1.5 重组蛋白的纯化及Western blot鉴定

按照杜吉革等[21]所述方法对获得的包涵体进行纯化,并以兔源C型产气荚膜梭菌毒素抗血清为一抗,对获得的rTFNCPBm4进行Western blot鉴定。

1.6 重组蛋白的毒力测定

已有的研究发现,CPB对小鼠的LD50剂量大约为0.4 μg·kg-1 [22]。本研究按照杜吉革等[21]所述方法,选用小鼠检测rTFNCPBm4的毒力,小鼠注射剂量分别为0.5、5.0和50.0 μg。

1.7 免疫原性分析

1.7.1 动物免疫   Milach等[12]的研究结果表明,0.1 mg的重组CPB即可对家兔的产生良好的免疫保护,本研究按照杜吉革等[23]所述方法,用Montanide ISA 201佐剂将纯化的rTFNCPBm4配制成终质量浓度为50.0 μg·mL-1的疫苗,并设置疫苗对照。选用血清对C型产气荚膜梭菌毒素的中和效价为0且体重1.5~2.0 kg健康家兔8只,其中4只颈部皮下注射疫苗,另外4只作为对照组,注射疫苗对照,剂量均为每只2.0 mL。免疫后14 d,进行第2次免疫。

1.7.2 血清中和效价测定   在二免后21 d,按照杜吉革等[23]所述方法,测定兔血清对C型产气荚膜梭菌天然毒素的中和抗体效价。

1.7.3 毒素攻毒试验   二免后21 d,按照杜吉革等[23]所述方法,对家兔进行攻毒保护试验,剂量为1个家兔MLD的C型产气荚膜梭菌天然毒素。

2 结果 2.1 重组β毒素原核表达载体的构建

对获得的pTFNCPBm4进行双酶切鉴定,结果如图 1所示,载体片段大约5 kb,目的基因片段大小约1 345 bp,进一步的测序结果与预期相符。

1.DL5000 DNA相对分子质量标准;2.重组质粒pTFNCPBm4 BamHⅠ和HindⅢ的双酶切鉴定 1. DL5000 DNA marker; 2. pTFNCPBm4 digested with BamHⅠ and HindⅢ 图 1 重组原核表达质粒pTFNCPBm4的酶切鉴定 Fig. 1 Identification of recombinant prokaryotic expression plasmids pTFNCPBm4
2.2 重组β毒素的原核表达与鉴定

SDS-PAGE和Western blot检测结果显示,在15和37 ℃的诱导条件下,rTFNCPBm4均主要以包涵体的形式表达(图 2a),相对分子质量约为49 ku,且能与抗His标签抗体发生反应(图 2b)。综合诱导时间,确定rTFNCPBm4的最适诱导表达条件为37 ℃,诱导4 h。

a.重组蛋白表达的SDS-PAGE鉴定;b.重组蛋白与抗His单抗反应的Western blot检测。M1.蛋白相对分子质量标准;M2. Western blot相对分子质量标准;PC1. BSA (1 μg);PC2. BSA (2 μg);pET. pET 37 ℃诱导的细胞裂解物;1. pTFNCPBm4,15 ℃诱导的细胞裂解物;2. pTFNCPBm4,37 ℃诱导的细胞裂解物;pET1. pET,37 ℃诱导的细胞裂解上清;pET2. pET,37 ℃诱导的细胞裂解沉淀;3. pTFNCPBm4,15 ℃诱导的细胞裂解上清;4. pTFNCPBm4,15 ℃诱导的细胞裂解沉淀;5. pTFNCPBm4,37 ℃诱导的细胞裂解上清;6. pTFNCPBm4,37 ℃诱导的细胞裂解沉淀 a.The identification of recombinant protein expression by SDS-PAGE; b. The identification of recombinant protein with anti-His monoclonal antibody by Western blot. M1. Protein marker; M2. Western blot marker; PC1. BSA (1 μg); PC2. BSA (2 μg); pET. The cell lysates of pET induced with IPTG under 37 ℃; 1. The cell lysates of pThCPBm4 induced with IPTG under 15 ℃; 2. The cell lysates of pTFNCPBm4induced with IPTG under 37 ℃; pET1. The supernatant of cell lysates of pET induced with IPTG under 37 ℃; pET2. The precipitation of cell lysates of pET induced with IPTG under 37 ℃; 3.The supernatant of cell lysates of pTFNCPBm4 induced with IPTG under 15 ℃; 4. The precipitation of cell lysates of pTFNCPBm4 induced with IPTG under 15 ℃; 5. The supernatant of cell lysates of pTFNCPBm4 induced with IPTG under 37 ℃; 6. The precipitation of cell lysates of pTFNCPBm4 induced with IPTG under 37 ℃ 图 2 rTFNCPBm4的原核表达与鉴定 Fig. 2 Prokaryotic expression and identification of rTFNCPBm4
2.3 rTFNCPBm4的纯化与鉴定

