畜牧兽医学报  2020, Vol. 51 Issue (10): 2557-2566. DOI: 10.11843/j.issn.0366-6964.2020.10.024    PDF    
ChMDA5通路参与传染性法氏囊病病毒致雏鸡法氏囊损伤的研究
栾亚男1,2, 许丹蕾1,2, 葛铭1,2, 唐泽群1,2, 赵霞1,2, 张瑞莉1,2     
1. 东北农业大学动物医学学院, 哈尔滨 150030;
2. 黑龙江省实验动物与比较医学重点实验室, 哈尔滨 150030
摘要:传染性法氏囊病病毒(IBDV)为dsRNA病毒,可造成雏鸡法氏囊损伤进而发生免疫抑制;MDA5是能够特异性识别dsRNA病毒的模式识别受体。为研究鸡MDA5(chMDA5)信号通路在IBDV致雏鸡法氏囊病理损伤中的作用,试验选取50只14日龄SPF雏鸡随机分为IBDV感染组和空白对照组,每组25只,IBDV感染组雏鸡通过点眼、滴鼻感染IBDV JIC7株病毒液,0.6 mL·只-1,空白对照组雏鸡经相同途径给予相同剂量无菌PBS,感染IBDV后第1、4、7、21及35天采集雏鸡法氏囊。采用qRT-PCR方法检测法氏囊中IBDV载量,chMDA5及chMDA5信号通路衔接蛋白(chIPS-1)、转录因子(chIRF3和chNF-κB)、下游产物细胞因子(chIFN-βchTNF-αchIL-1βchIL-6)mRNA水平变化;间接免疫荧光法检测chMDA5蛋白表达变化,传统病理学方法检查法氏囊病理组织学变化。结果发现,雏鸡感染IBDV后,其法氏囊中chMDA5、chIPS-1、chIRF3、chNF-κBchIFN-βchTNF-αchIL-1βchIL-6的表达量均显著高于对照组,且法氏囊组织发生形态损伤,上述变化趋势与IBDV载量变化基本一致。结果表明,雏鸡法氏囊chMDA5及其信号转导通路可被IBDV激活,参与到IBDV感染雏鸡法氏囊损伤与抗损伤过程中。
关键词IBDV    法氏囊    chMDA5信号转导    病理形态损伤    雏鸡    
Study on the Involvement of Chicken Melanoma Differentiation-Associated Gene 5 Pathway in Bursa Injury of Chicken Induced by Infectious Bursal Disease Virus
LUAN Ya'nan1,2, XU Danlei1,2, GE Ming1,2, TANG Zequn1,2, ZHAO Xia1,2, ZHANG Ruili1,2     
1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
2. Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China
Abstract: Infectious bursal disease virus (IBDV), a double-stranded RNA virus, can cause the infection of chickens with bursal lesions, leading to immunosuppression; melanoma differentiation-associated gene 5 (MDA5) is a pattern recognition receptor that specifically recognises double-stranded RNA viruses. In order to investigate the mechanism of the chicken MDA5 (chMDA5) signalling pathway in pathological injury in IBDV-infected chickens, fifty 14-day-old specific pathogen-free (SPF) chickens were allocated into 2 groups (infected and control) and twenty-five chickens were in each group. Each chicken of infected group was inoculated with 0.6 mL IBDV JIC7 virus solution intraocularly and intranasally. The chickens in control group were administered sterile phosphate buffered saline (PBS) in the same manner simultaneously. The chickens' bursa of Fabricius was isolated at the 1st, 4th, 7th, 21st and 35th day after infection. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to detect the IBDV load, and mRNA expression of chMDA5, chMDA signal pathway adaptor protein (chIPS-1), transcription factor (chIRF3, chNF-κB) and downstream product cytokines (chIFN-β, chTNF-α, chIL-1β and chIL-6). Indirect immunofluorescence assay was performed for the expression of chMDA5 protein in chicken bursa of Fabricius. Conventional pathological methods were used to examine the pathological changes in the bursa of Fabricius. The results showed that the expression of chMDA5 as well as chIPS-1, chIRF3, chNF-κB, chIFN-β, chTNF-α, chIL-1β and chIL-6 were significantly higher than those in the control group, and morphological damage occurred in the bursal tissue in the infected group. The aforementioned trend was consistent with the change in IBDV load. The results indicated that chMDA5 and its signal transduction pathway could be activated by IBDV, which involves the bursa of Fabricius injury and anti-injury process in chickens infected with IBDV.
Key words: IBDV    bursa of Fabricius    chMDA5 signal transduction    pathology morphological damage    chicken    

