肉牛养殖业在向规模化、集约化方向发展的同时也加剧了其生产环境的不断恶化,导致舍内氨气(NH3)浓度持续上升[1],对肉牛的健康和福利产生了不利的影响。NH3是微生物在分解舍内有机物过程中产生的一种无色、高刺激性的碱性气体,被认为是畜舍内最主要的应激源和污染物[2]。当饲料中粗蛋白含量增加及畜舍内温度上升时,会加剧NH3的产生和排放[3-4]。大量研究表明,高浓度的NH3会对动物健康产生不良影响,如损害猪、鸡等动物的呼吸系统[5],导致鸡的腹水病和眼疾[6],降低畜禽生产性能,增加死亡率等[7]。
氧化应激是生物体内最基本的生化反应[8],当体内氧化与抗氧化作用失去平衡时会引起组织损伤,导致各种疾病[9]。有研究表明,NH3暴露会显著降低肉鸡的抗氧化能力,提高丙二醛含量[10],扰乱细胞因子分泌,诱发炎症反应,改变细胞膜的结构和生理功能[11],对鸡生长、免疫和肉质产生不良影响。NH3暴露还会损伤肉牛的呼吸系统[12],但对其生产性能和免疫方面影响的报道较少。我国畜禽场环境质量标准规定,牛舍NH3浓度不得超过20 mg·m-3 (NY/T388—1999),但这一NH3限值的规定主要是基于人类安全和周围地区环境的考虑,关于肉牛对NH3暴露的耐受限度还需进一步探究。
因此,本试验采用数字化环控舱模拟不同NH3暴露浓度,旨在研究不同NH3浓度对肉牛生长性能、血液生化指标、血清细胞因子和抗氧化能力的影响,以期为肉牛养殖业NH3减排和动物福利提供参考依据。
1 材料与方法 1.1 试验动物与试验设计本试验在西北农林科技大学动物营养环境控制代谢舱内(7.4 m×4.2 m×2.7 m)进行。试验开始前对环控舱进行消毒。选取16头体况健康、体重相近((220±5) kg)的12月龄秦川母牛分别饲养在4个环控舱内,每个舱内4头牛,每头牛为1个重复。预试期为10 d,正试期为30 d。在试验期间,所有试验牛均自由采食和饮水。
1.2 NH3浓度设置及环境控制舱内NH3浓度和环境控制参数是基于国家标准(NY/T388—1999)和本研究前期半开放式肉牛场监测数据进行设置, 其一年内NH3浓度变化范围为(0~9.92 mg·m-3),平均风速为2.11 m·s-1。NH3(≥99.9)及NH3瓶由常州京华有限责任公司提供。各环控舱内NH3通过管道送至舱内并由传感器检测,同时为保证NH3浓度的精确,每2小时用便携式NH3检测仪(AR8500)对舱内不同位置NH3浓度进行检测,以确定舱内各处NH3浓度一致。每个环控舱NH3浓度设置分别为5、15、30和45 mg·m-3,每舱除NH3浓度不一致外,其余环境参数均保持一致。将舱内环境参数分别设置为温度20~24 ℃、相对湿度60%~70%、光照度75 Lux 12 h,风速3 m·s-1。环控舱一天清理两次以保持地面的卫生和干燥。同时,使用手持型二氧化碳多功能检测仪(KP,26)对舱内二氧化碳浓度、相对湿度和温度进行检测。
1.3 样品收集与指标测定1.3.1 样品收集与制备 生产性能数据收集包括平均日增重(ADG)和平均日采食量(ADFI)。在试验开始前和结束后对所有试验牛进行空腹称重。试验期间,每天记录舱内试验牛采食量。血液样本在试验第1、15和30天上午9:00进行采集,每头牛采集3份血液样本,在4 ℃离心机进行血清分离(3 000 r·min-1),随后立即放入-20 ℃冰箱保存备用。
1.3.2 指标测定1.3.2.1 血液生化指标测定:采用全自动生化分析仪测定血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、肌酐(CRE)、乳酸脱氢酶(LDH)和尿素氮(BUN)含量。血氨(An)含量用购自南京建成生物工程研究所的酶联免疫试剂盒进行测定。
1.3.2.2 免疫指标测定:IgA、IgG、IgM、白细胞介素4(IL-4)、白细胞介素(IL-6)、白细胞介素(IL-10)、白细胞介素1β(IL-1β)、肿瘤坏死因子(TNF-α)和γ-干扰素(IFN-γ)采用酶联免疫法测定,试验所用试剂盒均购自武汉基因美生物科技有限公司。
