畜牧兽医学报  2020, Vol. 51 Issue (10): 2359-2366. DOI: 10.11843/j.issn.0366-6964.2020.10.004    PDF    
猪新发冠状病毒研究进展
李任峰1, 卢晓辉2, 姜金庆1, 王自良1     
1. 河南科技学院动物科技学院, 河南省高校动物疫病防控科技创新团队, 新乡 453003;
2. 新乡市动物疫病预防控制中心, 新乡 453003
摘要:当前,由新型冠状病毒(SARS-CoV-2)导致的新型冠状病毒肺炎(COVID-19)疫情正在全球暴发大流行,这也引发业界对于动物源性冠状病毒的高度关注。猪德尔塔冠状病毒(PDCoV)和猪急性腹泻综合征冠状病毒(SADS-CoV)是近年来新发现的猪冠状病毒,不但严重危害到养猪业,对公共卫生安全也具有潜在威胁风险。本文结合国内外现有文献,从PDCoV和SADS-CoV的病原学、病毒起源与进化、致病性以及检测诊断技术等方面进行综述,并提出展望,以拓展对SARS-CoV-2的认识,并为PDCoV和SADS-CoV的后续研究提供参考借鉴。
关键词猪新发冠状病毒    猪德尔塔冠状病毒    猪急性腹泻综合征冠状病毒    
Research Advances on Porcine Emerging Coronaviruses
LI Renfeng1, LU Xiaohui2, JIANG Jinqing1, WANG Ziliang1     
1. College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology; Innovative Research Team for Animal Disease Prevention and Control in University of Henan Province, Xinxiang 453003, China;
2. Animal Disease Prevention and Control Center of Xinxiang, Xinxiang 453003, China
Abstract: Currently, corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 is still raging worldwide, which attracts great concern about coronavirus originated from animal. Porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) are newly discovered porcine coronaviruses in recent years, they not only damage pig industry severely but also pose potential threats to public health. This article reviews the literature concerning the etiology, origin and evolution, pathogenicity, and diagnostics of PDCoV and SADS-CoV, presenting the prospect of research work. We aim to expand understanding on SARS-CoV-2 and provide references for subsequent research on PDCoV and SADS-CoV.
Key words: porcine emerging coronaviruses    porcine deltacoronavirus    swine acute diarrhea syndrome coronavirus    

根据冠状病毒基因组特征和遗传关系, 可将其分为α-冠状病毒(Alphacoronavirus,CoV-α)、β-冠状病毒(Betacoronavirus,CoV-β)、γ-冠状病毒(Gammacoronavirus,CoV-γ)和δ-冠状病毒(Deltacoronavirus,CoV-δ)四个属,其中CoV-α和CoV-β只感染哺乳动物,而CoV-γ和CoV-δ主要感染鸟类,某些哺乳动物也可感染[1]。目前, 已知6种冠状病毒可感染猪,其中, 有4种属于CoV-α,包括猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)、猪传染性胃肠炎病毒(transmissible gastroenteritis virus,TGEV)、猪呼吸道冠状病毒(porcine respiratory coronavirus,PRCV)和猪急性腹泻综合征冠状病毒(swine acute diarrhea syndrome-coronavirus,SADS-CoV),而猪血凝性脑脊髓炎病毒(porcine hemagglutinating encephalomyelitis virus,PHEV)和猪德尔塔冠状病毒(porcine deltacoronavirus,PDCoV)分别属于CoV-β和CoV-δ[2]。近年发生的PDCoV和SADS-CoV引发的猪新发冠状病毒感染在我国局部地区及国外一些猪场流行,并对人类健康造成潜在威胁[3-6]。作者从PDCoV和SADS-CoV的病原学、病毒起源与进化、致病性以及检测诊断技术等方面进行综述,为后续研究提供参考借鉴。

