畜牧兽医学报  2020, Vol. 51 Issue (11): 2720-2730. DOI: 10.11843/j.issn.0366-6964.2020.11.011    PDF    
T1R1和T1R3在从江香猪附睾发育中的表达模式
蒙利洁1,2, 王维勇1,2, 杨艺1,2, 徐永健1,2, 冯贤辀1,2, 黄泳1,2, 高艺1,2, 龚婷1,2     
1. 贵州大学高原山地动物遗传育种与繁殖教育部重点实验室, 贵州省动物遗传育种与繁殖重点实验室, 贵阳 550025;
2. 贵州大学动物科学学院, 贵阳 550025
摘要:为研究味觉受体第一家族亚型1(T1R1)和3(T1R3)在从江香猪附睾发育过程中的表达模式,探讨味觉受体在哺乳动物雄性生殖机能中可能发挥的作用及潜在医学价值,本试验以从江香猪附睾组织为研究对象,分析附睾发育4个关键时期:初情前(15 d)、初情时(30 d)、初情后(60 d)和性成熟期(180 d)T1R1与T1R3的差异表达。采用实时荧光定量PCR、免疫组织化学(IHC)和Western blot检测两个味觉受体在不同日龄从江香猪附睾组织中转录、翻译水平的变化及其分布情况。RT-qPCR结果表明:TAS1R1与TAS1R3 mRNA在从江香猪附睾初情前(15 d)至性成熟期(180 d)表达量逐渐增加,且任意两个时期间差异极显著(P < 0.01)。Western blot结果显示,T1R1/T1R3蛋白在180 d表达量最高,在15 d表达量最低,两者之间差异显著(P < 0.05),平均表达丰度依次为180 d > 30 d > 60 d > 15 d。IHC结果显示,T1R1和T1R3蛋白在各日龄组从江香猪附睾组织均有分布,其中T1R1蛋白主要在上皮细胞膜上,尤其是基细胞和窄细胞;而T1R3蛋白主要在微绒毛、环状空泡和精子呈强阳性表达。综上,本研究发现不同日龄从江香猪附睾的T1R1/T1R3表达从15 d逐渐增加,至性成熟达到峰值,这一表达变化与附睾上皮基细胞和窄细胞及微绒毛的T1R1/T1R3的差异表达有关,这些特殊的表达模式与附睾生理功能存在时间关联,故推测T1R1和T1R3参与附睾内精子成熟和储存的调节过程。
关键词从江香猪    附睾    T1R1/T1R3    基因表达    蛋白定位    
Expression Patterns of T1R1 and T1R3 in the Congjiang Xiang Pig during Epididymal Development
MENG Lijie1,2, WANG Weiyong1,2, YANG Yi1,2, XU Yongjian1,2, FENG Xianzhou1,2, HUANG Yong1,2, GAO Yi1,2, GONG Ting1,2     
1. Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University, Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou Province, Guiyang 550025, China;
2. College of Animal Science, Guizhou University, Guiyang 550025, China
Abstract: The aim of this experiment was to study the expression pattern of taste receptor family 1 subtypes 1 (T1R1) and 3 (T1R3) during epididymal development of Congjiang Xiang pig, and to explore the possible role of these taste receptors in mammalian male reproductive function and its potential medical value. In this study, the differential expressions of T1R1 and T1R3 in epididymis at 4 key developmental periods (neonatal (15 d), peri-puberty (30 d), puberty (60 d) and sexual maturity (180 d)) of Congjiang Xiang pigs were analyzed. RT-qPCR, immunohistochemistry (IHC) and Western blot were used to detect the changes and distribution of the two taste receptors in epididymis of Congjiang Xiang pigs at different ages. The results of RT-qPCR showed that the expression of TAS1R1 and TAS1R3 mRNA increased gradually from neonatal (15 d) to sexual maturity (180 d), and there was a significant difference between each period (P < 0.01). The results of Western blot showed that the expression of T1R1/T1R3 protein was the highest on the 180 d and the lowest on the 15 d. The average protein abundance of T1R1/T1R3 was as follows: 180 d > 30 d > 60 d > 15 d. The results of IHC showed that T1R1 and T1R3 proteins were distributed in the epididymis of Congjiang Xiang pigs at 4 periods, in which T1R1 protein was mainly concentrated in epithelial cell membrane, especially in basal and narrow cells, while T1R3 protein was strongly positive in stereocilia, annular vacuoles and spermatozoa. In summary, the expression of T1R1/T1R3 in the epididymis of Congjiang Xiang pigs increased gradually from 15 d to the peak of sexual maturation, which was related to the differential expression of T1R1/T1R3 in epithelial basal cells, narrow cells and stereocilia of epididymis. These special expression patterns were time related to the physiological function of epididymis, so it is speculated that T1R1/T1R3 are involved in the regulation of sperm maturation and storage in epididymis.
Key words: Congjiang Xiang pig    epididymis    T1R1/T1R3    gene expression    protein localization    

