畜牧兽医学报  2020, Vol. 51 Issue (1): 128-136. DOI: 10.11843/j.issn.0366-6964.2020.01.015    PDF    
吸血行为对草原革蜱和森林革蜱中肠菌群结构的影响
段德勇, 周鸿铭, 程天印     
湖南农业大学动物医学院, 长沙 410128
摘要:本研究旨在探明随吸血时间的延长,草原革蜱和森林革蜱中肠菌群结构的特征及变化。从内蒙古呼伦贝尔和宁夏固原绵羊体表分别采集半饱血、饱血草原革蜱和半饱血、饱血森林革蜱,无菌条件下收集蜱中肠内容物,提取细菌总DNA,扩增细菌16S rDNA V3-V4区,IonS5TMXL高通量测序,对比分析各样本菌群结构的特征。结果显示,森林革蜱半饱血中肠内的细菌多样性最高,草原革蜱饱血和半饱血中肠内的细菌多样性次之,森林革蜱饱血中肠内的细菌多样性最低;变形菌门为4个样品的优势菌门;无形体属、立克次体属、寡养单胞菌属和柯克斯体属为4个样品的优势菌属,其中无形体属在草原革蜱和森林革蜱饱血中肠内的含量高于2种蜱半饱血中肠,立克次体属和柯克斯体属在2种蜱半饱血中肠内的含量明显大于饱血中肠;边缘无形体、弯曲假单胞菌和柯克斯体科RFE02菌为4个样品的优势菌种,其中边缘无形体的分布特点与无形体属在2种蜱中肠内的分布特点相一致。结果表明,草原革蜱和森林革蜱中肠菌群结构易受到吸血行为的影响,共有菌属和菌种在不同蜱种和不同饱血状态下的相对丰度变化较大。
关键词草原革蜱    森林革蜱    中肠    菌群结构    吸血行为    
Effects of Blood-sucking Behavior on the Microbial Community in the Midgut of Dermacentor nuttalli and Dermacentor silvarum
DUAN Deyong, ZHOU Hongming, CHENG Tianyin     
College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
Abstract: The aim of this study is to investigate the characteristics and changes of bacterial flora in midguts of Dermacentor nuttalli and Dermacentor silvarum with the extension of feeding time. The half or fully engorged D. nuttalli and D. silvarum were obtained from sheep body surface in Hulun Buir of Inner Mongolia and Guyuan of Ningxia, respectively. The midgut contents were collected from ticks under sterile environment. Then the total DNA of bacteria were extracted and the V3-V4 areas of 16S rDNA were amplified. The PCR product of each sample was sequenced by IonS5TMXL high-throughput sequencing platform. Each sample's bacterial flora characteristic and the differences among four groups (half engorged D.nuttalli, fully engorged D.nuttalli, half engorged D.silvarum and fully engorged D.silvarum) were analyzed. The results showed that the bacterial diversity of midguts from the half engorged D. silvarum was the highest, followed by that of midguts from half and fully engorged D. nuttalli, the bacterial diversity of midguts from the fully engorged D. silvarum was the lowest. Proteobacteria was the most predominant phyla in all samples. Anaplasma, Rickettsia, Stenotrophomonas and Coxiella were the major genera. The relative abundance of Anaplasma in midguts from fully engorged D. nuttalli and D. silvarum were higher than that in the midguts from the half engorged ticks. The relative abundance of Rickettsia and Coxiella in midguts from half engorged D. nuttalli and D. silvarum were higher than that in the midguts from the fully engorged ticks. Anaplasma marginale, Pseudomonas geniculate and Coxiellaceae bacterium RFE02 were the most predominant species in four samples. Distributions of A. marginale in the midguts of D. nuttalli and D. silvarum were consistent with that of Anaplasma. These findings suggested that the midgut bacterial flora of D. nuttalli and D. silvarum are susceptible to the blood-sucking behavior. The relative abundance of common bacteria genera and species vary greatly in different tick species and engorged statuses.
Key words: Dermacentor nuttalli    Dermacentor silvarum    midgut    microbial community structure    blood-sucking behavior    

蜱中肠菌群由病原菌和共生菌共同构成,已证实草原革蜱(Dermacentor nuttalli)可携带饶氏立克次体(Rickettsia raoultii)[1]、绵羊无形体(Anaplasma ovis)[2]、埃氏立克次体(R. aeschlimannii)[3]、嗜吞噬细胞无形体(A. phagocytophilum)[4]等病原菌;森林革蜱(Dermacentor silvarum)可携带西伯利亚立克次体(R. sibirica)[5]、饶氏立克次体[6]、斯洛伐克立克次体(R. slovaca)[7]、土拉弗朗西斯菌(Francisella tularensis)[8]、嗜吞噬细胞无形体[4]、查菲埃立克体(Ehrlichia chaffeensis)[9]、伯氏疏螺旋体(Borrelia burgdorferi)[10]等病原菌。在蜱体内已被检测到的共生菌包括:参与蜱发育和繁殖过程、为蜱提供维生素B和辅助因子的柯克斯体属共生菌(Coxiella-like symbiont)[11-13];可为蜱提供叶酸等物质的立克次体属共生菌(Rickettsia-like symbiont)[14];通过杀死雄性胚胎,使雌性胚胎发育并获得更多营养物质,以保证种群繁殖力的杀雄菌属(Arsenophonus)[15];通过诱导胞质不亲和、雄性雌性化,调控生殖行为的沃尔巴克体属(Wolbachia)[16]