图 3所示,收集纯度较高的泳道10~12洗脱液,获得0.372 mg·mL-1的rTFNCPBm4。将纯化后的蛋白进行Western blot检测,结果表明,rTFNCPBm4能够与C型产气荚膜梭菌毒素抗血清反应(图 4)。

M.蛋白相对分子质量标准; 1.包涵体溶解离心后上清;2.上清与Ni-IDA孵育后流出液;3~7. 50 mmol·L-1 imidazole的洗脱液;8~9. 100 mmol·L-1 imidazole的洗脱液;10~13. 300 mmol·L-1 imidazole的洗脱液 M. Protein marker; 1. The supernatant of dissolved inclusion bodies; 2. The flow-through from Ni-IDA resin after incubated with supernatant; 3-7. The elution from Ni-IDA resin washed with elution buffer (contain 50 mmol·L-1 imidazole); 8-9. The elution from Ni-IDA resin washed with elution buffer (contain 100 mmol·L-1 imidazole); 10-13. The elution from Ni-IDA resin washed with elution buffer (contain 300 mmol·L-1 imidazole) 图 3 rTFNCPBm4的纯化 Fig. 3 Purification of rTFNCPBm4
M.蛋白相对分子质量标准; 1. pET 37 ℃诱导的细胞裂解物;2.纯化后的rTFNCPBm4 M. Protein marker; 1. The cell lysates of pET induced with IPTG under 37 ℃; 2. rTFNCPBm4 after purification 图 4 与C型产气荚膜梭菌毒素抗血清反应的Western blot鉴定 Fig. 4 The identification of rTFNCPBm4 with antitoxin serum of Clostridium perfringens type C by Western blot
2.4 rTFNCPBm4的毒力测定

结果如表 2所示,注射1个MLD的C型产气荚膜梭菌毒素后,小鼠在24 h内全部死亡,rTFNCPBm4注射组及阴性对照小鼠均存活,结果表明,50 μg的rTFNCPBm4对小鼠仍无致死性。

表 2 样品的注射以及小鼠存活情况 Table 2 Injection of sample and the mouse survival
2.5 rTFNCPBm4的免疫原性分析

2.5.1 抗rTFNCPBm4兔血清的中和抗体效价测定   中和抗体效价测定结果显示,两次免疫后,疫苗免疫组家兔血清对C型产气荚膜梭菌天然毒素的中和效价可达10~20个小鼠MLD·mL-1,而佐剂对照组的中和效价为0(表 3)。

表 3 rTFNCPBm4的免疫保护结果及家兔血清中和抗体效价 Table 3 Immunoprotection of rTFNCPBm4 and neutralizing titers of rabbit antiserum