鸡传染性法氏囊病(infection bursal disease,IBD)是由双链RNA病毒科禽双链RNA病毒属法氏囊病病毒(infection bursal disease virus,IBDV)引起的一种鸡的急性高度接触性免疫抑制传染病。IBDV主要侵害2~15周龄鸡,法氏囊是IBDV的主要靶器官,导致病鸡出现以淋巴细胞衰竭坏死为主要特征的严重的免疫抑制[1]。由于宿主在疾病发生发展中的作用信息仍不完全清楚,阻碍了对IBD防治研究的进一步深入。

本实验室以往研究发现,在IBDV感染雏鸡外周血液淋巴细胞内,黑色素瘤分化相关基因5(melanoma differentiation associated gene 5, MDA5)可被IBDV激活[2];也有体外研究发现,MDA5能够识别IBDV[3-4]。MDA5是RIG-I样模式识别受体(RIG-I like receptors, RLRs)家族的成员,能够特异性识别细胞中的病毒双链RNA(dsRNA),通过衔接蛋白分子IPS-1启动特异性信号通路,激活核转录因子IRF3和NF-κB,诱导免疫炎性因子产生,介导抗病毒效应[5-6]。本实验室前期研究发现,在雏鸡法氏囊淋巴滤泡的皮质和髓质细胞内均可检测到chMDA5蛋白表达[7]。那么,雏鸡感染IBDV后,其法氏囊chMDA5表达发生哪些变化?导致雏鸡免疫抑制的法氏囊损伤是否与chMDA5对IBDV特异性识别及其信号转导通路激活而导致炎症因子分泌有关?对上述问题的研究将会对阐明IBDV致病机制具有重要意义。

因此,本研究从能够特异性识别dsRNA病毒的模式识别受体MDA5及其信号转导入手,以IBDV靶器官法氏囊为研究对象,研究雏鸡感染IBDV后,其法氏囊内MDA5及其信号转导通路中信号分子的表达、IBDV载量及法氏囊病理形态学变化,明确MDA5信号通路在IBDV感染雏鸡法氏囊损伤机制中的作用。

1 材料与方法 1.1 试验动物及设计

将50只14日龄SPF雏鸡(中国农业科学院哈尔滨兽医研究所SPF实验动物中心)随机分为IBDV感染组(I组)和空白对照组(C组),每组各25只。I组雏鸡通过滴鼻、点眼方式人工感染IBDV JIC7株病毒液(105.0 ID50/0.05 mL,中国兽医药品监察所),0.6 mL·只-1;C组雏鸡以相同途径给予相同剂量无菌PBS。两组雏鸡严格隔离饲养,分别于IBDV感染后1、4、7、21、35 d,每组随机选取5只雏鸡安乐死,快速采集法氏囊,分别做如下处理:部分置于液氮中迅速冷冻后-80 ℃保存,用于检测各指标mRNA水平变化和MDA5蛋白在法氏囊组织中的表达;部分置于4%多聚甲醛固定液中,用于病理组织学切片制备。