1.3.2.3 抗氧化指标测定:总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)和丙二醛(MDA)采用武汉基因美生物技术有限公司的酶联免疫试剂盒进行检测。
1.4 统计分析用SPSS 17.0数据分析软件对试验数据进行单因素(one-way ANOVA)分析。试验结果均以“平均值±标准差”表示,以P < 0.05为显著水平,P < 0.01为极显著水平。
2 结果 2.1 不同NH3浓度对肉牛生产性能的影响由表 1可知,与对照组相比,ADG随着NH3浓度的上升而下降,并在30 mg·m-3达到显著水平(P < 0.05),但当NH3浓度达到45 mg· m-3,ADG有所上升。与对照组相比,各处理组ADFI均显著下降(P < 0.05),料重比(F/G)在氨气浓度为15和30 mg·m-3时显著上升(P < 0.05)。
![]() |
表 1 不同NH3浓度对肉牛生产性能的影响 Table 1 Effects of different NH3 concentration on the growth performance of beef cattle |
由表 2可知,与对照组相比,各处理组血清An含量均显著高于对照组(P < 0.05),并呈先上升后下降的趋势。血清CRE、BUN、ALT、AST和LDH含量在45 mg·m-3时显著升高(P < 0.05),而在其余处理组间无显著差异(P>0.05)。
![]() |
表 2 不同NH3浓度对肉牛血液生化指标的影响 Table 2 Effects of different NH3 concentrations on the biochemical indicators in serum of beef cattle |
由表 3可知,与对照组相比,IgA含量在NH3浓度为15、30和45 mg·m-3时显著降低(P < 0.05),IgM含量在NH3浓度为30和45 mg·m-3时显著下降(P < 0.05),而IgG含量在各处理间差异不显著(P>0.05)。
![]() |
表 3 不同NH3浓度对肉牛血清免疫球蛋白的影响 Table 3 Effects of different NH3 concentrations on the content of immunoglobulin in serum of beef cattle |
由表 4可知,与对照组相比,IL-1β含量在NH3浓度为30和45 mg·m-3时显著下降(P < 0.05),而IL-6含量在NH3浓度为30和45 mg·m-3时显著上升(P < 0.05)。与对照组相比,TNF-α含量在45 mg·m-3时显著下降(P < 0.05),而其余处理组间差异不显著(P>0.05)。IL-4含量呈先下降后上升的趋势,且在NH3浓度为45 mg·m-3时,较浓度为15 mg·m-3时显著升高(P < 0.05)。IFN-γ含量在NH3浓度为30和45 mg·m-3时显著降低(P < 0.05),而IL-10含量在各组差异不显著(P>0.05)。
![]() |
表 4 不同NH3浓度对肉牛血清细胞因子含量的影响 Table 4 Effects of different NH3 concentrations on the content of cytokines in serum of beef cattle |
由表 5可知,与对照组相比,T-AOC含量在NH3浓度为30和45 mg·m-3时显著降低(P < 0.05),GSH-Px含量在45 mg·m-3时显著降低(P < 0.05),而各处理组SOD和CAT含量的变化均不显著(P>0.05)。MDA含量随着NH3浓度的增加而上升,并在NH3浓度为30 mg·m-3时显著增加(P < 0.05)。
![]() |
表 5 不同NH3浓度对肉牛血清抗氧化能力的影响 Table 5 Effects of different NH3 concentrations on the antioxidant capacity in serum of beef cattle |