1 PDCoV和SADS-CoV的病原学

PDCoV属于套式病毒目(Nidovirales)、冠状病毒科(Coronaviridae)、δ-冠状病毒属(Deltacoronavirus)成员。病毒粒子呈球形或椭圆形,直径120~180 nm,具有囊膜结构,囊膜上分布有花瓣状纤突。PDCoV的核酸类型为不分节段的单股正链RNA,基因组全长约25 400 nt,编码4种结构蛋白:纤突蛋白(spike,S)、膜蛋白(membrane,M)、小包膜蛋白(envelope,E)和衣壳蛋白(nucleocapsid,N)。基因组构成为:5′非翻译区(untranslated region, UTR)-两个重叠的开放阅读框(open reading frame, ORF)ORF1a和ORF1b(ORF1a/1b)-S-E-M-非结构蛋白6(nonstructural protein 6, NS6)-N-NS7-UTR-3′[7-8]。其中,ORF1a/1b编码的两个多聚蛋白pp1a和pp1b被蛋白酶切割成14~16种非结构蛋白,参与病毒基因组转录和复制[2]。S蛋白负责病毒与细胞受体结合,介导病毒入侵和感染。同时,由于S蛋白能够诱导机体产生中和性抗体,可作为研制PDCoV疫苗的重要靶标[2, 9-10]。N蛋白主要定位于细胞核,通过自身非共价交联形成寡聚体,与病毒的组装、复制以及感染后的细胞应激反应密切相关[11]。M蛋白和E蛋白是构成PDCoV外膜的重要成分,同时M蛋白也可用于PDCoV的检测诊断[12]。位于M基因和N基因之间的NS6基因与病毒的复制和毒力相关[13],并具有拮抗干扰素的功能[14]NS7的编码区位于N基因内部,其编码蛋白定位于宿主细胞的线粒体,可能与病毒复制及拮抗宿主天然免疫有关[15]。位于NS7 3′末端的NS7a由一段单独的亚基因组mRNA编码,其具体的生物学功能仍有待研究[16]

与PDCoV不同,SADS-CoV属于冠状病毒科中的CoV-α成员。尽管SADS-CoV在形态上与其他冠状病毒相似,但其基因组结构与PEDV、TGEV、PDCoV等冠状病毒明显不同。SADS-CoV的基因组全长约27 100 nt,基因组结构:5′-UTR-ORF1a/1b (ORF1ab)-S-NS3a-E-M-N-NS7a-NS7b-UTR-3′,核酸类型为单股正链RNA。由于SADS-CoV发现较晚,其编码蛋白(尤其是非结构蛋白)的生物学功能尚需进一步研究[2-3, 17]

2 PDCoV和SADS-CoV的起源与进化

2012年,Woo等[18]首次报道在猪的粪便样品中检测到PDCoV,并对其中两个毒株HKU15-44和HKU15-155的全基因组进行了测序和分析,发现PDCoV与来自麻雀的冠状病毒(SpCoV HKU17)亲缘关系最近,推测PDCoV可能来源于鸟类的跨种传播。后续的报道进一步支持了该假说[19-20]。另外,亚洲豹猫和中华雪貂可能是PDCoV传播的重要媒介[7],发生在S编码区的基因重组是导致鸟类CoV-δ跨种传播的重要因素[19]

Dong等[21]在一份采自2004年安徽某猪场的腹泻样品中检测到PDCoV(CHN-AH-2004),暗示PDCoV可能早就在我国猪群中存在。CHN-AH-2004与HKU15-44及湖北毒株CHN-HB-2014亲缘关系较近,三者可能起源于同一毒株。来自中国境内的大部分PDCoV毒株(HKU15-155、HN-2014、HB-2014、JS-2014、SXD1、CHJXNI2、CHN-GD-2016)基因组序列相似性较高,亲缘关系较近,遗传相对稳定,尚未出现大的变异[22-25]

2014年2月,PDCoV在美国暴发,给美国的养猪业造成了重大损失。美国毒株Ohio CVM1和来自中国香港的两个毒株(HKU15-44和HKU15-155)的基因组序列分别具有99%和99.1%的相似性,遗传关系较近[8]。韩国毒株KOR/KNU14-04/2014与美国PDCoV毒株的全基因组序列相似性在99.6%~99.9%,并在进化树上处于同一分支,表明它们可能起源于同一祖先[26]。泰国PDCoV毒株(S5011和S5015L)显示出独特的基因组序列特征,其5′UTR分别存在3个碱基(TCT)和1个碱基(A)的缺失,同时在ORF1a/b编码区分别存在6个碱基(AGTTTG)和9个碱基(GAGCCAGTC)的缺失,3′UTR区域存在4个碱基(CTCT)的插入,这些序列变化可能是导致泰国PDCoV毒力较强的原因[27]