2.5.2 攻毒保护性试验   如表 3所示,疫苗对照组家兔在攻毒后5 d内全部死亡(4/4),疫苗免疫组家兔4/4全部健活。

3 讨论

已有的研究结果表明,产气荚膜梭菌致死性外毒素(α、β、ε、ι和θ)的无毒突变体或部分无毒区域在一定程度上可作为预防相应毒血症的亚单位疫苗[24-28]。虽然CPB的C末端(第143—311位氨基酸)有一定的免疫保护作用,但其效果明显低于完整的重组CPB[10, 29]。此外,Bhatia等[30]模拟预测出CPB潜在的3处B细胞表位,分别是第32—45位、第140—156位以及第260—275位氨基酸区域,并成功表达了CPB的第140—156位氨基酸,但这3处潜在的B细胞表位的免疫保护效果还没有得到证实。由于以上3处潜在的B细胞表位处于CPB的不同区域,这说明完整的重组CPB才是亚单位疫苗的良好抗原。彭小兵等[10]将表达非可溶形式的重组CPB的表达菌进行超声波裂解后与弗氏佐剂混合,制备疫苗免疫家兔,结果表明,该菌体裂解物具有良好的免疫保护性。Milach等[12]利用原核系统对CPB进行表达、纯化,并验证重组蛋白的免疫保护性。在相关疫苗的制备过程中,英国国家生物标准及控制研究所推荐每头份疫苗中应至少含有5.6 mg的天然CPB,而作者获得的重组CPB的使用量仅需每头份0.1 mg即可达到标准,这说明重组CPB是C型产气荚膜梭菌亚单位疫苗重要的候选抗原。虽然研究人员通过原核系统获得的重组CPB大多以包涵体的形式表达,且这种形式的重组CPB在检测范围内,对小鼠均没有致死性[10-14],但以可溶性形式表达重组CPB可以具有与天然CPB类似的毒力[16]。为此,用没有突变的重组CPB来预防产气荚膜梭菌病仍有一定的安全隐患。

在CPB的毒力研究中,R212E突变体(CPBR212E)对小鼠的LD50剂量为天然CPB的12.5倍,而Y266A、L268G和W275A的单点CPB突变体在检测范围内对小鼠均无致死性[16-17]。在实际应用过程中,单氨基酸位点突变体蛋白存在回复突变的安全隐患,不宜作为疫苗的候选抗原。为此,笔者选择了4个关键性的氨基酸位点同时进行突变,并证实本研究获得的rTFNCPBm4在检测范围内对小鼠无致死性,说明该蛋白实际应用中具有较高的安全性。

随着重组蛋白中氨基酸突变位点的增多,其空间构象发生变化的概率也增大,从而容易影响重组蛋白的免疫保护性[31-32]。与未突变的重组CPB相比,rTFNCPBm4的免疫保护性没有明显的变化(数据未显示),说明本研究中的4个氨基酸突变位点没有改变重组CPB的免疫保护性。由于彭小兵等[10]研究中所使用的弗氏佐剂无法在相关兽用生物制品中推广,以及作者未采用纯化的重组蛋白进行分析,从而无法为CPB亚单位疫苗的研制提供明确的参考数据。与前文相比,本研究选用了兽用生物制品中常用的Montanide ISA 201佐剂对纯化的rTFNCPBm4的免疫保护性进行分析,从而为CPB亚单位疫苗的研制提供了更加有意义的数据支持。此外,Milach等[12]通过原核表达系统表达纯化的rCPB可达20 mg·L-1,而本研究获得的rTFNCPBm4的量明显高于前者(33 mg·L-1),笔者推测按大肠杆菌偏爱的密码子对rTFNCPBm4的编码基因进行优化设计是该重组蛋白高效表达的主要原因。