味觉受体T1R1和T1R3(taste receptor type 1 subunit 1 and 3, T1R1, T1R3)是味觉受体第一家族的成员,分别由TAS1R1和TAS1R3基因编码,是哺乳动物感知甜味和鲜味的关键分子[1-2]。除在口腔味蕾细胞和上皮细胞中表达,感知味觉外[3],近年研究发现,T1R1/T1R3还在消化系统[4-7]、生殖系统[8-9]、膀胱[10]、胰腺[11]、肝[11]、脑[12]等位置表达,提示上述受体具备参与非味觉功能生理活动的能力。特别地,已有研究证实,T1R1/T1R3在睾丸间质细胞和精子[13-15]中高表达,定位于间质细胞膜及精子尾部[16]。以往研究与本实验室前期研究表明,T1R1/T1R3受体与精子发生、成熟、受精和类固醇激素合成(如睾酮)过程有关[8, 17-23],提示这些受体参与雄性动物生殖生理活动。此外,研究发现,绵羊TAS1R1、TAS1R2和TAS1R3基因外显子存在9个SNPs, 男性TAS1R2基因SNP已证实与精子数量有关[24-25]。这些证据提示,T1R1与T1R3参与了雄性生殖生理活动调控。

在前期工作中,本课题组以小鼠为模型,证明T1R1/T1R3在睾丸、晚期精子细胞和间质细胞中强烈表达,并分析了该受体在小鼠发育5个关键阶段(新生期、断奶期、初情期、成年期和老年期)呈阶段依赖性表达模式[16]。同时,也发现T1R3受体在小鼠生精周期呈细胞特异性表达。哺乳动物的精子在睾丸的曲细精管内生成后,需在附睾不同区段管腔中运行,经历精子质膜修饰,才具备受精和前进运动的能力。这一过程中,附睾上皮细胞合成和分泌特异蛋白,参与附睾管腔液态微环境形成,使精子发生一系列结构、生化和功能的改变,最终完成精子成熟[26]。然而,关于附睾T1R1与T1R3表达模式及其潜在生理作用目前还未见报道。精子细胞是否通过T1R1/T1R3受体感知附睾特殊微环境,改变自身生理生化情况,促进附睾精子成熟,亟待研究。

从江香猪是贵州的重要地方猪种,原产于贵州省从江县月亮山区,具备肉质优良、体型小、性成熟早等特点,具有良好的应用价值。发展从江香猪产业是贵州省十二大特色生态产业之一,然而,该猪种繁殖力低下,已成为阻碍其发展的因素。对精子成熟机制的研究,有助于提高种公猪的种用价值,促进从江香猪产业发展。鉴于此,本试验以从江香猪为研究对象,从分子和蛋白水平探索香猪附睾发育中精子细胞T1R1/T1R3的表达模式,以获取从江香猪附睾表达T1R1/T1R3对精子成熟调控的潜在分子机制,为开发利用从江香猪资源提供理论基础。

1 材料与方法 1.1 试验动物及样品采集

本研究严格遵循贵州大学动物实验伦理进行(NO: 1801227)。受试动物购自贵阳绿生源畜牧科技发展有限公司,选取初情前(15 d)、初情时(30 d),初情后(60 d)和性成熟期(180 d)贵州健康雄性从江香猪12头,每日龄段各3头,所选从江香猪饲养管理都是严格按照中国农场动物福利行业标准进行。采用手术法取出双侧睾丸及附睾组织,一侧附睾剪碎后保存于-80 ℃,以备RT-qPCR和Western blot检测;另一侧置于4%多聚甲醛固定液中4 ℃固定24 h,以进行免疫组织化学分析。

1.2 附睾组织石蜡切片制作

附睾组织在4%多聚甲醛固定液中固定24 h后,取出组织并进行修块→脱水(不同梯度酒精浓度)→透明(不同梯度二甲苯)→透蜡→包埋。最后用切片机(徕卡微系统有限公司),做5 μm连续切片,切下的组织于42 ℃水浴锅中展开,用粘性玻片将组织捞起,置于37 ℃孵育箱中烤24 h后收片备用。