SADS-CoV是最近才被发现的猪新型冠状病毒。2017年,研究人员在我国广东省发生腹泻的猪群中检测到SADS-CoV,并对其进行了全基因组测序和遗传进化分析。发现SADS-CoV的基因组序列与猪的其他冠状病毒相似度较低,而与蝙蝠冠状病毒HKU2-CoV存在较高的相似性(≈95%),并且遗传距离较近,推测二者可能起源于共同祖先[3, 28],或者HKU2-CoV通过基因重组进化为SADS-CoV样病毒,从而获得对猪的感染能力[29]。总之,蝙蝠在SADS-CoV传播中发挥重要作用。与HKU2-CoV相比,SADS-CoV毒株CH/GD-01/2017/P2和CH/FJWT/2018的基因组多个区域存在碱基插入或缺失:在位于4 554~4 555 nt和20 504~20 505 nt位置分别存在3个碱基(TTG)和6个碱基(GGCCTC)的插入,在22 463~22 465 nt和24 773~24 775 nt位置分别存在3个碱基(GGC和GTA)的缺失,特别是发生在S蛋白75个氨基酸的替换和2个氨基酸的插入,可能与SADS-CoV的感染谱转换相关[17, 30]。另有研究发现,SADS-CoV与人冠状病毒229E/NL63进化距离较近,而且SADS-CoV与NL63具有相似的受体结合域,二者均可利用人的血管紧张素转换酶2(angiotensin-converting enzyme 2,ACE2)作为入侵受体,提示应重视对于SADS-CoV跨种传播到人类的潜在威胁(图 1)[17, 29, 31]

虚线代表潜在的跨种传播 The broken line denote potential interspecies transmission 图 1 PDCoV和SADS-CoV的起源及传播途径 Fig. 1 Origin and transmission routes of PDCoV and SADS-CoV
3 PDCoV和SADS-CoV的致病性

各种年龄阶段的猪对PDCoV均易感,典型症状包括呕吐、水样腹泻、脱水等。新生仔猪感染后引起的死亡率较高,日龄较大的猪感染后通常能够恢复[32-33]。PDCoV除了能感染猪以外,也能感染牛和鸡[34-36]。与PEDV相似,PDCoV主要感染猪的小肠,空肠和回肠是其主要靶器官[37]。感染后引起小肠上皮细胞急性坏死,肠绒毛皱缩、脱落;肠壁变薄,肠道功能紊乱,机体对水分的吸收减少,从而导致腹泻[33, 38]。在PDCoV感染的早期,只能在小肠绒毛上皮细胞及固有层的淋巴细胞中检测到PDCoV抗原,当感染猪出现病毒血症时,在胃、肺、心、扁桃体、脾、肝及肾等器官也可检测到低拷贝的PDCoV RNA[39]

关于PDCoV感染的细胞受体目前仍存在争议。有研究认为氨基肽酶(aminopeptidase N,APN)是PDCoV感染的关键受体[6, 40]。卢曼曼等[41]认为猪的APN并非PDCoV入侵的功能性受体,PDCoV的感染能力不受APN表达的影响。而Zhu等[42]认为,尽管APN不是PDCoV的功能性受体,但APN有助于增强PDCoV的感染能力。除APN外,PDCoV感染可能还需要第二受体(共受体)的参与[43]。尽管如此,由于多种哺乳动物、禽类以及人源的APN相对保守,且在体外均能与PDCoV的S1蛋白结合,提示对于PDCoV跨种传播的风险及其对人类健康的潜在威胁,应引起高度重视[6]。此外,PDCoV可利用N蛋白和非结构蛋白nsp5抑制干扰素产生,从而拮抗机体天然免疫,促进自身感染和复制[44-45]

与PDCoV类似,SADS-CoV也可感染各个年龄阶段的猪,发病程度与猪的日龄有关,5日龄以内的仔猪感染后出现急性水样腹泻、呕吐、脱水等症状,病猪常在出现症状后2~6 d内死亡,死亡率高达90%左右。而母猪感染SADS-CoV后通常只表现出轻微的一过性腹泻,2 d后即可恢复[3]。SADS-CoV感染后,病变主要发生在小肠,空肠和回肠最为明显,导致肠壁变薄,肠腔内充盈大量黄色水样粪便。小肠绒毛变短,其中的毛细血管和中央乳糜管破坏严重,这可能是肠道功能丧失的主要原因[17]。将SADS-CoV通过Vero细胞传代后发现。高代次病毒(第83代)的毒力明显低于低代次(第7代),表明SADS-CoV可以通过细胞传代降低毒力,该研究为疫苗的研制奠定了基础[46]