1.2 法氏囊mRNA表达检测

应用实时荧光定量RT-PCR法检测法氏囊IBDV和chMDA5、chIPS-1、chNF-κBchIRF3、chTNF-αchIL-1β、chIL-6、chIFN-β mRNA表达。利用RNA快速提取试剂盒(北京百泰克生物技术有限公司)提取雏鸡法氏囊组织总RNA,反转录合成cDNA,参考GenBank公布的IBDV VP2基因和鸡(Gallus gallus)MDA5、IPS-1、NF-κBIRF3、TNF-αIL-1β、IL-6、IFN-ββ-actin基因序列,设计特异性引物,引物序列见表 1。以雏鸡法氏囊cDNA为模板,用Power SYBR Real-time PCR预混染料(北京百泰克生物技术有限公司)检测上述基因的表达。反应在Line Gene 9620荧光定量PCR仪(博日科技有限公司)进行,反应体系20 μL:2×Premix 10 μL, Forward Primer 0.4 μL, Reverse Primer 0.4 μL, cDNA 1 μL, ROX 0.4 μL, H2O 7.8 μL;反应程序:95 ℃预变性30 s,95 ℃变性5 s、60 ℃退火34 s、共40个循环,退火延伸时检测荧光信号。将反应得到的IBDV VP2基因Ct值代入已知的回归方程Y=-3.585 967X+30.30[2],计算出IBDV的拷贝数。其他mRNA相对表达量以β-actin为内参,采用2-ΔΔCt法进行计算分析。

表 1 引物序列 Table 1 Primer sequences
1.3 法氏囊MDA5蛋白表达检测

应用间接免疫荧光法检测法氏囊chMDA5蛋白表达。将法氏囊制成7 μm冰冻切片;正常山羊血清(博士德生物工程有限公司)按1:100稀释,室温封闭20 min;小鼠抗鸡MDA5单克隆抗体(本实验室制备[7])按1:400稀释,37 ℃孵育2 h;异硫氰酸荧光素(FITC)标记山羊抗小鼠IgG(中杉金桥生物技术有限公司)按1:500稀释,37 ℃避光孵育1.5 h;DAPI(碧云天生物技术有限公司)复染细胞核5 min后置于荧光显微镜(Leica)下观察MDA5蛋白表达情况,阳性反应部位呈特异性绿色荧光。每张切片选取5个视野采用Image Measuring Software(江苏捷达软件工程有限公司)分析其细胞平均光密度,细胞平均光密度与MDA5蛋白表达阳性强度成反比,结果绘制成柱状图。

1.4 法氏囊病理形态变化检查

对感染组和对照组雏鸡进行尸体解剖检查,记录各法氏囊剖检变化。将固定于4%多聚甲醛的法氏囊制备成石蜡切片后进行苏木精-伊红染色,在光学显微镜下观察法氏囊病理组织学变化,并采集图片。

1.5 数据处理

结果用“均值±标准差(Mean±SD)”表示。采用SPSS 17.0软件对结果进行统计分析。使用GraphPad Prism 5软件绘制图形。

2 结果 2.1 雏鸡法氏囊IBDV载量

图 1所示,感染IBDV后第1天,在雏鸡法氏囊中即可检测到高拷贝数的病毒,随后病毒继续复制至感染后第4天达到峰值,之后逐渐下降,至感染后第35天基本检测不到病毒存在。

图 1 法氏囊病毒载量的动态变化 Fig. 1 The dynamic changes of the viral load in bursa of Fabricius
2.2 雏鸡法氏囊chMDA5表达

雏鸡感染IBDV后,其法氏囊chMDA5 mRNA和蛋白表达在感染后第1天较对照组显著增加(P < 0.01或P < 0.05),在法氏囊淋巴滤泡的髓质部、皮质部细胞中均可见chMDA5蛋白表达,在感染后第4天chMDA5表达量达到峰值,之后逐渐下降,直至感染后第35天与对照组相比差异不显著(P>0.05)(图 2)。