1.3 总RNA提取及cDNA合成

将附睾组织与液氮充分研磨后转至1.5 mL无酶EP管内,用TRIzol法(赛默飞世尔科技有限公司)提取,最后,取1 μL在超微量分光光度计中测定其浓度与纯度值,统一定量后,置于-80 ℃冰箱保存备用。按照RevertAid First Strand cDNA Synthesis Kit(赛默飞世尔科技有限公司)反转录试剂盒说明书进行,合成cDNA,-20 ℃保存备用。

1.4 实时荧光定量PCR

引物根据NCBI数据库中公布的猪的TAS1R1(XM_021095259.1)、TAS1R3(NM_001113288.1)和β-actin(XM_021091599.1)基因序列用Primer 5.0和BLAST设计引物。引物序列、退火温度及产物见表 1。使用荧光定量PCR仪检测不同日龄从江香猪附睾组织中TAS1R1和TAS1R3 mRNA的表达量,每个样品重复3次。RT-qPCR反应体系10 μL:2× SYBR PremixExTaqTMII 5 μL (赛默飞世尔科技有限公司),上、下游引物各0.4 μL,cDNA 1 μL,ddH2 O 3.2 μL。反应条件:50 ℃ 2 min;95 ℃ 2 min;95 ℃ 15 s;60 ℃ 15 s;72 ℃ 1 min,40个循环。

表 1 引物信息 Table 1 Primer sequences information
1.5 SDS-PAGE与Western blot分析

总蛋白提取后,用BCA试剂盒进行蛋白定量(北京索莱宝生物科技有限公司);每份蛋白样品中加入等量5×SDS上样缓冲液,100 ℃变性10 min后,进行SDS-PAGE电泳,浓缩胶60 V电泳30 min,分离胶100 V电泳1 h。电泳后,利用湿转法将蛋白转移至PVDF膜上,100 mA 2 h后,用1×TBST漂洗,将膜浸入5% BSA中于37 ℃摇床中封闭2.5 h。TBST洗膜3次,每次10 min,然后加入相应一抗(T1R1/T1R3 1:1 000稀释;β-actin 1:3 000稀释)于4 ℃摇床反应过夜。室温下用TBST洗膜3次,每次10 min后,加入HRP标记的IgG(1:3 000)37 ℃摇床孵育2 h。TBST洗膜3次,每次10 min后,使用ECL超敏发光进行显色,最后用Chemi DocXRS系统成像并拍照,用Image J (Version: 1.48, National Institutes of Health)软件进行条带灰度分析。

1.6 免疫组织化学分析

参照SABC试剂盒(武汉博士德生物工程有限公司)说明书进行,简要过程如下:脱蜡水化→抗原热修复(修复液:20 mL 0.1 mmol·L-1柠檬酸钠+ 180 mL 1×PBS)→灭活内源酶(3% H2O2 10 min)→封闭(5% BSA封闭液于37 ℃孵育45 min)→加入相应一抗(T1R1:ab230788,1:100稀释;T1R3:ab150525,稀释1:100,Abcam公司;用1×PBS作为阴性对照,4 ℃过夜孵育)→加入HRP标记点IgG(辣根过氧化物酶标记山羊抗兔IgG,碧云天生物技术有限公司;稀释1:100,于37 ℃孵育45 min)→染色(DAB染色液,Sigma-Aldrich公司;苏木素复染)→透明→封片→正置显微镜(尼康仪器上海有限公司)进行观察、拍照。

1.7 数据统计分析

数据均以“平均数±标准差(Mean ± SD)”表示。根据2-△△Ct计算各日龄从江香猪附睾组织TAS1R1和TAS1R3 mRNA的表达量。运用Image J测定T1R1和T1R3蛋白灰度值,以及用正置显微镜对免疫组织化学结果进行观察、拍照。均采用GraphPad Prism 6.0分析数据,采用One-Way ANOVA进行单因素方差分析,并采取Dunnett’s test法进行多重比较。其中P < 0.01为差异极显著,P < 0.05为差异显著。

