Kisspeptin是被Kiss1基因编码的含有145个氨基酸的前体肽,在体内被剪切为含有不同氨基酸的成熟肽,发挥抑制肿瘤转移、调节动物机体繁殖的作用。自从发现至今,kisspeptin一直是人类生殖内分泌领域的研究热点,并在近年得到动物领域学者们的关注。Kisspeptin与其受体GPR54结合不但能够抑制肿瘤细胞的转移,调控神经内分泌,还可通过调控动物的下丘脑-垂体-性腺轴来调节动物的繁殖,并参与动物初情期的启动。Kisspeptin能够在下丘脑-垂体调控促性腺激素释放,并与其受体GPR54在诸多动物性腺中表达,推测kisspeptin/GPR54可能在下丘脑-垂体-性腺3个层次调控动物的繁殖。另外,kisspeptin调控动物的繁殖是否存在种属差异,是否与其剂型和剂量有关还存在争议。因此,本文就kisspeptin/GPR54系统在哺乳动物繁殖上的最新研究进展进行归纳、总结并分析面临的问题及后续研究方向,以期为将来开展kisspentin/ GPR54在动物繁殖上的研究及应用提供文献依据。
1 Kisspeitin/GPR54的发现及结构Kisspeptin是由Kiss1基因编码的一种神经肽,被Lee等[1]在通过扫描人基因组筛选抑制黑色素细胞瘤转移基因时首次发现。West等[2]发现,Kiss1基因定位在人1号染色体上,包含2个编码区和2个非编码区及4个外显子,能够形成145个氨基酸的前体蛋白,并被进一步剪切为含有不同氨基酸的多肽(kisspeptin54、kisspeptin14、kisspeptin13、kisspeptin10),且C-末端10个氨基酸是相同的。Kisspeptin的结构在哺乳动物和非哺乳的脊椎动物中是高度保守的,表明它在各种脊椎动物机体中具有很重要的作用[3-4]。Kisspeptin是与其G蛋白偶联受体结合发挥作用的,这种受体被命名为GPR54(也被称为Kiss1R、AXOR12、hOT7T175)[5]。GPR54在哺乳动物中具有很高的保守性,人与大鼠的GPR54有85%同源性,与小鼠有80%同源性[6]。Kisspeptin与GPR54结合激活G蛋白家族中Gq/11,进而活化PLC后将细胞膜上PIP2水解为IP3和DAG,IP3动员内质网钙离子外流,增加细胞内钙离子的浓度,细胞内钙离子浓度的增加改变了离子通道的渗透性,引起去极化反应;同时,DAG激活PKC诱发MAPK信号通路级联反应,引起ERK1/2和p38的磷酸化,引发相应的生物学效应[7]。
2 Kisspeptin/GPR54系统对动物下丘脑-垂体-性腺轴的调控 2.1 Kisspeptin/GPR54在下丘脑的分布及作用在下丘脑存在3个kisspeptin细胞群,一个是从前副室旁核到视前区的室周核,另外两个细胞群分布在弓状核和背中神经核[8-9]。Kiss1基因在大鼠和小鼠的前腹侧脑室周围核团和下丘脑弓状核表达最高[10]。在羊上,Kiss1基因主要分布在弓状核,一部分存在于视前区[11]。Mishra等[12]发现,Kiss1和GPR54 mRNA主要在水牛的弓状核表达,而猕猴kisspeptin神经元胞体仅位于下丘脑内侧基底部,主要分布在弓状核的后三分之二处[13]。不过目前的研究认为,kisspeptin主要通过结合下丘脑中促性腺激素释放激素(GnRH)神经元上的GPR54,从而刺激GnRH的分泌和释放来调控生殖功能[14]。Clarkson和Herbison[15]研究表明,kisspeptin神经元纤维与GnRH神经元紧密接触。Qiu等[16]也发现,位于弓状核上的kisspeptin神经元与脑非肽和多巴胺等神经递质协同调控GnRH的脉冲释放。另外,大多数GnRH神经元表达GPR54,kisspeptin可以引起这些细胞的强烈电激活,kisspeptin/GPR54信号在哺乳动物雌激素正反馈调节下丘脑诱发LH峰的产生机制中发挥关键作用[17]。Kisspeptin及其受体GPR54在前脑中表达,而缺乏功能性GPR54的小鼠和人则在初情期和青春期特征不明显且引起性腺功能低下综合征,这一发现表明,kisspeptin在生殖过程中扮演重要角色[18]。在青春期发育过程中,GnRH神经元的kisspeptin纤维支配和下丘脑内的kisspeptin释放增加说明,在青春期发育过程中,kisspeptin促进GnRH神经元的分泌活动,GnRH神经元神经内分泌活动脉冲式的增多是青春期启动的关键,下丘脑GnRH分泌显著增加表明青春期启动[19],而Kiss1神经元能够激活GnRH神经元,说明Kiss1基因是青春期启动的内分泌开关[20]。
2.2 Kisspeptin/GPR54在垂体的分布及作用Kisspeptin/GPR54也被发现在垂体促性腺细胞内表达,外源性kisspeptin处理体外培养的垂体组织切片时,能够促进促性腺激素的释放,这表明kisspeptin可能直接作用于垂体,刺激促性腺激素的分泌[21]。Richard等[22]通过RT-PCR和细胞免疫化学发现,GPR54在大鼠的垂体中表达,其蛋白主要集中在垂体前叶。Ramaswamy等[23]研究了恒河猴垂体中kisspeptin阳性免疫细胞的分布,并发现其定位在垂体中叶和前叶周围,这表明kisspeptin可能直接作用于垂体分泌细胞。Kisspeptin10能够促进体外培养的大鼠垂体组织促卵泡素(FSH)和促黄体素(LH)的释放,且能引起体外培养的大鼠、牛、羊、猪等垂体细胞中Ca2+浓度的变化[24]。Ezzat等[25]研究证明,外源性kisspeptin10能够促进体外培养的牛垂体细胞FSH和LH的释放,体外注射kisspeptin10能够增加牛血浆中LH的浓度。另外,研究表明,kisspeptin/GPR54基因在大鼠、绵羊、狒狒的垂体中表达,kisspeptin与其受体GPR54结合可直接刺激垂体相关激素分泌[26]。Witham等[27]研究表明,kisspeptin能够刺激体外培养的原代小鼠垂体细胞中FSHβ和LHβ基因的表达,而且这种诱导表达是通过与GPR54结合,进而激活PKC途径实现的。