A.实时荧光定量PCR法检测chMDA5 mRNA表达结果。B~F.间接免疫荧光法检测chMDA5蛋白表达结果,其中C、D为IBDV感染后第4天对照组雏鸡法氏囊,E、F为IBDV感染后第4天感染组雏鸡法氏囊,C、E为DAPI染细胞核,D、F为chMDA5阳性表达,B为根据细胞平均光密度制备的柱形图,细胞平均光密度与chMDA5阳性表达强度成反比。* P < 0.05、** P < 0.01和*** P < 0.001表示显著差异。下同 A. The expression of chMDA5 mRNA was determined by qPCR. B-F.Results represent the means±SEM of values normalized to chβ-actin expression and standardized to 1.0 in control group. The expression of chMDA5 protein was determined by indirect immunofluorescence, C and D are control group at PIDs 4, E and F are infection group at PIDs 4, C and E are nuclear staining (DAPI), D and F are chMDA5 positive expression, B is the bar chart according to cell average optical density, and the average optical density of cells was inversely proportional to the positive expression intensity of chMDA5(B). * P < 0.05, ** P < 0.01 and *** P < 0.001 are considered as significant difference. The same as below 图 2 法氏囊chMDA5 mRNA和蛋白表达 Fig. 2 The expression of the chMDA5 mRNA and protein in bursa of Fabricius
2.3 雏鸡法氏囊chMDA5信号转导通路相关信号分子chIPS-1、chIRF3及chNF-κB mRNA表达

雏鸡感染IBDV后,其法氏囊chIPS-1 mRNA的表达量在感染后第1天显著高于对照组(P < 0.01),随后持续增加,至感染后第4天达到峰值(P < 0.01),之后大幅下降,至感染后第7天达到最低值且低于对照组,随后小幅上升,并在感染后第35天与对照组基本持平(P>0.05);chIRF3 mRNA的表达与chIPS-1的表达规律基本一致;chNF-κB mRNA的表达量在感染后1~4 d亦呈上升趋势并在第4天时达到表达量的峰值,且均显著高于对照组(P < 0.01),随后出现小幅下降,至感染后第7天其mRNA表达量仍显著高于对照组(P < 0.01),之后逐渐减少,至感染后第35天与对照组趋于一致(P>0.05)(图 3)。

A、B、C分别为chIPS-1、chIRF3及chNF-κB mRNA表达结果 The mRNA expression of chIPS-1 (A), chIRF3 (B) and chNF-κB (C) was determined by qPCR 图 3 法氏囊chIPS-1、chIRF3及chNF-κB mRNA表达 Fig. 3 The mRNA expression of the chIPS-1, chIRF3 and chNF-κB mRNA in bursa of Fabricius
2.4 雏鸡法氏囊细胞因子chIFN-βchTNF-αchIL-1βchIL-6 mRNA表达

雏鸡感染IBDV后,其法氏囊中chIFN-β mRNA的表达量总体呈现先上升后下降趋势,即在感染后1~4 d之间呈现上升趋势(P < 0.01),并在感染后第4天达到峰值(P < 0.01),之后持续下降,至感染后第21天其mRNA表达量仍高于对照组且差异显著(P < 0.05),感染后第35天与对照组相比差异不显著(P>0.05);chTNF-αchIL-1βchIL-6 mRNA的表达量在感染后1~4 d持续上升,与对照组相比差异显著(P < 0.01),在感染后第4天达到峰值(P < 0.01),之后急剧下降,至感染后第7天其mRNA表达量低于对照组(P < 0.01, P < 0.05和P>0.05),随后又上升,至感染后第21、35天与对照组相比差异不显著(P>0.05)(图 4)。

A、B、C、D分别为chIFN-β, chTNF-α, chIL-1β and chIL-mRNA表达结果 The expression of chIFN-β (A), chTNF-α (B), chIL-1β (C) and chIL-6 (D) was determined by qPCR 图 4 法氏囊chIFN-β, chTNF-α, chIL-1β and chIL-6 mRNA表达变化 Fig. 4 The expression of chIFN-β, chTNF-α, chIL-1β and chIL-6 mRNA in bursa of Fabricius
2.5 雏鸡法氏囊眼观病理变化

雏鸡感染IBDV后第1天,法氏囊内出现少量黏液;感染后第7天,法氏囊严重萎缩,质地易碎,表面及黏膜面均有出血点和出血斑,黏膜面还可见大量黏液和黄色胶冻样物(图 5);之后病变减轻,至感染后第35天,法氏囊仅大小与对照组相比略萎缩。对照组雏鸡法氏囊未见明显变化。