另外,SADS-CoV能通过阻碍IRF3的激活干扰RIG-I信号通路,从而抑制IFN-β的产生[47]。SADS-CoV感染后,由FasL介导的外源性凋亡通路(caspase-8)和线粒体介导的内源性凋亡通路(caspase-9)共同作用导致细胞凋亡。环孢菌素A(CsA)能够通过阻止细胞凋亡和干扰病毒蛋白合成发挥抗病毒作用[48]。以上研究为寻找抗SADS-CoV的药物靶点提供了重要参考。

4 PDCoV和SADS-CoV的检测诊断技术

由于猪的肠道冠状病毒引起的临床症状和病理变化非常相似,通过肉眼难以临床鉴别诊断,需借助实验室检测诊断技术确诊。目前,PDCoV的实验室检测诊断方法主要包括核酸检测和抗体检测。在核酸检测方面,由于PDCoV的M基因和N基因相对保守,常被作为PDCoV的基因检测靶标。基于M基因和N基因保守区的常规RT-PCR或巢式PCR方法已被用于临床检测及流行病学研究[24, 49-50]。针对临床上PDCoV容易与其他肠道病毒混合感染的情况,研究人员建立了一系列多重RT-PCR方法,用于检测多种病毒混合感染[51-54]。另外,基于环介导等温扩增技术(loop-mediated isothermal amplification,LAMP)、荧光定量及纳米技术的PCR方法也被用于PDCoV的诊断[55-59]。Gao等[60]以N蛋白为靶标,采用重组酶聚合酶扩增(recombinase polymerase amplification,RPA)与侧向层析技术(lateral flow dipstick,LFD)相结合,建立了用于检测PDCoV的LFD-RPA方法,该方法灵敏度可达1×102 copies·μL-1,在10~37 ℃环境下均可操作,10 min内即可得到检测结果,具有广阔的应用前景。在抗体检测方面,以重组M蛋白和N蛋白为包被抗原的ELISA方法取得了很好的临床检测效果[12, 61]。基于重组S蛋白的ELISA方法不仅可以用于临床诊断,也可用于抗体水平评价[62-63]

与PDCoV类似,许多实验室建立了用于检测SADS-CoV的RT-PCR或荧光定量PCR方法。Zhou等[4]基于SADS-CoV的N基因设计引物,建立了常规RT-PCR方法,采用该方法对来自广东省45个猪场的236份腹泻样本进行了检测,发现SADS-CoV阳性率(43.5%)仅低于PEDV(78.2%),明显高于猪轮状病毒(21.8%)和PDCoV(8.8%)的阳性率。同时发现SADS-CoV和PEDV混合感染的比例最高(17.65%),需引起猪场对PDCoV的关注。另外,基于TaqMan和SYBR的实时荧光定量PCR技术以及RT-LAMP方法也为PDCoV的诊断提供了重要技术支撑[64-66]

5 研究展望 5.1 病毒溯源及传播机制研究

尽管基于PDCoV和SADS-CoV的基因组序列相似性分析推测其分别与鸟类和蝙蝠来源的冠状病毒进化距离较近,但仍然不能据此确证其源头。需加强对病毒溯源、变异及演化机制方面的研究,明确PDCoV和SADS-CoV的传播规律,弄清病毒变异与致病性之间的关系。

5.2 病毒感染与免疫机制研究

由PDCoV和SADS-CoV引起的临床表现与其他肠道冠状病毒(PEDV、TGEV等)较为相似,但以上病毒的基因组结构存在差异,特别是编码的非结构蛋白生物学功能并不十分明确,不同病毒之间是否存在交叉保护尚不清楚,病毒感染后的免疫应答机制仍需研究阐明。

5.3 加强病毒监测及流行病学研究

当前流行的SARS-CoV-2让公众更加认识到动物在人类疾病传播中的作用。特别需要指出的是,冠状病毒具有很强的重组能力,这是导致其跨种传播的重要因素[67]。鸟类和蝙蝠是冠状病毒的天然宿主,而猪是人类与其接触的重要媒介,同时,猪又是许多病毒传播的混合器,能为病毒重组创造良好条件。因此,加强对猪源PDCoV和SADS-CoV的监测及流行病学研究具有十分重要的公共卫生意义。