2 结果 2.1 附睾组织cDNA琼脂糖凝胶电泳检测结果

将提取的从江香猪附睾组织总RNA于超微量分光光度计中测定其浓度与纯度值,各日龄从江香猪附睾组织总RNA检测的OD260 nm/OD280 nm值在1.90~2.1之间,说明RNA纯度较高,可进行下一步试验。由图 1可知,以cDNA为模板,扩增从江香猪附睾TAS1R1和TAS1R3在167 bp和235 bp处出现单一的条带,与引物设计结果相符,每个目的片段均无杂带、拖尾现象,可进行实时荧光定量PCR(RT-qPCR)。

A. TAS1R1;B. TAS1R3。M. Marker;1~4分别代表 15、30、60和180 d A. TAS1R1;B. TAS1R3. M. Marker; 1-4 represent 15, 30, 60 and 180 d, respectively 图 1 TAS1R1和TAS1R3扩增产物 Fig. 1 TAS1R1 and TAS1R3 amplification products
2.2 从江香猪附睾TAS1R1和TAS1R3 mRNA的表达结果

TAS1R1和TAS1R3扩增产物的溶解曲线呈单峰,无非特异性产物和引物二聚体(图 2CD)。香猪附睾TAS1R1和TAS1R3 mRNA的相对表达量在15 d最低,180 d最高,且随日龄的增长逐渐增加,其中每一时段相比较于前一时段均呈现极显著差异(P < 0.01)(图 2AB)。

A、B分别为TAS1R1及TAS1R3在不同日龄从江香猪附睾中mRNA表达水平;C、D为相应RT-qPCR熔解曲线。肩标不同字母表示差异极显著(P < 0.01) A and B were mRNA level of TAS1R1 and TAS1R3 in epididymis of Congjiang Xiang pigs at different ages, respectively; C and D were corresponding melt curve of RT-qPCR, respectively. Different letters of shoulder mark showed extremely significant difference (P < 0.01) 图 2 TAS1R1及TAS1R3在附睾组织中mRNA表达水平 Fig. 2 Relative mRNA expression levels of TAS1R1 and TAS1R3 in epididymis
2.3 从江香猪附睾组织T1R1和T1R3受体蛋白表达

应用Western blot方法,以β-actin作为内参蛋白,分别检测了T1R1和T1R3蛋白在从江香猪初情前、初情时、初情后及性成熟期附睾上的表达情况,结果见图 34,T1R1和T1R3表达于从江香猪附睾发育过程中的15、30、60和180 d等4个时期,并且显示从江香猪附睾T1R1和T1R3蛋白大小约为93 ku(图 34),与其他物种分子量一致。其中,T1R1/β-actin和T1R3/β-actin灰度值比值结果显示,T1R1(图 3)和T1R3(图 4)蛋白表达灰度值在15、30和180 d之间显著增加(P < 0.05),并且180 d表达量最高。

柱状图由左至右分别表示15、30、60和180 d从江香猪附睾组织。肩标不同字母表示差异显著(P < 0.05)。下同 The histogram from left to right represented the epididymis tissue of Congjiang Xiang pigs at 15, 30, 60 and 180 d, respectively. Different letters of shoulder mark showed significant difference (P < 0.05). The same as below 图 3 Western blot检测T1R1蛋白在附睾组织中的表达 Fig. 3 The expression of T1R1 protein in epididymis was detected by Western blot
图 4 Western blot检测T1R3蛋白在附睾组织中的表达 Fig. 4 The expression of T1R3 protein in epididymis was detected by Western blot
2.4 从江香猪附睾发育过程中T1R1和T1R3蛋白表达定位

IHC分析从江香猪附睾味觉受体T1R1和T1R3的结果见图 56。其中,被染为棕黄色部位是T1R1和T1R3蛋白的阳性信号,颜色深浅可视为蛋白表达强度。初情前(15 d)、初情时(30 d)、初情后(60 d)和性成熟期(180 d)从江香猪的附睾组织均存在T1R1和T1R3蛋白阳性信号,从江香猪出生后,附睾组织T1R1和T1R3蛋白表达呈阶段依赖性模式。