A、B.对照组雏鸡法氏囊;C、D、E、F为感染组雏鸡法氏囊,分别显示法氏囊萎缩、黄色胶冻状物、水肿、黏膜表面出血点 A, B. Chicken bursa of Fabricius in control group; C, D, E, F are chicken bursa of Fabricus in infection group, showed bursal atrophy, yellow jelly-like samples, edema, bleeding spots on the mucosal surfaces, respectively 图 5 法氏囊眼观病理变化 Fig. 5 The gross pathological changes in bursa of Fabricius
2.6 雏鸡法氏囊病理组织变化

感染组雏鸡法氏囊病理组织损伤在感染后第7天最显著,表现为淋巴滤泡数量急剧减少,淋巴滤泡结构不清,滤泡内尚存少量细胞,髓质内淋巴细胞大部分坏死、崩解,淋巴细胞核多数碎裂、淡染,滤泡内有大量粉红色浆液性渗出物以及异嗜性粒细胞浸润;黏膜固有层内有大量红细胞;滤泡间质消失,其内存在大量处于坏死阶段的淋巴细胞,之后病变逐渐减轻,至感染后第35天,法氏囊结构逐渐恢复。对照组雏鸡法氏囊未见明显病理组织学变化(图 6)。

A.对照组雏鸡法氏囊;B~D.感染组雏鸡法氏囊,图中1表示淋巴滤泡内有粉红色浆液性渗出物,2表示为淋巴滤泡髓质和皮质内淋巴细胞崩解、坏死,3表示为固有层内有大量红细胞 A. Control group. B-D. Infected group, number 1 in the picture indicate pink serous exudates in the lymphatic follicle; number 2 in the picture indicate lymphocyte disintegration, necrosis in lymphatic follicles medulla and cortical; number 3 in the picture indicate many red blood cells in the lamina propria 图 6 IBDV感染后第7天雏鸡法氏囊病理组织学变化(HE染色) Fig. 6 The histopathological changes of bursa of Fabricius in chickens on the 7th day after IBDV infection(HE staining)
3 讨论

MDA5是一种重要的天然模式识别受体,可以识别病毒的dsRNA[8-9]。研究表明,在RIG-Ⅰ缺乏的情况下,chMDA5在抗病毒方面发挥重要作用,chMDA5可被病毒的dsRNA识别而表达增加,信号传导通路被激活,启动抗病毒天然免疫和特异性免疫反应[10-12]。Hayashi等[13]用dsRNA的模拟物poly(I:C)作用于DF-1细胞,发现细胞内chMDA5表达增强。在感染IBDV的DF-1细胞中,chMDA5的表达随着病毒数量的增加而增强[14]。在本研究中,以雏鸡为研究对象,检测chMDA5和IBDV两者在感染雏鸡法氏囊内的变化情况,以说明chMDA5是否参与IBDV感染雏鸡过程。结果显示,IBDV感染雏鸡后,其法氏囊中病毒载量在感染后第1天明显增加,感染后第4天达到最大拷贝数。雏鸡法氏囊内chMDA5 mRNA及蛋白水平变化较为一致,即在IBDV感染后第1天, chMDA5的表达量上调,病毒载量达到最大值时chMDA5的表达量也达到峰值,这提示,IBDV进入法氏囊后即引起法氏囊细胞内模式识别受体chMDA5的识别,且chMDA5的表达与IBDV载量存在密切的关系。

同时,本试验又对IBDV感染雏鸡法氏囊中chMDA5信号转导通路分子表达进行了研究,结果发现,chMDA5下游接头蛋白chIPS-1 mRNA表达趋势与chMDA5的表达相一致,即在感染后便大量上调,至感染后第4天达到峰值,这进一步说明,IBDV感染可引起雏鸡法氏囊chMDA5表达增强,并通过chIPS-1完成对下游信号的传递[3]。这一点也能从chMDA5信号通路下游主要的转录因子chIRF3的表达趋势与chMDA5和chIPS-1相一致而得到证实;而chMDA5信号通路下游另一主要的转录因子chNF-κB的表达在感染后1~4 d也与chMDA5和chIPS-1相一致,说明chMDA5被活化后,分别激活了chIRF3和chNF-κB通路[15-16]。在感染后第7天,chNF-κB的表达量稍有下调但仍保持在较高水平,可能由于体内其它信号通路的参与,如可识别dsRNA的另一模式识别受体TLR3信号转导通路被激活而使NF-κB的表达一直保持较高水平[17-19],本研究的另一部分结果也显示,在IBDV感染雏鸡后1~21 d,法氏囊内chTLR3的表达增强(结果未展示)。