在当前规模化生产条件下,动物的生产性能表现直接影响着畜牧业的效益和发展,而畜舍环境与动物生产性能和健康状况密不可分。大量研究表明,长期生活于高NH3环境下会显著降低猪、鸡等动物的生产性能,造成饲料和资源的浪费[13-16],肉羊持续暴露于NH3浓度为34 mg·m-3的环境中会降低其体重和采食量[13],而肉鸡在NH3浓度为57 mg·m-3时其生产性能显著下降[15]。本研究利用环控舱模拟了畜舍不同NH3暴露浓度,发现,当NH3浓度达到30 mg·m-3时,肉牛ADG和ADFI显著降低,这一发现也和前人研究基本一致。此外,本研究还发现,肉牛暴露于NH3浓度为45 mg·m-3时,ADG反而有所上升,造成这一结果的原因可能是高浓度NH3环境加剧了肉牛的应激反应,为了缓解这种不利影响以及减轻NH3带来的毒副作用,机体加强了对饲料的利用效率以满足体内能量需要, 从而导致了ADG的上升,而类似的现象也在其他研究中有所报道[13-14, 17]。
ALT和AST常被用来评估肝细胞损伤程度,当肝细胞受到损伤时,ALT和AST会从细胞中溢出从而升高其在血清中的含量[18]。而CRE和BUN被广泛用于衡量肾的健康状况,当肾受到损害时,其在血清中的含量也随之升高[19]。本研究中,肉牛血清中AST、ALT、CRE和BUN水平在氨气暴露浓度为45 mg·m-3时显著升高,说明NH3暴露对肉牛肝和肾造成了一定损伤。正常情况下,动物体内氨含量极低时不会对机体产生毒副作用,但当环境中NH3浓度升高或机体处于病理状态时,常会导致An含量的升高。本研究发现,NH3浓度在15~45 mg·m-3间均显著增加了体内An含量,这可能是由于环境中高浓度NH3进入体内后超出了机体对An的承受范围,使肝和肾功能受到了损伤,降低了体内对氨的清除能力。
LDH是糖酵解和糖异生过程中催化乳酸和丙酮酸之间氧化还原反应的重要酶类[20],该酶活性的升高表明体内供能方式从有氧向无氧方向的转化。本研究中,随着NH3浓度的增加,LDH的含量呈上升趋势,说明NH3暴露使机体处于缺氧状态。
免疫球蛋白(immunoglobulin, Ig)是由淋巴细胞和浆细胞分泌产生的免疫因子,在机体免疫系统中有着重要作用,是机体抵御疾病、防范感染的重要屏障[21]。本研究中,NH3暴露浓度为15、30和45 mg·m-3时均显著降低了肉牛血清中IgA含量,IgM含量在氨气浓度为30和45 mg·m-3时显著降低,并且随着NH3浓度的升高这一趋势更加明显,但IgG含量在各组间差异并不显著,这可能表明IgA、IgM更能代表NH3暴露对肉牛免疫能力的影响。除NH3外,其他有害气体也会影响机体免疫功能,如H2S降低了肉鸡法氏囊中IgA、IgG和IgM含量[22]。细胞因子作为免疫调节蛋白,在免疫调节和炎症反应中发挥重要作用[23],其中,促炎细胞因子TNF-α、IL-1β和IL-6主要由单核巨噬细胞和T辅助细胞(Th1)分泌,但过度分泌会促进炎症反应导致组织损伤,是应激性损伤的直接介导物[24]。在组织缺氧和应激状态下,其分泌水平会随之增加且和Th2细胞因子相互抑制[25-26]。IL-4和IL-10是由Th2细胞分泌的抗炎性多功能细胞因子,可减轻炎症反应[27]。IFN-γ是一种由Th1淋巴细胞分泌的防御性物质,在免疫系统中发挥着重要的作用[28]。抗炎和促炎细胞因子水平的动态平衡对动物的健康维持至关重要[29]。研究表明,NH3暴露可显著增加促炎性细胞因子TNF-α、IL-1β、lL-6和lL-18含量[30]。Hu等[22]研究发现,H2S暴露会显著增加鸡外周血淋巴细胞中的促炎细胞因子(TNF-α、IL-1β、IL-6、IL-8和IL-17)含量,而抗炎细胞因子(IFN-γ、IL-4、IL-2和IL-10)含量显著降低。但本研究结果和前人并不一致,在本研究中,NH3暴露显著增加了IL-6水平,但IL-β和TNF-α并未表现出同样的趋势,一方面可能是由于肉牛长期处于NH3环境中产生了一定的适应性,另一方面也可能是由于Th2细胞分泌的抗炎性细胞因子对IL-1β和TNF-α产生了抑制效应。作为促炎性细胞因子,IL-6在介导发病机制方面具有重要作用,并且相对于TNF-α和IL-1β,IL-6更能反映器官损伤和炎症反应的水平。IFN-γ和IL-4作为一对互相拮抗的细胞因子,分别由Th1和Th2细胞产生[31]。本研究中,IFN-γ含量降低而IL-4含量上升,表明NH3暴露诱导了Th1和Th2细胞功能失衡,引发了肉牛的炎症反应。