Mijiddorj等[28]研究认为,kisspeptin作用于小鼠垂体细胞系LβT2,能够增加LHβ和FSHβ基因启动子的转录活性。然而,Smith等[29]研究结果表明,在绵羊的垂体门脉血中存在kisspeptin,但是它不能单独促进排卵前LH的释放,进而认为kisspeptin不是体内促性腺细胞的直接靶标。Leonardi等[30]用kisspeptin10对处于优势卵泡期的青年牛进行静脉注射后能够显著提高血浆中LH浓度,并能诱导其排卵。体外肌肉注射kisspeptin类似物C6能够显著提高绵羊[31]和山羊[32]在非繁殖季节和繁殖季节血浆中FSH和LH的浓度,促进其发情、排卵,并且在工人输精(AI)后能够成功妊娠、分娩。以上这些体外试验进一步证实,垂体是kisspeptin作用的靶标,它可直接作用于垂体,促进促性腺激素的分泌。Kisspeptin除了对生殖激素有影响外,还能够调控垂体生长激素(GH)、促乳素(PRL)、促甲状腺激素释放激素(TRH)等激素的合成和释放。Ezzat等[25]研究表明,kisspeptin能直接促进体外培养的牛垂体细胞PRL的释放。最近,Hara等[33]对大鼠垂体细胞系GH3细胞过表达GPR54后发现,kisspeptin能够直接刺激PRL启动子的活性,这表明kisspeptin可能直接作用于垂体调控PRL的表达。然而,其他研究却表明,kisspeptin不能调控大鼠PRL的释放,也不能在体内调控山羊PRL的释放[34-35]。因此,尽管kisspeptin对垂体功能的直接调控作用的研究结果还存在矛盾,但以上这些研究表明,kisspeptin/GPR54系统已成为一个新的、重要的垂体功能的调控因子,需要做进一步深入研究。
2.3 Kisspeptin/GPR54在性腺的表达及作用 2.3.1 Kisspeptin/GPR54在性腺的分布及表达2.3.1.1 Kisspeptin/GPR54在卵巢的分布及表达 Kisspeptin/GPR54除了在动物的脑中枢系统表达外,还在诸多外周组织器官中表达,其在性腺中的表达倍受关注。已有研究表明,在许多哺乳动物卵巢中无论是在基因转录水平还是在蛋白水平都有kisspeptin/GPR54的表达[36-37],在啮齿类、家畜及灵长类动物的卵巢中都发现了kisspeptin/GPR54 mRNA的表达[38-39]。在大鼠卵巢中,kisspeptin的表达呈现细胞特定和阶段特定的表达方式,在发情前期卵巢颗粒细胞中表达最高,LH能够刺激颗粒细胞中kisspeptin的合成,而在整个发情中期,GPR54 mRNA的表达较低且波动不明显[40]。Inoue等[41]通过免疫荧光研究发现,kisspeptin定位于猪及山羊卵巢的原始、初级、次级和成熟卵泡的颗粒细胞上,并证实kisspeptin及GPR54 mRNA在不同发育阶段的卵泡颗粒细胞中均表达。Mishra等[42]通过免疫组化研究发现,kisspeptin/GPR54在水牛早期黄体中表达较高,在早期和中期黄体中,kisspeptin/GPR54 mRNA的表达与StAR和CYP11A1基因表达成正相关,这表明kisspeptin可能与黄体细胞的增殖和分化及激素合成有关。Tanyapanyachon等[43]研究了kisspeptin/GPR54在家猫卵巢中的表达,结果表明,卵巢组织都有kisspeptin/GPR54的表达,包括不同类型的卵泡和黄体,kisspeptin/GPR54在卵母细胞、颗粒细胞、卵泡膜细胞中均高表达;在黄体上,Kiss1基因在发育黄体和成熟黄体外周高表达,GPR54无论是在黄体的中心还是外周均高表达,表明kisspeptin/GPR54除了在下丘脑,还可能在外周组织发挥局部调节功能。以上这些结果表明,kisspeptin/GPR54的表达在啮齿类和灵长类动物之间是保守的,且在卵巢中呈现时空表达,推测kisspeptin/GPR54可能以旁分泌或自分泌的方式直接在卵巢中参与调控卵泡发育。
2.3.1.2 Kisspeptin/GPR54在睾丸的分布及表达 Kisspeptin/GPR54在睾丸中的分布在哺乳动物甚至在相同种属之间差异明显。Mei等[44]研究发现,kisspeptin/GPR54在性成熟前小鼠睾丸圆形精子细胞中表达,而Anjum等[45]却认为,kisspeptin在小鼠不同发育时期的睾丸间质细胞和精细胞中表达,而非圆形精子细胞。在山羊上,kisspeptin主要定位在睾丸间质细胞中,而且初情期后Kiss1 mRNA的表达高于初情期前[46]。在灵长类动物上,GPR54定位在成年恒河猴曲细精管外周的支持细胞,而Kiss1不仅定位在生精上皮细胞还在间质细胞中有表达[47]。在无尾两栖类动物上,kisspeptin/GPR54也主要定位在睾丸间质细胞[48]。
2.3.2 Kisspeptin/GPR54在性腺中的作用2.3.2.1 Kisspeptin/GPR54在卵巢中的作用 Kisspepin能够促进卵母细胞成熟,并且在体外受精(IVF)中可以代替人绒毛膜促性腺激素(hCG)或GnRH激动剂,从而降低病人卵巢过度刺激综合征的并发率[49]。有研究表明,kisspeptin/GPR54在假孕兔的黄体中表达,且它可通过旁分泌或自分泌方式促进孕酮的分泌,并通过下调PTGS2基因表达促进PGE2的合成,同时减少PGF2α合成[50]。Kisspeptin能够抑制体外培养的猪卵巢颗粒细胞凋亡,降低颗粒细胞G0/G1细胞周期的比率,增加颗粒细胞上Star、CYP17、3β-HSD、17β-HSD mRNA的表达,促进雌激素(E2)的合成[51]。而另一研究却发现,kisspeptin10能够明显促进牛卵泡颗粒细胞孕酮分泌,但却抑制其卵泡颗粒细胞的活性,增加颗粒细胞caspase-3 mRNA的表达,降低Bcl-2 mRNA的表达,促进颗粒细胞凋亡[52]。