ChMDA5信号通路被激活后可诱导细胞因子的表达。本研究发现,chMDA5信号转导通路下游产物细胞因子chIFN-β的表达量在感染后1~4 d均显著高于对照组,且在第4天达到最大值。这一结果与Lee等[14]在IBDV感染DF-1后,chIFN-β的变化趋势基本一致。有研究表明,病毒感染后, IRF3主要参与了早期阶段对干扰素的诱导表达,而感染后期主要是通过Ⅰ型干扰素分泌到细胞外,通过自分泌或旁分泌的方式结合细胞表面干扰素受体,激活胞浆内JAK-STAT途径,调控数百个干扰素刺激基因的表达,实现其持续表达[20]。因此,感染IBDV雏鸡法氏囊chIFN-β在感染后1~4 d大量表达,而在上游信号分子(chIRF3)处于下调趋势时其表达量仍高于对照组;有报道认为, IBDV VP4蛋白可与糖皮质激素诱导的亮氨酸模式(GILZ)互相作用来抑制Ⅰ型干扰素的产生[21],所以感染后第7天chIFN-β的表达量呈现逐渐下调的趋势。同时,我们也检测到,促炎症因子chTNF-αchIL-1βchIL-6的mRNA表达量在感染后第1天显著高于对照组并在第4天达到峰值。Khatri等[22]研究显示,IBDV感染SPF雏鸡后,巨噬细胞在感染后3~5 d数目均升高,且检测到在感染后第3天法氏囊巨噬细胞内chIL-6和chIL-1β mRNA的表达量达到最大值,与本试验在感染后的法氏囊内检测到chIL-6和chIL-1β mRNA表达量均在感染后第4天表达量最高结果基本一致。王灵娟[23]研究发现,IBDV感染SPF雏鸡后,雏鸡法氏囊内转化生长因子(TGF-β1)mRNA的表达在感染后第7天达到最大值,而TGF-β1能够抑制Th2型细胞分泌细胞因子如IL-6、IL-1β等,提示本试验中在感染后第7天促炎性细胞因子出现大幅下降与之有关。

雏鸡感染IBDV后,其法氏囊内chMDA5及其信号转导通路被激活,诱导IFN-β大量合成、分泌的同时,也产生大量促炎症细胞因子(chTNF-α、chIL-1β和chIL-6),这些促炎症细胞因子通过其促进炎症的作用可使感染后雏鸡法氏囊内发生损伤性变化[24-25]。本研究发现,在IBDV感染雏鸡法氏囊内可观察到淋巴细胞数量减少、血管充血及出血、炎性渗出等变质性炎的病理形态学变化,尤其以感染后4~7 d病变最为显著。刘爵等[26]通过使用超强毒感染14日龄SPF鸡后,观察其法氏囊的组织病理学变化的结果,与本试验观察较一致,且其在感染后第14天仍未观察到淋巴细胞的再生,本试验在感染后第21天观察到法氏囊开始修复。这些病理形态损伤应与chMDA5及其信号转导通路被激活而产生的促炎症因子密切相关。另外,也有研究显示,IBDV VP5蛋白具有抑制病毒感染早期细胞凋亡的作用,这有利于病毒入侵早期大量复制增殖,而感染后期,IBDV可使细胞膜通透性升高,导致细胞破裂,以利于子代病毒释放[27-28],这一过程造成细胞死亡。在本试验中,的确观察到IBDV感染雏鸡法氏囊内淋巴细胞数量减少,尤其以感染后第7天病变最为明显。同时,这可能是在IBDV感染后第7天检测到雏鸡法氏囊chMDA5及其信号通路分子(chIPS-1、chIRF3)大幅下调的一个重要原因。