抗氧化能力是维持机体健康的重要因素,高含量的自由基会引发体内的氧化应激,而T-AOC、GSH-Px、SOD和CAT是清除自由基的关键酶类[32],当自由基超过抗氧化酶的清除能力时便会产生脂质过氧化的终产物MDA[33],因此,MDA含量间接反应了体内自由基的含量。多种环境污染物都可以引发体内的氧化应激,如二氧化硫(SO2)、H2S和NH3[22]。有研究表明,高浓度NH3和H2S会降低绵羊和鸡体内的抗氧化酶活性[34-35],同时升高血清中MDA含量[22]。本研究中,NH3浓度为30和45 mg·m-3时显著降低了T-AOC活性,而血清中MDA含量显著升高,表明NH3对肉牛抗氧化系统产生了不良影响。NH3进入血液并与血红蛋白结合时会降低血液的携氧能力,导致组织出现缺氧、动物呼吸困难等症状,同时NH3暴露显著提高了血清中氨含量,在缺氧和某些病理条件下,人和动物体内自由基含量增加,从而破坏抗氧化能力,增加MDA含量[36],这在一定程度上解释了NH3暴露导致肉牛抗氧化能力下降的原因。但同样的结果并未在SOD和CAT上发现,且随着NH3浓度的升高,血清SOD和CAT活性呈上升趋势,这一相互矛盾的结果可能是机体对高浓度NH3环境做出的一种应激反应,通过在应激状态下产生多种保护性物质如SOD和CAT来使组织细胞免受损伤。
4 结论NH3暴露浓度≥15 mg·m-3时显著降低了肉牛生产性能,并对肝、肾功能造成了一定损伤,NH3浓度≥30 mg·m-3时显著降低了肉牛的免疫和抗氧化能力,并通过Th1/Th2失衡引发了机体的炎症反应。因此,本研究认为,畜牧场环境质量标准(NY/T388—1999)中关于牛场NH3的暴露限值20 mg·m-3超出了肉牛可承受范围,并建议规模化肉牛场舍内NH3浓度不宜高于本试验设置的最低浓度15 mg·m-3。
[1] | WU S P, ZHANG Y J, SCHWAB J J, et al. High-resolution ammonia emissions inventories in Fujian, China, 2009-2015[J]. Atmos Environ, 2017, 162: 100–114. DOI: 10.1016/j.atmosenv.2017.04.027 |
[2] | BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere:a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environ Sci Pollut Res, 2013, 20(11): 8092–8131. DOI: 10.1007/s11356-013-2051-9 |
[3] |
杨春璐, 孙铁珩, 和文祥, 等. 温度对汞抑制土壤脲酶动力学影响研究[J]. 环境科学, 2007, 28(2): 278–282.
YANG C L, SUN T H, HE W X, et al. Effect of temperature on kinetic of soil urease inhibited by Hg[J]. Environmental Science, 2007, 28(2): 278–282. (in Chinese) |
[4] |
黄健, 邓红, 谢跃伟, 等. 低蛋白和杂粕日粮对生长猪生产性能、养分消化、血液指标和猪舍氨气的影响[J]. 饲料工业, 2015, 36(21): 45–47.