Ruohonen等[53]为了研究kisspeptin/GPR54对卵巢功能调控的直接作用,构建了卵巢特定的GPR54缺失小鼠,这种小鼠初情期的启动时间与野生型小鼠无明显差异,但GPR54缺失的雌鼠约在2月龄时有45%出现排卵障碍,发育到10月龄时,100%的小鼠出现早发性卵巢功能不全,并伴随着血中E2和孕酮水平的下降。Owens等[54]在不育妇女IVF中使用kisspeptin54成功诱导卵母细胞成熟,且颗粒细胞中FSHR、LHCGR、CYP19A1、STAR、HSD3B2显著高于hCG或GnRH激动剂处理组,然而,kisspeptin54单独处理却不能改变体外培养的黄体化颗粒细胞中以上基因的表达,hCG单独处理能够明显增加以上基因的表达。Kisspeptin10处理体外培养的猪卵泡颗粒细胞后能够促进孕酮分泌,抑制E2合成,虽然不能改变类固醇激素合成酶关键基因的表达,但能促进卵泡毛细血管的生成,从而推测它在卵巢中间接通过一种非激素调控途径影响卵泡的发育[37]。以上这些研究表明,kisspeptin既可能直接作用于卵巢颗粒细胞,通过调节颗粒细胞活性和类固醇合成关键酶基因表达来调控卵泡发育,又可能通过非类固醇调控途径间接调控卵泡发育。然而,kisspeptin在性腺上影响卵泡发育的具体作用机制尚不清楚,这仍需要在分子水平做进一步深入研究。
2.3.2.2 Kisspeptin/GPR54在睾丸中的作用 Aytürk等[55]在大鼠上的研究表明,kisspeptin10处理能够降低睾酮水平,促进精细胞的凋亡。然而,有研究揭示了kisspeptin/GPR54在山羊睾丸中的局部表达及功能,通过RT-PCR检测青春期山羊睾丸间质细胞中kisspeptin/GPR54 mRNA的表达,并使用免疫组化和Western blot检测其蛋白在睾丸间质细胞或睾丸中的表达,结果表明,kisspeptin直接影响睾酮的分泌,并能显著刺激睾丸激素在睾丸间质细胞的分泌[56]。这些数据提示了kisspeptin/GPR54在山羊睾丸中的局部表达及其在Leydig细胞中的自分泌作用,有助于了解kisspeptin/GPR54系统在其它外周组织中的调控作用。而且Samir等[46]以体外分离、纯化的山羊睾丸间质细胞为研究对象,发现hCG处理能够增加kisspeptin/GPR54 mRNA的表达,而kisspeptin受体的拮抗剂能够显著降低基础睾酮的分泌及hCG诱导的睾酮分泌。总之,kisspeptin/GPR54在雄性性腺上的表达存在种属差异,但是,它对睾丸类固醇激素的调控机制还不明确,还需要进一步深入研究。
3 Kisspeptin/GPR54对哺乳动物初情期启动的调控Kisspeptin是刺激GnRH释放的多肽,它将动物机体内部和外部环境信号与GnRH释放结合,从而对动物初情期的启动起关键作用[57]。Wyatt等[58]发现,在GnRH神经元表面,kisspeptin通过GPR54配体刺激GnRH释放,促进哺乳动物初情期的开始。GnRH神经元网络产生促性腺激素分泌的脉冲和波动模式,对初情期和生育能力至关重要,弓状核kisspeptin神经元支配GnRH神经元在其神经分泌区及周围的投射,是所有哺乳动物脉冲发生器的关键组成部分。在初情期开始时,可能是受神经胶质和神经递质信号对GnRH神经元的渐进刺激影响,及刺激弓形核kisspeptin输入的重新出现,脉冲发生器重新被激活。在雌性动物中,脉动性促性腺激素的分泌促进了高潮发生器的成熟,最终触发第一次排卵[59]。有研究表明,kisspeptin在哺乳动物的初情期启动中是不可或缺的[60]。进一步研究发现,kisspeptin/GPR54系统的激活可以触发神经内分泌事件,导致初情期的启动[61]。而kisspeptin或GPR54突变会导致与初情期发育相关的疾病,如中枢性早熟(CPP)和特发性促性腺功能低下(IHH)[62]。因此,kisspeptin/GPR54对哺乳动物初情期的调控发挥着无可替代的作用,甚至在很大程度上决定着初情期的启动时间。
除此之外,研究表明初情期受表观遗传机制调控,对代谢和营养信号高度敏感。然而,调节营养和肥胖对初情期启动影响的表观遗传途径尚不清楚。研究结果证实,SIRT1(一种乙酰化酶)介导的Kiss1抑制是关键的表观遗传机制,kisspentin/ GPR54在脑中枢与其他因子互作能够调控动物机体与能量代谢相关的生理事件,从而通过调控营养和肥胖信号通路影响哺乳动物的初情期[63]。
4 展望近些年来,kisspentin/GPR54系统已成为生命科学领域的研究热点。它不但具有抑制肿瘤细胞转移、滋养细胞浸润、调控能量平衡和生物节律的作用,而且在动物的下丘脑-垂体-性腺3个水平参与繁殖的调控。除此之外,kisspentin/GPR54在动物初情期的启动方面也具有重要的作用。然而,kisspentin/GPR54在动物的繁殖中还存在着诸多不清楚或相互矛盾的问题。Kisspentin/GPR54在雄性动物中的研究报道还不多,尤其是对睾丸精子发生和类固醇激素合成的作用;另外,kisspentin/GPR54调控动物繁殖的机制,特别是对性腺功能调控的分子机制尚不清楚;对于外周代谢激素通过与kisspentin/GPR54互作,以调节营养和机体能量代谢的方式间接参与动物繁殖的调控尚处于研究的起始阶段。Kisspentin/GPR54在低等脊椎动物和两栖动物繁殖的研究上还处于空白。因此,在将来,需要从以上方面着手,运用分子生物学手段深入研究和阐明kisspentin/GPR54对动物繁殖的作用及其分子机制,为kisspentin/GPR54在动物繁殖上的应用和治疗初情期发育相关疾病提供支持。
[1] | LEE J H, MIELE M E, HICKS D J, et al. Kiss-1, a novel human malignant melanoma metastasis-suppressor gene[J]. J Natl Cancer Inst, 1996, 88(23): 1731–1737. DOI: 10.1093/jnci/88.23.1731 |