A~A3. 15 d初情前附睾;B~B2. 30 d初情时附睾;C~C3. 60 d初情后附睾;D~D2. 180 d性成熟附睾;E~E2.成熟附睾的阴性对照 A-A3. The 15 d neonatal epididymis; B-B2. The 30 d peri-puberty epididymis; C-C3. The 60 d puberty epididymis; D-D2. The 180 d sexual maturity epididymis; E-E2, The corresponding negative control of epididymis 图 5 从江香猪附睾发育中T1R1蛋白的免疫组化检测 Fig. 5 Immunohistochemistry detection of T1R1 in epididymis of Congjiang Xiang pig
A~A2. 15 d初情前附睾;B~B2. 30 d初情时附睾;C~C2. 60 d初情后附睾;D~D2. 180 d性成熟附睾;E~E2.成熟附睾的阴性对照 A-A2. The 15 d neonatal epididymis; B-B2. The 30 d peri-puberty epididymis; C-C2. The 60 d puberty epididymis; D-D2. The 180 d sexual maturity epididymis; E-E2. The corresponding negative control of epididymis 图 6 从江香猪附睾发育中T1R3蛋白的免疫组化检测 Fig. 6 Immunohistochemistry detection of T1R3 in epididymis of Congjiang Xiang pig

图 56可知,15 d附睾管腔内聚集的碎片T1R1和T1R3阳性信号较强(图 5A,矩形内;图 6A2,箭头指向),以及主细胞呈强阳性染色(图 5A3图 6A2,箭头指向)。30 d微绒毛、环状空泡边缘和亮细胞T1R1/T1R3表现更强烈阳性染色(图 5B1图 6B1,矩形内;图 5B2图 6B2,箭头指向)。60 d从江香猪附睾上皮内衬、窄细胞和亮细胞T1R1阳性反应最强烈(图 5C,矩形内;图 5C2C3,箭头指向)。然而,60 d香猪附睾上皮环状空泡边缘T1R3阳性反应强烈,但附睾上皮细胞类型阳性染色较浅(图 6C2,箭头指向)。180 d附睾上皮基细胞核和管腔内精子呈强烈的阳性反应(图 5DD1,矩形内)。180 d附睾环状空泡、微绒毛根基和精子T1R3阳性反应最明显,染色更加强烈(图 6D2,箭头指向,S处)。其中,图 5E~E2图 6E~E2是用PBS代替一抗,作为阴性对照组,结果表明没有呈阳性染色,证实了免疫染色的特异性。

3 讨论

本试验对从江香猪初情前(15 d)、初情时(30 d)、初情后(60 d)和性成熟期(180 d)4个关键时期附睾组织发育中T1R1和T1R3 mRNA表达进行了研究。结果显示,不同日龄从江香猪附睾组织均有TAS1R1和TAS1R3 mRNA表达,且附睾发育过程中二者呈阶段依赖性表达,这与王雪[7]和龚婷[15]发现小鼠睾丸存在味觉受体的结果相似。通过对从江香猪各日龄附睾组织T1R1和T1R3在蛋白水平的表达分析,初情及性成熟附睾表达量相对较高,然而,本次研究中初情后从江香猪附睾T1R1/T1R3蛋白的表达量比初情期低,这种特殊表达模式可能与附睾微环境改变有关。与初情后从江香猪附睾上皮细胞相比,初情期的上皮细胞类型已分化完成,细胞多为立方柱状,而初情后附睾上皮细胞向基底层移动,细胞多为窄高柱状上皮,这种形态变化主要是附睾上皮细胞群组合的改变,影响精子的成熟[27]。Shima等[28-29]在小鼠睾丸生精上皮细胞群组合研究上已阐述,这种变化涉及发育过程中生精细胞内特殊信号的激活和抑制,暗示了附睾内呈时空特异性表达的T1R1和T1R3可能参与附睾发育调控,也可能是因为延伸中或延伸的精子细胞中T1R1和T1R3高水平表达所致[15]。同时,免疫组化结果可观察到,初情后附睾组织阳性染色相对较浅,验证了上述的特异性表达结果。附睾可能是味觉受体直接作用的靶器官,味觉受体可能通过位于附睾上皮的T1R1/T1R3发挥对附睾的直接作用,从而调节从江香猪的生殖功能。