此外,疫苗接种是控制传染病最有效手段之一。应该汲取PEDV和SARS的流行暴发初期无有效疫苗可用导致的惨痛历史教训,加强PDCoV和SADS-CoV的疫苗研究,提前做好疫苗技术储备。在目前仍缺乏疫苗的情况下,猪场除做好日常管理外,加强生物安全是有效防控PDCoV和SADS-CoV的关键。

参考文献
[1] CUI J, LI F, SHI Z L. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3): 181–192. DOI: 10.1038/s41579-018-0118-9
[2] WANG Q H, VLASOVA A N, KENNEY S P, et al. Emerging and re-emerging coronaviruses in pigs[J]. Curr Opin Virol, 2019, 34: 39–49. DOI: 10.1016/j.coviro.2018.12.001
[3] ZHOU P, FAN H, LAN T, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin[J]. Nature, 2018, 556(7700): 255–258. DOI: 10.1038/s41586-018-0010-9
[4] ZHOU L, SUN Y, LAN T, et al. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China[J]. Transbound Emerg Dis, 2019, 66(2): 687–695. DOI: 10.1111/tbed.13008
[5] ZHANG F F, LUO S X, GU J, et al. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018[J]. BMC Vet Res, 2019, 15(1): 470. DOI: 10.1186/s12917-019-2212-2
[6] LI W T, HULSWIT R J G, KENNEY S P, et al. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility[J]. Proc Natl Acad Sci U S A, 2018, 115(22): E5135–E5143. DOI: 10.1073/pnas.1802879115
[7] ZHANG J Q. Porcine deltacoronavirus:Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution[J]. Virus Res, 2016, 226: 71–84. DOI: 10.1016/j.virusres.2016.05.028
[8] MA Y M, ZHANG Y, LIANG X Y, et al. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States[J]. mBio, 2015, 6(2): e00064–15.
[9] SHANG J, ZHENG Y, YANG Y, et al. Cryo-electron microscopy structure of porcine deltacoro-navirus Spike protein in the prefusion state[J]. J Virol, 2018, 92(4): e01556–17.
[10] 李成, 张雨迪, 黄小波, 等. 猪丁型冠状病毒S1基因的克隆、原核表达及多克隆抗体制备[J]. 畜牧兽医学报, 2018, 49(6): 1256–1264.
LI C, ZHANG Y D, HUANG X B, et al. Cloning and prokaryotic expression of porcine deltaco-ronavirus S1 gene and preparation of polyclonal antibody[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(6): 1256–1264. (in Chinese)
[11] LEE S, LEE C. Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus[J]. Virus Res, 2015, 208: 136–145. DOI: 10.1016/j.virusres.2015.06.013
[12] LUO S X, FAN J H, OPRIESSNIG T, et al. Development and application of a recombinant M protein-based indirect ELISA for the detection of porcine deltacoronavirus IgG antibodies[J]. J Virol Methods, 2017, 249: 76–78. DOI: 10.1016/j.jviromet.2017.08.020
[13] ZHANG M J, LI W, ZHOU P, et al. Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design[J]. Emerg Microbes Infect, 2020, 9(1): 20–31. DOI: 10.1080/22221751.2019.1701391
[14] FANG P X, FANG L R, REN J, et al. Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA[J]. J Virol, 2018, 92(15): e00712–18.
[15] CHOI S, LEE C. Functional characterization and proteomic analysis of porcine deltacoronavirus accessory protein NS7[J]. J Microbiol Biotechnol, 2019, 29(11): 1817–1829. DOI: 10.4014/jmb.1908.08013
[16] FANG P X, FANG L R, HONG Y Y, et al. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus[J]. J Gen Virol, 2017, 98(2): 173–178. DOI: 10.1099/jgv.0.000690
[17] PAN Y F, TIAN X Y, QIN P, et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China[J]. Vet Microbiol, 2017, 211: 15–21. DOI: 10.1016/j.vetmic.2017.09.020
[18] WOO P C Y, LAU S K P, LAM C S F, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoro-navirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus[J]. J Virol, 2012, 86(7): 3995–4008. DOI: 10.1128/JVI.06540-11