[2] | WEST A, VOJTA P J, WELCH D R, et al. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1)[J]. Genomics, 1998, 54(1): 145–148. |
[3] | CLEMENTS M K, MCDONALD T P, WANG R, et al. FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54[J]. Biochem Biophys Res Commun, 2001, 284(5): 1189–1193. DOI: 10.1006/bbrc.2001.5098 |
[4] | KANDA S, AKAZOME Y, MATSUNAGA T, et al. Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (Oryzias latipes)[J]. Endocrinology, 2008, 149(5): 2467–2476. DOI: 10.1210/en.2007-1503 |
[5] | LEE D K, NGUYEN T, O'NEILL G P, et al. Discovery of a receptor related to the galanin receptors[J]. FEBS Lett, 1999, 446(1): 103–107. DOI: 10.1016/S0014-5793(99)00009-5 |
[6] | COLLEDGE W H. Transgenic mouse models to study GPR54/kisspeptin physiology[J]. Peptides, 2009, 30(1): 34–41. DOI: 10.1016/j.peptides.2008.05.006 |
[7] | FRANSSEN D, TENA-SEMPERE M. The kisspeptin receptor:A key G-protein-coupled receptor in the control of the reproductive axis[J]. Best Pract Res Clin Endocrinol Metab, 2018, 32(2): 107–123. DOI: 10.1016/j.beem.2018.01.005 |
[8] | ROA J, AGUILAR E, DIEGUEZ C, et al. New frontiers in kisspeptin/GPR54 physiology as funda-mental gatekeepers of reproductive function[J]. Front Neuroendocrinol, 2008, 29(1): 48–69. DOI: 10.1016/j.yfrne.2007.07.002 |
[9] | CLARKSON J, HERBISON A E. Postnatal develop-ment of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons[J]. Endocrinology, 2006, 147(12): 5817–5825. DOI: 10.1210/en.2006-0787 |
[10] | SMITH J T, DUNGAN H M, STOLL E A, et al. Differential regulation of Kiss-1 mRNA expression by sex steroids in the brain of the male mouse[J]. Endocrinology, 2005, 146(7): 2976–2984. DOI: 10.1210/en.2005-0323 |
[11] | SMITH J T, CLAY C M, CARATY A, et al. Kiss-1 messenger ribonucleic acid expression in the hypotha-lamus of the ewe is regulated by sex steroids and season[J]. Endocrinology, 2007, 148(3): 1150–1157. DOI: 10.1210/en.2006-1435 |
[12] | MISHRA G K, PATRA M K, KIPJEN S L, et al. Expression and functional role of kisspeptin and its receptor in the cyclic corpus luteum of buffalo (Bubalus bubalis)[J]. Theriogenology, 2019, 130: 71–78. DOI: 10.1016/j.theriogenology.2019.02.037 |
[13] | RAMASWAMY S, GUERRIERO K A, GIBBS R B, et al. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy[J]. Endocrinology, 2008, 149(9): 4387–4395. DOI: 10.1210/en.2008-0438 |
[14] | PARHAR I S, OGAWA S, SAKUMA Y, et al. Laser-captured single Digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel g protein-coupled receptor (GPR54) during maturation in cichlid fish[J]. Endocrinology, 2004, 145(8): 3613–3618. DOI: 10.1210/en.2004-0395 |