T1R1和T1R3定位结果显示,其在各日龄组从江香猪附睾组织均不同程度地分布,且在附睾上皮细胞中存在特异性表达模式。具体表现为,初情期前主细胞和窄细胞呈阳性表达,这和Robaire等[30-31]对这些细胞功能的描述相似,认为这些细胞可能通过对各种物质的分泌和内吞来改变附睾管腔环境,调节附睾结构等变化,使附睾组织上皮细胞分化成熟。晕细胞作为附睾主要的免疫细胞,在初情期被深染,可能与该时期的免疫功能有关[32]。Schimming等[33-36]也报道了猪、小鼠和牛附睾中存在亮细胞,认为亮细胞参与吸收或内吞过程,在附睾腔液酸化中起重要作用,为精子成熟提供重要环境[37]。本试验观察到亮细胞深染,表明这些细胞主要在分泌和吸收过程中发挥作用,给接收来自睾丸的精子提供有利的微环境[38]。此外,初情后至性成熟期,观察到环状空泡、微绒毛及根基部表现较强的阳性染色。Mandon和Cyr[35]报道称,在许多物种中,这种微绒毛主要功能是从管腔吸收物质和分泌更多蛋白质,利于储存精子[39]。此外,本研究发现,在一个具有不规则管腔结构的附睾管近腔区中,T1R1和T1R3受体特异表达。考虑到这样的结构有利于精子储存,推测上述蛋白可能参与了附睾储存精子这一生理过程[33-40]。一般来说,附睾的这些特征与特定的功能有关[41-42]。此外,大多数哺乳动物[43-44]存在类似的细胞类型和时间段,因为这些典型细胞类型出现在某些特定的时间[40],并具有相似的结构特征和功能,T1R1和T1R3免疫反应强度的增加可能有助于维持精子的成熟和储存环境。T1R1可能通过附睾上皮细胞分泌和吸收等功能发挥对精子成熟的调节作用,从而调控香猪的生殖功能。同样地,T1R3通过位于附睾管内微绒毛而发挥对精子成熟的调节作用,从而共同调控香猪的生殖功能。

研究表明,T1R1/T1R3参与附睾精子成熟、获能、储存和受精等一系列过程,因而附睾内的T1R1/T1R3对精子成熟至关重要[8, 45]。本试验中,TAS1R1和TAS1R3在mRNA水平上的表达从初情前逐渐增加,至性成熟期达到峰值。蛋白水平上,附睾组织也不同程度的表达T1R1/T1R3,这可能与附睾管内储存精子的功能有关。精子在进入附睾后的成熟过程中,其结构和功能进一步完善,生理活动加强,细胞中的T1R1/T1R3浓度升高,因此表达愈加强烈,推测附睾作为精子成熟和储存的主要场所,T1R1/T1R3通过附睾上皮细胞及附睾组织其他部位对精子成熟及储存发挥主要作用。

4 结论

本试验结果表明,从江香猪附睾组织发育过程中均有T1R1和T1R3的表达和分布,且随着日龄的增长逐渐增加;180 d从江香猪附睾组织T1R1和T1R3表达最高,这可能与附睾管内存在精子有关。这些结果对进一步研究T1R1/T1R3在附睾内参与精子发生、成熟和储存的调节机制具有一定参考价值。