HUANG J, DENG H, XIE Y W, et al. Effects of low-protein miscellaneous meal diet on the production performance, nutrient digestibility, blood indexes and piggery ammonia of pigs[J]. Feed Industry, 2015, 36(21): 45–47. (in Chinese) |
[5] | QUARLES C L, KLNG H F. Evaluation of ammonia and infectious bronchitis vaccination stress on broiler performance and carcass quality[J]. Poult Sci, 1974, 53(4): 1592–1596. |
[6] | MILES D M, OWENS P R, ROWE D E. Spatial variability of litter gaseous flux within a commercial broiler house:ammonia, nitrous oxide, carbon dioxide, and methane[J]. Poult Sci, 2006, 85(2): 167–172. |
[7] | MILES D M, BRANTON S L, LOTT B D. Atmospheric ammonia is detrimental to the performance of modern commercial broilers[J]. Poult Sci, 2004, 83(10): 1650–1654. DOI: 10.1093/ps/83.10.1650 |
[8] | NOCTOR G, MHAMDI A, FOYER C H. Oxidative stress and antioxidative systems:recipes for successful data collection and interpretation[J]. Plant Cell Environ, 2016, 39(5): 1140–1160. DOI: 10.1111/pce.12726 |
[9] | ADCOCK I M, COSIO B, TSAPROUNI L, et al. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response[J]. Antioxid Redox Signal, 2005, 7(1-2): 144–152. DOI: 10.1089/ars.2005.7.144 |
[10] |
魏凤仙, 徐彬, 萨仁娜, 等. 不同湿度和氨水平对肉仔鸡抗氧化性能及肉品质的影响[J]. 畜牧兽医学报, 2012, 43(10): 1573–1581.
WEI F X, XU B, SA R N, et al. The effect of ambient relative humidity and ammonia on antioxidant capacity and meat quality of broiler chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(10): 1573–1581. (in Chinese) |
[11] | LAWRIE R A, LEDWARD D A.The conversion of muscle to meat[M]//Lawrie's Meat Science.7th ed.Cambridge, UK: Woodhead Publishing Limited, 2006: 128-156. |
[12] | PHILLIPS C J C, PINES M K, LATTER M, et al. The physiological and behavioral responses of steers to gaseous ammonia in simulated long-distance transport by ship[J]. J Anim Sci, 2010, 88(11): 3579–3589. DOI: 10.2527/jas.2010-3089 |
[13] | PHILLIPS C J C, PINES M K, LATTER M, et al. Physiological and behavioral responses of sheep to gaseous ammonia[J]. J Anim Sci, 2012, 90(5): 1562–1569. DOI: 10.2527/jas.2011-4575 |
[14] | XING H, LUAN S J, SUN Y B, et al. Effects of ammonia exposure on carcass traits and fatty acid composition of broiler meat[J]. Anim Nutr, 2016, 2(4): 282–287. DOI: 10.1016/j.aninu.2016.07.006 |
[15] | YI B, CHEN L, SA R N, et al. High concentrations of atmospheric ammonia induce alterations of gene expression in the breast muscle of broilers (Gallus gallus) based on RNA-Seq[J]. BMC Genomics, 2016, 17(1): 598. DOI: 10.1186/s12864-016-2961-2 |
[16] |
曹进, 张峥. 封闭猪场内氨气对猪群生产性能的影响及控制试验[J]. 养猪, 2003(4): 42–44.
CAO J, ZHANG Z. Effect of ammonia in closed pig farm on pig production performance and controlled experiment[J]. Swine Production, 2003(4): 42–44. (in Chinese) |
[17] | WANG Y, HUANG M, MENG Q, et al. Effects of atmospheric hydrogen sulfide concentration on growth and meat quality in broiler chickens[J]. Poult Sci, 2011, 90(11): 2409–2414. DOI: 10.3382/ps.2011-01387 |
[18] | BESSEMS M, 'T HART N A, TOLBA R, et al. The isolated perfused rat liver:standardization of a time-honoured model[J]. Lab Anim, 2006, 40(3): 236–246. |
[19] | MIYAGAWA Y, TAKEMURA N, HIROSE H. Assessments of factors that affect glomerular filtration rate and indirect markers of renal function in dogs and cats[J]. J Vet Med Sci, 2010, 72(9): 1129–1136. DOI: 10.1292/jvms.09-0443 |
[20] | SHENG S L, LIU J J, DAI Y H, et al. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma[J]. FEBS J, 2012, 279(20): 3898–3910. DOI: 10.1111/j.1742-4658.2012.08748.x |
[21] |
王艳红. 静脉注射用人免疫球蛋白的临床应用现状[J]. 首都医药, 2004, 11(18): 24–26.