[15] | CLARKSON J, HERBISON A E. Oestrogen, Kisspeptin, GPR54 and the pre-ovulatory luteinising hormone surge[J]. J Neuroendocrinol, 2009, 21(4): 305–311. |
[16] | QIU J, NESTOR C C, ZHANG C G, et al. High frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons[J]. eLife, 2016, 5: 16246. DOI: 10.7554/eLife.16246 |
[17] | CARBONE S, SZWARCFARB B, LOSADA M E O, et al. Effects of ovarian steroids on the gonadotropin response to N-methyl-D-aspartate and on hypotha-lamic excitatory amino acid levels during sexual maturation in female rats[J]. Endocrinology, 1992, 130(3): 1365–1370. |
[18] | HUMA T, HU X T, MA Y Y, et al. Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived lyon NSCS[J]. Neuroscience, 2017, 349: 318–329. DOI: 10.1016/j.neuroscience.2017.03.004 |
[19] | CLARKE I J, LI Q, HENRY B A, et al. Continuous kisspeptin restores luteinizing hormone pulsatility following cessation by a neurokinin B antagonist in female sheep[J]. Endocrinology, 2018, 159(2): 639–646. DOI: 10.1210/en.2017-00737 |
[20] | CLARKSON J. Effects of estradiol on kisspeptin neurons during puberty[J]. Frontiers Neuroendocrinol, 2013, 34(2): 120–131. DOI: 10.1016/j.yfrne.2013.02.002 |
[21] | GUTIÉRREZ-PASCUAL E, MARTÍNEZ-FUENTES A J, PINILLA L, et al. Direct pituitary effects of kisspeptin:activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion[J]. J Neuroendocrinol, 2007, 19(7): 521–530. DOI: 10.1111/j.1365-2826.2007.01558.x |
[22] | RICHARD N, GALMICHE G, CORVAISIER S, et al. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone[J]. J Neuroendocrinol, 2008, 20(3): 381–393. |
[23] | RAMASWAMY S, GIBBS R B, PLANT T M. Studies of the localisation of kisspeptin within the pituitary of the rhesus monkey (Macaca mulatta) and the effect of kisspeptin on the release of non-gonadotropic pituitary hormones[J]. J Neuroendocrinol, 2009, 21(10): 795–804. DOI: 10.1111/j.1365-2826.2009.01905.x |
[24] | PINILLA L, AGUILAR E, DIEGUEZ C, et al. Kisspeptins and reproduction:physiological roles and regulatory mechanisms[J]. Physiol Rev, 2012, 92(3): 1235–1316. DOI: 10.1152/physrev.00037.2010 |
[25] | EZZAT A A, SAITO H, SAWADA T, et al. The role of sexual steroid hormones in the direct stimulation by Kisspeptin-10 of the secretion of luteinizing hormone, follicle-stimulating hormone and prolactin from bovine anterior pituitary cells[J]. Anim Reprod Sci, 2010, 121(3-4): 267–272. DOI: 10.1016/j.anireprosci.2010.06.002 |