参考文献
[1] YOSHIDA R, NINOMIYA Y. Taste information derived from T1R-expressing taste cells in mice[J]. Biochem J, 2016, 473(5): 525–536. DOI: 10.1042/BJ20151015
[2] KURIHARA K. Umami the fifth basic taste:history of studies on receptor mechanisms and role as a food flavor[J]. Biomed Res Int, 2015, 2015: 189402.
[3] LI X D. T1R receptors mediate mammalian sweet and umami taste[J]. Am J Clin Nutr, 2009, 90(3): 733S–737S. DOI: 10.3945/ajcn.2009.27462G
[4] GHIARONI V, FIENI F, SILVESTRI F, et al. A dynamic population of excitable cells:the taste receptor cells[J]. Arch Ital Biol, 2005, 143(3-4): 199–206.
[5] TIZZANO M, CRISTOFOLETTI M, SBARBATI A, et al. Expression of taste receptors in solitary chemosensory cells of rodent airways[J]. BMC Pulm Med, 2011, 11: 3. DOI: 10.1186/1471-2466-11-3
[6] NAKAGAWA Y, NAGASAWA M, YAMADA S, et al. Sweet taste receptor expressed in pancreatic β-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion[J]. PLoS One, 2009, 4(4): e5106. DOI: 10.1371/journal.pone.0005106
[7] 王雪.味觉受体及其下游信号通路在小鼠雌性生殖系统的表达研究[D].哈尔滨: 东北林业大学, 2014.
WANG X.Expression of taste receptor and downstream signaling transduction cascades in the mouse female reproductive system[D].Harbin: Northest Forestry University, 2014.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10225-1014402157.htm
[8] MEYER D, VOIGT A, WIDMAYER P, et al. Expression of tas1 taste receptors in mammalian spermatozoa:functional role of tas1r1 in regulating basal Ca2+ and cAMP concentrations in spermatozoa[J]. PLoS One, 2012, 7(2): e32354. DOI: 10.1371/journal.pone.0032354
[9] ELLIOTT R A, KAPOOR S, TINCELLO D G. Expression and distribution of the sweet taste receptor isoforms T1R2 and T1R3 in human and rat bladders[J]. J Urology, 2011, 186(6): 2455–2462. DOI: 10.1016/j.juro.2011.07.083
[10] TANIGUCHI K. Expression of the sweet receptor protein, T1R3, in the human liver and pancreas[J]. J Vet Med Sci, 2004, 66(11): 1311–1314. DOI: 10.1292/jvms.66.1311
[11] LEE A A, OWYANG C. Sugars, sweet taste receptors, and brain responses[J]. Nutrients, 2017, 9(7): 653. DOI: 10.3390/nu9070653
[12] LUDDI A, GOVERNINI L, WILMSKÖTTER D, et al. Taste receptors:New players in sperm biology[J]. Int J Mol Sci, 2019, 20(4): 967. DOI: 10.3390/ijms20040967
[13] LI F, ZHOU M L. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice[J]. Mol Hum Reprod, 2012, 18(6): 289–297. DOI: 10.1093/molehr/gas005
[14] FEHR J, MEYER D, WIDMAYER P, et al. Expression of the G-protein α-subunit gustducin in mammalian spermatozoa[J]. J Comp Physiol A, 2007, 193(1): 21–34.
[15] 龚婷.甜味受体T1R3与Gα-味导素在小鼠睾丸类固醇激素合成中的功能及作用机制研究[D].南京: 南京农业大学, 2016.
GONG T.Poles of sweet taste receptor T1R3 and α-gustducin in testicular streroidogenesis of mice[D].Nanjing: Nanjing Agricultural University, 2016.(in Chinese)
[16] GONG T, WEI Q W, MAO D G, et al. Expression patterns of taste receptor type 1 subunit 3 and α-gustducin in the mouse testis during development[J]. Acta Histochem, 2016, 118(1): 20–30. DOI: 10.1016/j.acthis.2015.11.001
[17] KIUCHI S, YAMADA T, KIYOKAWA N, et al. Genomic structure of swine taste receptor family 1 member 3, TAS1R3, and its expression in tissues[J]. Cytogenet Genome Res, 2006, 115(1): 51–61. DOI: 10.1159/000094801
[18] ZHOU Y F, JIAO R, SONG T X, et al. Methionine regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction process in C2C12 cells[J]. Int J Mol Sci, 2016, 17(10): 1684. DOI: 10.3390/ijms17101684
[19] MOSINGER B, REDDING K M, PARKER M R, et al. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility[J]. Proc Natl Acad Sci U S A, 2013, 110(30): 12319–12324. DOI: 10.1073/pnas.1302827110
[20] JIANG J L, QI L, WEI Q W, et al. Effects of daily exposure to saccharin sodium and rebaudioside A on the ovarian cycle and steroidogenesis in rats[J]. Reprod Toxicol, 2018, 76: 35–45. DOI: 10.1016/j.reprotox.2017.12.006
[21] KREJČÍŘOVÁ R, MAŇASOVÁ M, SOMMEROVÁ V, et al. G protein-coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation[J]. Int J Biol Macromol, 2018, 116: 113–119. DOI: 10.1016/j.ijbiomac.2018.05.015
[22] SPINACI M, BUCCI D, MAZZONI M, et al. Expression of α-gustducin and α-transducin, G proteins coupled with taste receptors, in boar sperm[J]. Theriogenology, 2014, 82(1): 144–151. DOI: 10.1016/j.theriogenology.2014.03.016