鉴于重组CPB,特别是以包涵体为主要形式表达的重组CPB抗原性较低的问题,笔者尝试通过在重组蛋白的5′端添加VP4蛋白作为Th细胞表位和细菌的鞭毛蛋白(flagellin)N末端第84—101位氨基酸(FN)来提高重组CPB的免疫保护性。结果表明,与未突变的重组CPB相比,Th细胞表位和细菌的鞭毛蛋白(flagellin)并未提高重组CPB突变体的免疫保护性,这有可能是由以包涵体形式表达的重组蛋白空间构象不理想引起的。为此,如何实现CPB突变体的高比例可溶性表达将是重组CPB的主要研究方向。

4 结论

人工合成获得产气荚膜梭菌β毒素(CPB)的重组蛋白rTFNCPBm4,Western blot方法证实其能与C型产气荚膜梭菌毒素抗血清反应,rTFNCPBm4免疫家兔能产生较高中和效价的抗体,并保护兔耐过C型产气荚膜梭菌毒素攻毒。rTFNCPBm4在丧失毒力的同时保留了良好的免疫原性,可作为C型产气荚膜梭菌病基因工程疫苗的候选材料进行研发。

参考文献
[1] 郑晓丽, 窦贤明, 胡道俊, 等. 产气荚膜梭菌对养牛业的危害及其防制[J]. 中国畜牧兽医, 2010, 37(8): 211–214.
ZHENG X L, DOU X M, HU D J, et al. The threat, prevention and control of Clostridium perfringens in cattle industry[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(8): 211–214. (in Chinese)
[2] 柳美玲, 王爱华, 陈凤梅, 等. 浅析牛产气荚膜梭菌病[J]. 山东畜牧兽医, 2015(2): 59–61.
LIU M L, WANG A H, CHEN F M, et al. Clostridium perfringens in cattle industry[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2015(2): 59–61. (in Chinese)
[3] 钏有科, 肖啸, 濮永华, 等. 努比亚山羊产气荚膜梭菌病的诊治[J]. 中国兽医杂志, 2014, 50(12): 42–43.
CHUAN Y K, XIAO X, PU Y H, et al. Diagnosis and treatment of Clostridium perfringens infection in Nubian goats[J]. Chinese Journal of Veterinary Medicine, 2014, 50(12): 42–43. (in Chinese)
[4] 郑晓丽, 宋振银, 倪学勤. 产气荚膜梭菌对家禽业的危害及其预防[J]. 中国家禽, 2008, 30(24): 69–71.
ZHENG X L, SONG Z Y, NI X Q. Emerging threat and prevention of Clostridium perfringens in poultry industry[J]. China Poultry, 2008, 30(24): 69–71. (in Chinese)
[5] LEBRUN M, MAINIL J G, LINDEN A. Cattle enterotoxaemia and Clostridium perfringens:description, diagnosis and prophylaxis[J]. Vet Rec, 2010, 167(1): 13–22. DOI: 10.1136/vr.167.1.12
[6] 杜吉革, 王磊, 薛麒, 等. 产气荚膜梭菌α毒素C末端的二拷贝串联表达与免疫原性分析[J]. 中国兽医杂志, 2019, 55(1): 7–10.
DU J G, WANG L, XUE Q, et al. Expression and Immunogenicity of a tandem fusion protein of two copies of C-terminal of Clostridium perfringens α toxin[J]. Chinese Journal of Veterinary Medicine, 2019, 55(1): 7–10. (in Chinese)
[7] 杜吉革, 薛麒, 朱真, 等. 无毒性产气荚膜梭菌ε毒素突变体的表达及免疫保护力评价[J]. 中国农业科学, 2018, 51(11): 2206–2215.
DU J G, XUE Q, ZHU Z, et al. Expression and evaluation of protective efficacy of no-toxic Clostridium perfringens ε toxin derivative[J]. Scientia Agricultura Sinica, 2018, 51(11): 2206–2215. (in Chinese)
[8] REVITT-MILLS S A, ROOD J I, ADAMS V. Clostridium perfringens extracellular toxins and enzymes:20 and counting[J]. Microbiol Aust, 2015, 36(3): 114–117. DOI: 10.1071/MA15039
[9] NAGAHAMA M, OCHI S, ODA M, et al. Recent insights into Clostridium perfringens beta-toxin[J]. Toxins, 2015, 7(2): 396–406. DOI: 10.3390/toxins7020396
[10] 彭小兵, 田冬青, 彭国瑞, 等. 产气荚膜梭菌β毒素的表达及其抗血清的制备[J]. 畜牧与兽医, 2015, 47(10): 93–96.