[26] | GAHETE M D, VÁZQUEZ-BORREGO M C, MARTÍNEZ-FUENTES A J, et al. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function[J]. Mol Cell Endocrinol, 2016, 438: 100–106. DOI: 10.1016/j.mce.2016.07.039 |
[27] | WITHAM E A, MEADOWS J D, HOFFMANN H M, et al. Kisspeptin regulates gonadotropin genes via immediate early gene induction in pituitary gonadotropes[J]. Mol Endocrinol, 2013, 27(8): 1283–1294. DOI: 10.1210/me.2012-1405 |
[28] | MIJIDDORJ T, KANASAKI H, SUKHBAATAR U, et al. Mutual regulation by GnRH and kisspeptin of their receptor expression and its impact on the gene expression of gonadotropin subunits[J]. Gen Comp Endocrinol, 2017, 246: 382–389. DOI: 10.1016/j.ygcen.2017.01.014 |
[29] | SMITH J T, RAO A, PEREIRA A, et al. Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge:evidence that gonadotropes are not direct targets of kisspeptin in vivo[J]. Endocrinology, 2008, 149(4): 1951–1959. DOI: 10.1210/en.2007-1425 |
[30] | LEONARDI C E P, DIAS F C F, ADAMS G P, et al. Kisspeptin induces ovulation in heifers under low plasma progesterone concentrations[J]. Theriogenology, 2020, 141: 26–34. DOI: 10.1016/j.theriogenology.2019.08.033 |
[31] | DECOURT C, ROBERT V, ANGER K, et al. A synthetic kisspeptin analog that triggers ovulation and advances puberty[J]. Sci Rep, 2016, 6(1): 26908. DOI: 10.1038/srep26908 |
[32] | DECOURT C, ROBERT V, LOMET D, et al. The kisspeptin analog C6 is a possible alternative to PMSG (pregnant mare serum gonadotropin) for triggering synchronized and fertile ovulations in the Alpine goat[J]. PLoS One, 2019, 14(3): e0214424. DOI: 10.1371/journal.pone.0214424 |
[33] | HARA T, KANASAKI H, TUMURBAATAR T, et al. Role of kisspeptin and Kiss1R in the regulation of prolactin gene expression in rat somatolactotroph GH3 cells[J]. Endocrine, 2019, 63(1): 101–111. DOI: 10.1007/s12020-018-1759-1 |
[34] | SZAWKA R E, RIBEIRO A B, LEITE C M, et al. Kisspeptin regulates prolactin release through hypotha-lamic dopaminergic neurons[J]. Endocrinology, 2010, 151(7): 3247–3257. DOI: 10.1210/en.2009-1414 |
[35] | HASHIZUME T, SAITO H, SAWADA T, et al. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats[J]. Anim Reprod Sci, 2010, 118(1): 37–41. DOI: 10.1016/j.anireprosci.2009.05.017 |
[36] | WAHAB F, ATIKA B, SHAHAB M, et al. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system[J]. Nat Rev Urol, 2016, 13(1): 21–32. DOI: 10.1038/nrurol.2015.277 |
[37] | BASINI G, GRASSELLI F, BUSSOLATI S, et al. Presence and function of kisspeptin/KISS1R system in swine ovarian follicles[J]. Theriogenology, 2018, 115: 1–8. DOI: 10.1016/j.theriogenology.2018.04.006 |