[19] LAU S K P, WONG E Y M, TSANG C C, et al. Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission[J]. J Virol, 2018, 92(15): e00265–18.
[20] CHEN Q, WANG L Y, YANG C H, et al. The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronaviruses than sparrow deltacoronavirus HKU17[J]. Emerg Microbes Infect, 2018, 7: 105.
[21] DONG N, FANG L R, ZENG S L, et al. Porcine deltacoronavirus in mainland China[J]. Emerg Infect Dis, 2015, 21(12): 2254–2255. DOI: 10.3201/eid2112.150283
[22] ZHANG H L, LIANG Q Q, LI B X, et al. Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China[J]. Prev Vet Med, 2019, 166: 8–15. DOI: 10.1016/j.prevetmed.2019.02.017
[23] DONG N, FANG L R, YANG H, et al. Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014[J]. Vet Microbiol, 2016, 196: 98–106. DOI: 10.1016/j.vetmic.2016.10.022
[24] SONG D, ZHOU X, PENG Q, et al. Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China:identification, prevalence and full-length genome sequence analysis[J]. Transbound Emerg Dis, 2015, 62(6): 575–580. DOI: 10.1111/tbed.12399
[25] XU Z C, ZHONG H L, ZHOU Q F, et al. A highly pathogenic strain of porcine deltacoronavirus caused watery diarrhea in newborn piglets[J]. Virol Sin, 2018, 33(2): 131–141.
[26] LEE S, LEE C. Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014[J]. Genome Announc, 2014, 2(6): e01191–14.
[27] JANETANAKIT T, LUMYAI M, BUNPAPONG N, et al. Porcine deltacoronavirus, Thailand, 2015[J]. Emerg Infect Dis, 2016, 22(4): 757–759. DOI: 10.3201/eid2204.151852
[28] GONG L, LI J, ZHOU Q F, et al. A new bat-HKU2-like coronavirus in swine, China, 2017[J]. Emerg Infect Dis, 2017, 23(9): 1607–1609. DOI: 10.3201/eid2309.170915
[29] WANG L, SU S, BI Y H, et al. Bat-origin coronaviruses expand their host range to pigs[J]. Trends Microbiol, 2018, 26(6): 466–470. DOI: 10.1016/j.tim.2018.03.001
[30] LI K, LI H, BI Z, et al. Complete genome sequence of a novel swine acute diarrhea syndrome coronavirus, CH/FJWT/2018, isolated in Fujian, China, in 2018[J]. Microbiol Resour Announc, 2018, 7(22): e01259–18.
[31] HOFMANN H, PYRC K, VAN DER HOEK L, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry[J]. Proc Natl Acad Sci U S A, 2005, 102(22): 7988–7993. DOI: 10.1073/pnas.0409465102
[32] LI B X, ZHENG L L, LI H Y, et al. Porcine deltacoronavirus causes diarrhea in various ages of field-infected pigs in China[J]. Biosci Rep, 2019, 39(9): BSR20190676. DOI: 10.1042/BSR20190676
[33] HU H, JUNG K, VLASOVA A N, et al. Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22[J]. Arch Virol, 2016, 161(12): 3421–3434. DOI: 10.1007/s00705-016-3056-8
[34] JUNG K, HU H, SAIF L J. Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus[J]. Arch Virol, 2017, 162(8): 2357–2362. DOI: 10.1007/s00705-017-3351-z
[35] LIANG Q Q, ZHANG H L, LI B X, et al. Susceptibility of chickens to porcine deltacoronavirus infection[J]. Viruses, 2019, 11(6): 573. DOI: 10.3390/v11060573
[36] BOLEY P A, ALHAMO M A, LOSSIE G, et al. Porcine deltacoronavirus infection and transmission in poultry, United States[J]. Emerg Infect Dis, 2020, 26(2): 255–265. DOI: 10.3201/eid2602.190346
[37] 张家林.猪德尔塔冠状病毒入侵的分子机制及疫苗免疫保护的初步评价[D].北京: 中国农业科学院, 2019: 26-27.
ZHANG J L. Molecular mechanism of porcine deltacoronavirus entry and immune protection evaluation of vaccine[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019: 26-27. (in Chinese)