PENG X B, TIAN D Q, PENG G R, et al. Expression of Clostridium perfringens β toxin and preparation of its antiserum[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(10): 93–96. (in Chinese)
[11] SALVARANI F M, CONCEIÇÃO F R, CUNHA C E P, et al. Vaccination with recombinant Clostridium perfringens toxoids α and β promotes elevated antepartum and passive humoral immunity in swine[J]. Vaccine, 2013, 31(38): 4152–4155. DOI: 10.1016/j.vaccine.2013.06.094
[12] MILACH A, DE LOS SANTOS J R G, TURNES C G, et al. Production and characterization of Clostridium perfringens recombinant β toxoid[J]. Anaerobe, 2012, 18(3): 363–365. DOI: 10.1016/j.anaerobe.2012.01.004
[13] MOREIRA G M S G, SALVARANI F M, DA CUNHA C E P, et al. Immunogenicity of a trivalent tecombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants[J]. Sci Rep, 2016, 6(1): 22816. DOI: 10.1038/srep22816
[14] ZENG J, DENG G C, WANG J, et al. Potential protective immunogenicity of recombinant Clostridium perfringens α-β2-β1 fusion toxin in mice, sows and cows[J]. Vaccine, 2011, 29(33): 5459–5466. DOI: 10.1016/j.vaccine.2011.05.059
[15] LANGROUDI R P, SHAMSARA M, AGHAIYPOUR K. Expression of Clostridium perfringens epsilon-beta fusion toxin gene in E. coli and its immunologic studies in mouse[J]. Vaccine, 2013, 31(32): 3295–3299. DOI: 10.1016/j.vaccine.2013.04.061
[16] NAGAHAMA M, KIHARA A, MIYAWAKI T, et al. Clostridium perfringens β-toxin is sensitive to thiol-group modification but does not require a thiol group for lethal activity[J]. Biochim Biophys Acta, 1999, 1454(1): 97–105.
[17] STEINTHORSDOTTIR V, FRIDRIKSDOTTIR V, GUNNARSSON E, et al. Site-directed mutagenesis of Clostridium perfringens beta-toxin: expression of wild-type and mutant toxins in Bacillus subtilis[J]. FEMS Microbiol Lett, 1998, 158(1): 17–23. DOI: 10.1111/j.1574-6968.1998.tb12794.x
[18] 马鸣潇, 金宁一, 尹革芬, 等. 口蹄疫病毒三价复合多表位佐剂DNA疫苗构建及其免疫原性[J]. 生物工程学报, 2009, 25(4): 514–519.
MA M X, JIN N Y, YIN G F, et al. Molecular design and immunogenicity of a multiple-epitope foot-and-mouth disease virus antigen, adjuvants, and DNA vaccination[J]. Chinese Journal of Biotechnology, 2009, 25(4): 514–519. (in Chinese)
[19] 孙小涵, 张碧成, 张强, 等. 非致病性大肠杆菌鞭毛蛋白对O型口蹄疫病毒的佐剂效果[J]. 中国农业科学, 2017, 50(9): 1714–1722.
SUN X H, ZHANG B C, ZHANG Q, et al. Adjuvant effects of flagellin from non-pathogenic E.coli on FMDV[J]. Scientia Agricultura Sinica, 2017, 50(9): 1714–1722. (in Chinese)
[20] 陈小云, 刘莹, 薛麒, 等. 重组腐败梭菌α毒素对兔的免疫效力分析[J]. 畜牧兽医学报, 2018, 49(8): 1727–1734.
CHEN X Y, LIU Y, XUE Q, et al. Evaluation of protective efficacy of recombinant Clostridium septicum α toxin in rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(8): 1727–1734. (in Chinese)
[21] 杜吉革, 张秀坤, 朱真, 等. 重组产气荚膜梭菌ε毒素三点突变体的融合表达及其免疫活性分析[J]. 中国兽药杂志, 2018, 52(7): 28–34.