[38] | TERAO Y, KUMANO S, TAKATSU Y, et al. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta[J]. Biochim Biophys Acta, 2004, 1678(2-3): 102–110. DOI: 10.1016/j.bbaexp.2004.02.005 |
[39] | CAO Y B, LI Z P, JIANG W Y, et al. Reproductive functions of Kisspeptin/KISS1R systems in the periphery[J]. Reprod Biol Endocrinol, 2019, 17(1): 65. DOI: 10.1186/s12958-019-0511-x |
[40] | RICU M A, RAMIREZ V D, PAREDES A H, et al. Evidence for a celiac ganglion-ovarian kisspeptin neural network in the rat:intraovarian anti-kisspeptin delays vaginal opening and alters estrous cyclicity[J]. Endocrinology, 2012, 153(10): 4966–4977. DOI: 10.1210/en.2012-1279 |
[41] | INOUE N, HIRANO T, UENOYAMA Y, et al. Localization of kisspeptin and gonadotropin-releasing hormone (GnRH) in developing ovarian follicles of pigs and goats[J]. Biol Reproduct, 2009, 81(S1): 551–559. |
[42] | MISHRA G K, PATRA M K, SINGH L K, et al. Expression of Kisspeptin and its receptor in the hypothalamus of cyclic and acyclic buffalo (Bubalus bubalis)[J]. Theriogenology, 2019, 139: 167–177. DOI: 10.1016/j.theriogenology.2019.08.009 |
[43] | TANYAPANYACHON P, AMELKINA O, CHATDAR- ONG K. The expression of kisspeptin and its receptor in the domestic cat ovary and uterus in different stages of the ovarian cycle[J]. Theriogenology, 2018, 117: 40–48. DOI: 10.1016/j.theriogenology.2018.05.019 |
[44] | MEI H, DORAN J, KYLE V, et al. Does Kisspeptin signaling have a role in the testes?[J]. Front Endocrinol (Lausanne), 2013, 4: 198. |
[45] | ANJUM S, KRISHNA A, SRIDARAN R, et al. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice[J]. J Exp Zool A Ecol Genet Physiol, 2012, 317(10): 630–644. |
[46] | SAMIR H, NAGAOKA K, KAREN A, et al. Investigation the mRNA expression of KISS1 and localization of kisspeptin in the testes of Shiba goats and its relationship with the puberty and steriodogenic enzymes[J]. Small Ruminant Res, 2015, 133: 1–6. DOI: 10.1016/j.smallrumres.2015.10.024 |
[47] | IRFAN S, EHMCKE J, SHAHAB M, et al. Immunocytochemical localization of kisspeptin and kisspeptin receptor in the primate testis[J]. J Med Primatol, 2016, 45(3): 105–111. DOI: 10.1111/jmp.12212 |
[48] | CHIANESE R, CIARAMELLA V, FASANO S, et al. Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian[J]. Reproduction, 2017, 154(4): 403–414. DOI: 10.1530/REP-17-0030 |
[49] | KASUM M, FRANULI D, EHI E, et al. Kisspeptin as a promising oocyte maturation trigger for in vitro fertilisation in humans[J]. Gynecol Endocrinol, 2017, 33(8): 583–587. DOI: 10.1080/09513590.2017.1309019 |