[23] SPINACI M, BUCCI D, GADANI B, et al. Pig sperm preincubation and gamete coincubation with glutamate enhance sperm-oocyte binding and in vitro fertilization[J]. Theriogenology, 2017, 95: 149–153. DOI: 10.1016/j.theriogenology.2017.03.017
[24] GENTILUOMO M, CRIFASI L, LUDDI A, et al. Taste receptor polymorphisms and male infertility[J]. Hum Reprod, 2017, 32(11): 2324–2331. DOI: 10.1093/humrep/dex305
[25] 轩俊丽.绵羊嗅觉受体(OR)和味觉受体(T1Rs)基因多态性研究[D].甘肃: 甘肃农业大学, 2016.
XUAN J L. Studies on polymorphisms of olfactory receptor (OR) and taste receptor (T1Rs) genes of sheep[D]. Gansu: Gansu Agricultural University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10733-1016902626.htm
[26] PRABAGARAN E, BANDIVDEKAR A H, DIGHE V, et al. HOXBES2:A novel epididymal HOXB2 homeoprotein and its domain-specific association with spermatozoa[J]. Biol Reprod, 2007, 76(2): 314–326.
[27] PLANT T M, ZELEZNIK A J. Knobil and neill's physiology of reproduction[M]. 4th ed. San Diego, United States: Elsevier/Academic Press, 2015.
[28] SHIMA J E, MCLEAN D J, MCCARREY J R, et al. The murine testicular transcriptome:characterizing gene expression in the testis during the progression of spermatogenesis[J]. Biol Reprod, 2004, 71(1): 319–330.
[29] GONG W, PAN L L, LIN Q, et al. Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing[J]. Sci China Life Sci, 2013, 56(1): 1–12.
[30] ROBAIRE B, HERMO L.Efferent ducts, epididymis, and vas deferens: Structure, functions, and their regulation[M]//KNOBIL E, NEILL J D.The Physiology of Reproduction.Vol.1.New York, NY: Raven Press, 1988: 999-1080.
[31] ADAMALI H I, HERMO L. Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis[J]. J Androl, 1996, 17(3): 208–222.
[32] SERRE V, ROBAIRE B. Distribution of immune cells in the epididymis of the aging brown norway rat is segment-specific and related to the luminal content[J]. Biol Reprod, 1999, 61(3): 705–714.
[33] SCHIMMING B C, BAUMAM C A E, PINHEIRO P F F, et al. Aquaporin 9 is expressed in the epididymis of immature and mature pigs[J]. Reprod Domest Anim, 2017, 52(4): 617–624. DOI: 10.1111/rda.12957
[34] BEAULIEU V, DA SILVA N, PASTOR-SOLER N, et al. Modulation of the actin cytoskeleton via gelsolin regulates vacuolar H+-ATPase recycling[J]. J Biol Chem, 2005, 280(9): 8452–8463. DOI: 10.1074/jbc.M412750200
[35] MANDON M, CYR D G. Tricellulin and its role in the epididymal epithelium of the rat[J]. Biol Reprod, 2015, 92(3): 66.
[36] MARTÍNEZ-GARCÍA F, REGADERA J, COBO P, et al. The apical mitochondria-rich cells of the mammalian epididymis[J]. Andrologia, 1995, 27(4): 195–206.
[37] HERMO L, DWORKIN J, OKO R. Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa[J]. Am J Anat, 1988, 183(2): 107–124. DOI: 10.1002/aja.1001830202
[38] ARRIGHI S, ARALLA M, GENOVESE P, et al. Undernutrition during foetal to prepubertal life affects aquaporin 9 but not aquaporins 1 and 2 expression in the male genital tract of adult rats[J]. Theriogenology, 2010, 74(9): 1661–1669. DOI: 10.1016/j.theriogenology.2010.06.039
[39] WEI Z, DE IULIIS G N, DUN M D, et al. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage[J]. Front Endocrinol, 2018, 9: 59. DOI: 10.3389/fendo.2018.00059
[40] BRIZ M, BONET S, FRADERA A. A morphologic study of the ductus of the epididymis of Sus domesticus[J]. J Morphol, 1993, 215(2): 183–193. DOI: 10.1002/jmor.1052150206
[41] DACHEUX J L, DACHEUX F, DRUART X. Epididymal protein markers and fertility[J]. Anim Reprod Sci, 2016, 169: 76–87. DOI: 10.1016/j.anireprosci.2016.02.034
[42] LI K, WEI X D, ZHANG G B, et al. Different expression of B7-H3 in the caput, corpus, and cauda of the epididymis in mouse[J]. BMC Urol, 2017, 17(1): 23. DOI: 10.1186/s12894-017-0215-5
[43] ABOU-HAÏLA A, FAIN-MAUREL M A. Regional differences of the proximal part of mouse epididymis:Morphological and histochemical characterization[J]. Anat Rec, 1984, 209(2): 197–208. DOI: 10.1002/ar.1092090207
[44] CHU C, ZHENG G Y, HU S G, et al. Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats[J]. PLoS One, 2015, 10(4): e0124450. DOI: 10.1371/journal.pone.0124450
[45] GERVASI M G, VISCONTI P E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation[J]. Andrology, 2017, 5(2): 204–218. DOI: 10.1111/andr.12320