4 结论

综上所述,雏鸡法氏囊内chMDA5信号通路能够被IBDV激活,参与IBDV感染雏鸡过程;IBDV激活雏鸡法氏囊内chMDA5信号转导通路,诱导促炎性细胞因子释放,同时法氏囊组织发生形态损伤,提示IBD雏鸡法氏囊病理损伤与chMDA5信号通路活化密切相关。

参考文献
[1] MULLER H, ISLAM R, RAUE R. Research on infectious bursal disease-the past, the present and the future[J]. Vet Microbiol, 2003, 97(1-2): 153–165. DOI: 10.1016/j.vetmic.2003.08.005
[2] 王成成, 葛铭, 刘超男, 等. IBDV感染雏鸡外周血液淋巴细胞chMDA5信号通路因子表达的动态变化[J]. 畜牧兽医学报, 2015, 46(5): 830–835.
WANG C C, GE M, LIU C N, et al. Dynamic changing in the expression of chMDA5 signal pathway factors in peripheral blood lymphocytes of chicken infected with IBDV[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(5): 830–835. (in Chinese)
[3] LEE C C, WU C C, LIN T L. Chicken melanoma differentiation-associated gene 5(MDA5) recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity[J]. Arch Virol, 2014, 159(7): 1671–1686. DOI: 10.1007/s00705-014-1983-9
[4] YE C J, YU Z L, XIONG Y W, et al. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction[J]. FASEB J, 2019, 33(1): 286–300. DOI: 10.1096/fj.201800062RR
[5] BELGNAOUI S M, PAZ S, HISCOTT J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter[J]. Curr Opin Immunol, 2011, 23(5): 564–572. DOI: 10.1016/j.coi.2011.08.001
[6] KATO H, TAKEUCHI O, SATO S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses[J]. Nature, 2006, 441(7089): 101–105. DOI: 10.1038/nature04734
[7] 栾亚男, 葛铭, 李广兴, 等. 雏鸡免疫器官中chMDA5的表达与定位[J]. 畜牧兽医学报, 2016, 47(7): 1480–1487.
LUAN Y N, GE M, LI G X, et al. The expression and location of chMDA5 in chick immune organs[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(7): 1480–1487. (in Chinese)
[8] LOUBER J, BRUNEL J, UCHIKAWA E, et al. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5[J]. BMC Biol, 2015, 13: 54. DOI: 10.1186/s12915-015-0166-9
[9] DEL TORO DUANY Y, WU B, HUR S. MDA5-filament, dynamics and disease[J]. Curr Opin Virol, 2015, 12: 20–25. DOI: 10.1016/j.coviro.2015.01.011
[10] BARBER M R W, ALDRIDGE J R Jr, WEBSTER R G, et al. Association of RIG-I with innate immunity of ducks to influenza[J]. Proc Natl Acad Sci U S A, 2010, 107(13): 5913–5918. DOI: 10.1073/pnas.1001755107
[11] KARPALA A J, STEWART C, MCKAY J, et al. Characterization of chicken Mda5 activity:regulation of IFN-β in the absence of RIG-I functionality[J]. J Immunol, 2011, 186(9): 5397–5405. DOI: 10.4049/jimmunol.1003712
[12] LINIGER M, SUMMERFIELD A, ZIMMER G, et al. Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2[J]. J Virol, 2012, 86(2): 705–717. DOI: 10.1128/JVI.00742-11
[13] HAYASHI T, WATANABE C, SUZUKI Y, et al. Chicken MDA5 senses short double-stranded RNA with implications for antiviral response against avian influenza viruses in chicken[J]. J Innate Immun, 2014, 6(1): 58–71. DOI: 10.1159/000351583
[14] LEE C C, WU C C, LIN T L. Role of chicken melanoma differentiation-associated gene 5 in induction and activation of innate and adaptive immune responses to infectious bursal disease virus in cultured macrophages[J]. Arch Virol, 2015, 160(12): 3021–3035. DOI: 10.1007/s00705-015-2612-y