[50] | HU K L, ZHANG Y L, YANG Z, et al. Predictive value of serum kisspeptin concentration at 14 and 21 days after frozen-thawed embryo transfer[J]. Reprod Biomed Online, 2019, 39(1): 161–167. DOI: 10.1016/j.rbmo.2019.03.202 |
[51] | XIN X P, LI Z H, ZHONG Y Y, et al. KISS1 suppresses apoptosis and stimulates the synthesis of E2 in porcine ovarian granulosa cells[J]. Animals (Basel), 2019, 9(2): 54. DOI: 10.3390/ani9020054 |
[52] | LIU H Y, XU G Q, YUAN Z Y, et al. Effect of kisspeptin on the proliferation and apoptosis of bovine granulosa cells[J]. Anim Reprod Sci, 2017, 185: 1–7. DOI: 10.1016/j.anireprosci.2017.07.008 |
[53] | RUOHONEN S T, GAYTAN F, GAUDI A U, et al. Kisspeptin signaling in oocytes is compulsory for ovulation in adult mice[J]. The FASEB Journal, 2019, 4(5): 580. |
[54] | OWENS L A, ABBARA A, LERNER A, et al. The direct and indirect effects of kisspeptin-54 on granulosa lutein cell function[J]. Hum Reprod, 2017, 33(2): 292–302. |
[55] | AYTVRK N, FIRAT T, KVKNER A, et al. The effect of kisspeptin on spermatogenesis and apoptosis in rats[J]. Turk J Med Sci, 2017, 47(1): 334–342. |
[56] | HAN Y G, PENG X L, SI W J, et al. Local expressions and function of Kiss1/GPR54 in goats' testes[J]. Gene, 2020, 738: 144488. DOI: 10.1016/j.gene.2020.144488 |
[57] | QUINTON N D, SMITH R F, CLAYTON P E, et al. Leptin binding activity changes with age:the link between leptin and puberty[J]. J Clin Endocrinol Metab, 1999, 84(7): 2336–2341. |
[58] | WYATT A K, ZAVODNA M, VILJOEN J L, et al. Changes in methylation patterns of Kiss1 and Kisslr gene promoters across puberty[J]. Genet Epigenet, 2013, 5: 51–62. |
[59] | HERBISON A E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons[J]. Nat Rev Endocrinol, 2016, 12(8): 452–466. DOI: 10.1038/nrendo.2016.70 |
[60] | UENOYAMA Y, INOUE N, NAKAMURA S, et al. Central mechanism controlling pubertal onset in mammals:A triggering role of kisspeptin[J]. Front Endocrinol (Lausanne), 2019, 10: 312. DOI: 10.3389/fendo.2019.00312 |
[61] | KE R, MA X, LEE L T O. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies[J]. Peptides, 2019, 120: 170019. DOI: 10.1016/j.peptides.2018.09.007 |
[62] | WANG L H, VANACKER C, BURGER L L, et al. Genetic dissection of the different roles of hypotha-lamic kisspeptin neurons in regulating female reproduction[J]. eLife, 2019, 8: e43999. DOI: 10.7554/eLife.43999 |
[63] | VAZQUEZ M J, TORO C A, CASTELLANO J M, et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression[J]. Nat Commun, 2018, 9(1): 4194. DOI: 10.1038/s41467-018-06459-9 |