DU J G, ZHANG X K, ZHU Z, et al. Expression and immunocompetence of Clostridium perfringens ε toxin derivative with three mutations[J]. Chinese Journal of Veterinary Drug, 2018, 52(7): 28–34. (in Chinese)
[22] LI J H, ADAMS V, BANNAM T L, et al. Toxin plasmids of Clostridium perfringens[J]. Microbiol Mol Biol Rev, 2013, 77(2): 208–223. DOI: 10.1128/MMBR.00062-12
[23] 杜吉革, 彭小兵, 张秀坤, 等. 产气荚膜梭菌ε毒素突变体的表达及免疫保护力评价[J]. 中国兽药杂志, 2018, 52(6): 13–20.
DU J G, PENG X B, ZHANG X K, et al. Expression and evaluation of protective efficacy of Clostridium perfringens ε toxin mutant[J]. Chinese Journal of Veterinary Drug, 2018, 52(6): 13–20. (in Chinese)
[24] ALIMOLAEI M, GOLCHIN M, DANESHVAR H. Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid[J]. Infect Genet Evol, 2016, 40: 282–287. DOI: 10.1016/j.meegid.2016.03.020
[25] LI Q, XIN W W, GAO S, et al. A low-toxic site-directed mutant of Clostridium perfringens ε -toxin as a potential candidate vaccine against enterotoxemia[J]. Hum Vaccin Immunother, 2013, 9(11): 2386–2392. DOI: 10.4161/hv.25649
[26] YAO W W, KANG J J, KANG L, et al. Immunization with a novel Clostridium perfringens epsilon toxin mutant rETXY196E-C confers strong protection in mice[J]. Sci Rep, 2016, 6(1): 24162. DOI: 10.1038/srep24162
[27] VERHERSTRAETEN S, GOOSSENS E, VALGAEREN B, et al. Non-toxic perfringolysin O and α-toxin derivatives as potential vaccine candidates against bovine necrohaemorrhagic enteritis[J]. Vet J, 2016, 217: 89–94. DOI: 10.1016/j.tvjl.2016.09.008
[28] NAGAHAMA M, ODA M, KOBAYASHI K, et al. A recombinant carboxy-terminal domain of alpha-toxin protects mice against Clostridium perfringens[J]. Microbiol Immunol, 2013, 57(5): 340–345. DOI: 10.1111/1348-0421.12036
[29] DAS S, MAJUMDER S, KINGSTON J J, et al. Generation and characterization of recombinant bivalent fusion protein r-Cpib for immunotherapy against Clostridium perfringens beta and iota toxemia[J]. Mol Immunol, 2016, 70: 140–148. DOI: 10.1016/j.molimm.2015.12.001
[30] BHATIA B, SOLANKI A K, KAUSHIK H, et al. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein:expression, purification and characterization of the chimeric protein[J]. Protein Exp Purif, 2014, 102(10): 38–44.
[31] HU J F, CLADEL N M, CHRISTENSEN N D. Increased immunity to cottontail rabbit papillomavirus infection in EⅢ/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression[J]. Viral Immunol, 2007, 20(2): 320–325. DOI: 10.1089/vim.2006.0104
[32] YANG Y L, MENG B, HUANG Z H. PP-099 Hepatitis B surface antigen mutation Thr to Met at position 118 leads to antigenicity change and causes some blood screening kits failure[J]. Int J Infect Dis, 2009, 13(S1): S75–S76.