[15] HANDA P, TUPPER J C, JORDAN K C, et al. FLIP (Flice-like inhibitory protein) suppresses cytoplasmic double-stranded-RNA-induced apoptosis and NF-κB and IRF3-mediated signaling[J]. Cell Commun Signal, 2011, 9(1): 16. DOI: 10.1186/1478-811X-9-16
[16] LEE N R, KIM H I, CHOI M S, et al. Regulation of MDA5-MAVS antiviral signaling axis by TRIM25 through TRAF6-mediated NF-κB activation[J]. Mol Cells, 2015, 38(9): 759–764. DOI: 10.14348/molcells.2015.0047
[17] LIM R, BARKER G, LAPPAS M. TLR2, TLR3 and TLR5 regulation of pro-inflammatory and pro-labour mediators in human primary myometrial cells[J]. J Reprod Immunol, 2017, 122: 28–36. DOI: 10.1016/j.jri.2017.08.004
[18] ZOU H T, SU R X, RUAN J, et al. Double-stranded RNA induces chicken T-cell lymphoma apoptosis by TRIF and NF-κB[J]. Sci Rep, 2017, 7(1): 7547.
[19] ZHAN Q, SONG R, LI F, et al. Double-stranded RNA upregulates the expression of inflammatory mediators in human aortic valve cells through the TLR3-TRIF-noncanonical NF-κB pathway[J]. Am J Physiol Cell Physiol, 2017, 312(4): C407–C417. DOI: 10.1152/ajpcell.00230.2016
[20] ZHAO C, DENISON C, HUIBREGTSE J M, et al. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways[J]. Proc Natl Acad Sci U S A, 2005, 102(29): 10200–10205. DOI: 10.1073/pnas.0504754102
[21] LI Z H, WANG Y Q, LI X, et al. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4[J]. J Virol, 2013, 87(2): 1221–1231. DOI: 10.1128/JVI.02421-12
[22] KHATRI M, PALMQUIST J M, CHA R M, et al. Infection and activation of bursal macrophages by virulent infectious bursal disease virus[J]. Virus Res, 2005, 113(1): 44–50.
[23] 王灵娟.IBDV感染对SPF雏鸡免疫器官TGF-β1 mRNA表达和免疫功能影响[D].哈尔滨: 东北农业大学, 2013.
WANG L J.The influence of infectious bursal disease virus to the TGF-β1 mRNA expression and Immune function in immune organs of SPF chicks[D].Harbin: Northeast Agricultural University, 2013.(in Chinese)
[24] HUTCHENS M, LUKER K E, SOTTILE P, et al. TLR3 increases disease morbidity and mortality from vaccinia infection[J]. J Immunol, 2008, 180(1): 483–491. DOI: 10.4049/jimmunol.180.1.483
[25] ZHANG S Y, JOUANGUY E, UGOLINI S, et al. TLR3 deficiency in patients with herpes simplex encephalitis[J]. Science, 2007, 317(5844): 1522–1527. DOI: 10.1126/science.1139522
[26] 刘爵, 韦莉, 姚炜光, 等. 鸡传染性法氏囊病超强毒感染后SPF鸡免疫器官病理学观察[J]. 畜牧兽医学报, 2002, 33(4): 371–376.
LIU J, WEI L, YAO W G, et al. Pathological observation on immune organs of Special-Pathogen-Free(SPF) chicks inoculated with very virulent infectious Bursal disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2002, 33(4): 371–376. (in Chinese)
[27] WEI L, HOU L, ZHU S S, et al. Infectious bursal disease virus activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by interaction of VP5 protein with the p85α subunit of PI3K[J]. Virology, 2011, 417(1): 211–220.
[28] LOMBARDO E, MARAVER A, ESPINOSA I, et al. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis[J]. Virology, 2000, 277(2): 345–357. DOI: 10.1006/viro.2000.0595