WANG Y H. Status of intravenous human immuno-globulin application capital[J]. Capital Medicine, 2004, 11(18): 24–26. (in Chinese) |
[22] | HU X Y, CHI Q R, WANG D X, et al. Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the th1/th2 imbalance in broiler bursa of fabricius[J]. Ecotoxicol Environ Saf, 2018, 164: 201–209. DOI: 10.1016/j.ecoenv.2018.08.029 |
[23] | WU B Y, CUI H M, PENG X, et al. Changes of the serum cytokine contents in broilers fed on diets supplemented with nickel chloride[J]. Biol Trace Elem Res, 2013, 151(2): 234–239. DOI: 10.1007/s12011-012-9554-y |
[24] | IKEUCHI H, KUROIWA T, HIRAMATSU N, et al. Expression of interleukin-22 in rheumatoid arthritis:potential role as a proinflammatory cytokine[J]. Arthritis Rheum, 2005, 52(4): 1037–1046. DOI: 10.1002/art.20965 |
[25] | YAN S F, TRITTO I, PINSKY D, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells.Central role of the binding site for nuclear factor-IL-6[J]. J Biol Chem, 1995, 270(19): 11463–11471. DOI: 10.1074/jbc.270.19.11463 |
[26] | DEL PRETE G, DE CARLI M, LAMMEL R M, et al. Th1 and Th2 T-helper cells exert opposite regulatory effects on procoagulant activity and tissue factor production by human monocytes[J]. Blood, 1995, 86(1): 250–257. DOI: 10.1182/blood.V86.1.250.bloodjournal861250 |
[27] | NAKANISHI K, YOSHIMOTO T, TSUTSUI H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu[J]. Cytokine Growth Factor Rev, 2001, 12(1): 53–72. DOI: 10.1016/S1359-6101(00)00015-0 |
[28] | GARLET G P. Destructive and protective roles of cytokines in periodontitis:A re-appraisal from host defense and tissue destruction viewpoints[J]. J Dent Res, 2010, 89(12): 1349–1363. DOI: 10.1177/0022034510376402 |
[29] | BIELINSKA A U, O'KONEK J J, JANCZAK K W, et al. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant[J]. Vaccine, 2016, 34(34): 4017–4024. DOI: 10.1016/j.vaccine.2016.06.043 |
[30] | SANTOS C L, BOBERMIN L D, SOUZA D G, et al. Lipoic acid and N-acetylcysteine prevent ammonia-induced inflammatory response in C6 astroglial cells:The putative role of ERK and HO1 signaling pathways[J]. Toxicol in Vitro, 2015, 29(7): 1350–1357. DOI: 10.1016/j.tiv.2015.05.023 |
[31] | KIM S H, LEE C E. Counter-regulation mechanism of IL-4 and IFN-α signal transduction through cytosolic retention of the pY-STAT6:pY-STAT2:p48 complex[J]. Eur J Immunol, 2011, 41(2): 461–472. |
[32] | KIM J E, CLARK R M, PARK Y, et al. Erratum:Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet[J]. Nutr Res Pract, 2013, 7(2): 146. DOI: 10.4162/nrp.2013.7.2.146 |
[33] | TERASAKI P I, YUGE J, CECKA J M, et al. Thirty-year trends in clinical kidney transplantation[J]. Clin Transpl, 1993: 553–562. |
[34] |
赵天, 王国军, 彭孝坤, 等. 氨气和硫化氢应激对肉羊免疫及抗氧化功能的影响[J]. 畜牧兽医学报, 2018, 49(10): 2191–2204.
ZHAO T, WANG G J, PENG X K, et al. Effects of ammonia and hydrogen sulfide stress on immunity and antioxidant function of goat[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(10): 2191–2204. (in Chinese) |
[35] | WEI F X, HU X F, SA R N, et al. Antioxidant capacity and meat quality of broilers exposed to different ambient humidity and ammonia concentrations[J]. Genet Mol Res, 2014, 13(2): 3117–3127. DOI: 10.4238/2014.April.17.8 |
[36] | ZWEIER J L, BRODERICK R, KUPPUSAMY P, et al. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation[J]. J Biol Chem, 1994, 269(39): 24156–24162. |