[38] CHEN Q, GAUGER P, STAFNE M, et al. Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets[J]. Virology, 2015, 482: 51–59. DOI: 10.1016/j.virol.2015.03.024
[39] MA Y M, ZHANG Y, LIANG X Y, et al. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States[J]. mBio, 2015, 6(2): e00064–15.
[40] WANG B, LIU Y, JI C M, et al. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry[J]. J Virol, 2018, 92(12): e00318–18.
[41] 卢曼曼, 张家林, 王洪峰, 等. 猪氨基肽酶N不是猪德尔塔冠状病毒入侵宿主细胞的受体[J]. 中国预防兽医学报, 2017, 39(9): 701–706.
LU M M, ZHANG J L, WANG H F, et al. Porcine Amino peptidase N(pAPN) is not a cellular receptor for porcine deltacoronavirus entry cell[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(9): 701–706. (in Chinese)
[42] ZHU X Y, LIU S D, WANG X L, et al. Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection[J]. Emerg Microbes Infect, 2018, 7(1): 65.
[43] STOIAN A, ROWLAND R R R, PETROVAN V, et al. The use of cells from ANPEP knockout pigs to evaluate the role of aminopeptidase N (APN) as a receptor for porcine deltacoronavirus (PDCoV)[J]. Virology, 2020, 541: 136–140. DOI: 10.1016/j.virol.2019.12.007
[44] ZHU X Y, WANG D, ZHOU J W, et al. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2[J]. J Virol, 2017, 91(10): e00003–17.
[45] JI L K, LI S S, ZHU W X, et al. Porcine deltacoronavirus nucleocapsid protein suppressed IFN-β production by interfering porcine RIG-I dsRNA-binding and K63-linked polyubiquitination[J]. Front Immunol, 2019, 10: 1024. DOI: 10.3389/fimmu.2019.01024
[46] SUN Y, CHENG J, LUO Y, et al. Attenuation of a virulent swine acute diarrhea syndrome coronavirus strain via cell culture passage[J]. Virology, 2019, 538: 61–70. DOI: 10.1016/j.virol.2019.09.009
[47] ZHOU Z H, SUN Y, YAN X L, et al. Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I[J]. Virus Res, 2020, 278: 197843. DOI: 10.1016/j.virusres.2019.197843
[48] ZHANG J Y, HAN Y R, SHI H Y, et al. Swine acute diarrhea syndrome coronavirus-induced apoptosis is caspase- and cyclophilin D-dependent[J]. Emerg Microbes Infect, 2020, 9(1): 439–456. DOI: 10.1080/22221751.2020.1722758
[49] WANG L Y, BYRUM B, ZHANG Y. Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014[J]. Emerg Infect Dis, 2014, 20(7): 1227–1230.
[50] 刘浩宇, 黄小波, 李成, 等. 猪德尔塔冠状病毒(PDCoV)RT-PCR检测方法的建立与应用[J]. 农业生物技术学报, 2018, 26(9): 1631–1638.
LIU H Y, HUANG X B, LI C, et al. Establishment and application of RT-PCR detecting porcine deltacoronavirus (PDCoV)[J]. Journal of Agricultural Biotechnology, 2018, 26(9): 1631–1638. (in Chinese)
[51] 黄海鑫, 宋心玥, 汪伟, 等. PDCoV和PEAV二重RT-PCR检测方法的建立及初步应用[J]. 中国兽医科学, 2020, 50(2): 141–146.
HUANG H X, SONG X Y, WANG W, et al. Establishment and preliminary application of double RT-PCR for detection of PDCoV and PEAV[J]. Chinese Veterinary Science, 2020, 50(2): 141–146. (in Chinese)
[52] DING G M, FU Y G, LI B Y, et al. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China[J]. Transbound Emerg Dis, 2020, 67(2): 678–685. DOI: 10.1111/tbed.13385
[53] 施开创, 王睿敏, 黎宗强, 等. PEDV、TGEV、PDCoV、PRoV多重TaqMan荧光定量RT-PCR检测方法的建立及应用[J]. 中国预防兽医学报, 2019, 41(6): 595–600.
SHI K C, WANG R M, LI Z Q, et al. Establishment and application of multiplex TaqMan real-time RT-PCR for differential detection of PEDV, TGEV, PDCoV, PRoV[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(6): 595–600. (in Chinese)
[54] 罗尚星, 范京慧, 刘宝京, 等. 猪丁型冠状病毒与猪流行性腹泻病毒双重实时荧光定量RT-PCR方法的建立和初步应用[J]. 畜牧兽医学报, 2018, 49(4): 852–858.
LUO S X, FAN J H, LIU B J, et al. Establishment and application of the real-time reverse transcription quantitative PCR assay for porcine epidemic diarrhea virus and porcine deltacoronavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(4): 852–858. (in Chinese)
[55] 杜倩, 汪伟, 韩知晓, 等.猪德尔塔冠状病毒SYBR Green I real-time实时荧光定量PCR方法的建立及应用[J/OL].中国动物传染病学报, 2020. (2020-03-10)[2020-04-01].http://kns.cnki.net/kcms/detail/31.2031.S.20200310.0859.002.html.
DU Q, WANG W, HAN Z X, et al. Development of SYBR Green I real-time PCR method for dection of PDCoV[J/OL]. Chinese Journal of Animal Infectious Diseases, 2020. (2020-03-10)[2020-04-01].http://kns.cnki.net/kcms/detail/31.2031.S.20200310.0859.002.html. (in Chinese)
[56] 张世亨, 黄海鑫, 尹彦文, 等. 猪德尔塔冠状病毒荧光定量PCR检测方法的建立与应用[J]. 中国兽医学报, 2019, 39(12): 2288–2292.
ZHANG S H, HUANG H X, YIN Y W, et al. Development of SYBR GreenⅠreal-time PCR method for detection of PDCoV[J]. Chinese Journal of Veterinary Science, 2019, 39(12): 2288–2292. (in Chinese)
[57] 董志珍, 张霞, 柴铭骏, 等. 猪德尔塔冠状病毒纳米PCR检测方法的建立[J]. 中国动物检疫, 2019, 36(8): 91–95.
DONG Z Z, ZHANG X, CHAI M J, et al. Establishment of nanoparticle-assisted PCR assay for detection of porcine deltacoronavirus[J]. China Animal Health Inspection, 2019, 36(8): 91–95. (in Chinese)
[58] 郑兰兰, 朱静静, 王盼, 等. 猪δ冠状病毒TaqMan荧光定量RT-PCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2019, 50(6): 1261–1267.
ZHENG L L, ZHU J J, WANG P, et al. Development and application of a TaqMan based real-time fluorescent RT-PCR for specific detection of porcine deltacoronavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1261–1267. (in Chinese)
[59] ZHANG F F, YE Y, SONG D P, et al. A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification[J]. Biol Res, 2017, 50(1): 30. DOI: 10.1186/s40659-017-0135-6
[60] GAO X, LIU X S, ZHANG Y G, et al. Rapid and visual detection of porcine deltacoronavirus by recombinase polymerase amplification combined with a lateral flow dipstick[J]. BMC Vet Res, 2020, 16: 130. DOI: 10.1186/s12917-020-02341-3
[61] SU M J, LI C Q, GUO D H, et al. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus[J]. J Vet Med Sci, 2016, 78(4): 601–606. DOI: 10.1292/jvms.15-0533
[62] 侯林杉, 贾敬亮, 顾文源, 等. 基于猪丁型冠状病毒重组S1蛋白间接ELISA抗体检测方法的建立与应用[J]. 畜牧兽医学报, 2019, 50(8): 1642–1648.
HOU L S, JIA J L, GU W Y, et al. Establishment and application of an indirect ELISA based on recombinant S1 protein for the detection of antibodies against porcine deltacoronavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(8): 1642–1648. (in Chinese)
[63] LU M M, LIU Q G, WANG X B, et al. Development of an indirect ELISA for detecting porcine deltacoronavirus IgA antibodies[J]. Arch Virol, 2020, 165(4): 845–851. DOI: 10.1007/s00705-020-04541-6
[64] ZHOU L, SUN Y, WU J L, et al. Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs[J]. J Virol Methods, 2018, 255: 66–70. DOI: 10.1016/j.jviromet.2018.02.002
[65] MA L, ZENG F W, CONG F, et al. Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus[J]. J Virol Methods, 2019, 265: 66–70. DOI: 10.1016/j.jviromet.2018.12.010
[66] WANG H N, CONG F, ZENG F W, et al. Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV)[J]. J Virol Methods, 2018, 260: 45–48. DOI: 10.1016/j.jviromet.2018.06.010
[67] JSABIR J S M, LAM T T Y, AHMED M M M, et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia[J]. Science, 2016, 351(6268): 81–84. DOI: 10.1126/science.aac8608