病原菌和共生菌构建形成的稳定中肠菌群结构,对蜱防御病原菌侵害自身、病原菌成功定植、血餐消化、生殖等方面意义重大[17]。但有研究表明,在蜱吸血过程中会产生强烈的氧化应激反应,尤其是从半饱血到饱血的过程中,氧化应激反应会对中肠内的菌种种类和数量造成影响[17],如微小牛蜱(Boophilus microplus)中肠内的不动杆菌(Acinetobacter)在饱血状态下的含量显著高于半饱血状态;柯克斯体属和立克次体属在半饱血和饱血中肠内的相对丰度差异显著[18]。在草原革蜱和森林革蜱中,已报道的病原菌说明其可适应氧化应激反应而能够稳定定植和繁殖,但在2种蜱中肠内是否还存在特定饱血状态下的病原菌,以及常见的共生菌是否同样存在于2种蜱的中肠内,这些病原菌和共生菌是否会受到吸血的影响在不同饱血状态下中肠内的相对丰度表现不同,均有待于进一步明确。本研究采用IonS5TMXL高通量测序技术,探究2种蜱随吸血时间的延长,中肠菌群结构的特征及变化;明确2种蜱中肠内病原菌和共生菌的种类,以及在饱血和半饱血状态下各菌相对丰度的变化情况,为控蜱防病提供理论基础。

1 材料与方法 1.1 材料 1.1.1 主要试剂

带Barcode的细菌16S rDNA V3-V4区扩增引物:341F:5′-CCTAYGGGRBGCASCAG-3′;806R:5′-GGACTACNNGGGTATC-TAAT-3′,由上海生工生物工程股份有限公司合成。细菌基因组DNA提取试剂盒,北京天根生化科技有限公司产品。Phusion High-Fidelity PCR Master Mix,New England Biolabs公司产品。GeneJET Gel Extraction Kit,Thermo Scientific公司产品。Ion Plus Fragment Library Kit 48 rxns,Thermofisher公司产品。

1.1.2 雌蜱样本

草原革蜱雌蜱,采自内蒙古呼伦贝尔绵羊体表,称重后以(0.480±0.005) g的蜱为饱血蜱,以(0.240±0.005) g的蜱为半饱血蜱。森林革蜱雌蜱,采自宁夏固原绵羊体表,称重后以(0.560±0.005) g的蜱为饱血蜱,以(0.280±0.005) g的蜱为半饱血蜱。

1.2 方法 1.2.1 细菌DNA提取

取草原革蜱半饱血、饱血雌蜱各5只,森林革蜱半饱血、饱血雌蜱各5只,每只蜱体表经70%酒精消毒、无菌水冲洗3次后,在超净工作台无菌条件下,用灭菌眼科剪剪开腹部体壁,将5只半饱血草原革蜱、5只饱血草原革蜱、5只半饱血森林革蜱、5只饱血森林革蜱中肠内容物分别挤入含有1 mL 3.8%柠檬酸钠生理盐水溶液的4个灭菌离心管中,800 r·min-1离心10 min;取上清,12 000 r·min-1离心1 min;弃上清,取沉淀物,按照细菌基因组DNA提取试剂盒说明书提取各样品细菌基因组DNA,并将草原革蜱半饱血雌蜱中肠内容物细菌DNA样品编号为Dn.pm,草原革蜱饱血雌蜱中肠内容物细菌DNA样品编号为Dn.fm,森林革蜱半饱血雌蜱中肠内容物细菌DNA样品编号为Ds.pm,森林革蜱饱血雌蜱中肠内容物细菌DNA样品编号为Ds.fm。琼脂糖凝胶电泳法和分光光度法测定DNA的纯度和浓度。

1.2.2 16S rDNA基因扩增及高通量测序

以各样品细菌总DNA为模板,以带Barcode的341F和806R为引物扩增细菌16S rDNA V3-V4区,反应体系(50 μL):DNA模板2.5 μL,上游引物(10 μmol·L-1)1.5 μL,下游引物(10 μmol·L-1)1.5 μL,High-Fidelity PCR Master Mix 25 μL,ddH2O 19.5 μL。反应程序:95 ℃ 1 min;95 ℃ 10 s,50 ℃ 30 s,72 ℃ 60 s共30个循环;72 ℃延伸5 min。1.5%琼脂糖凝胶电泳检测PCR产物。根据PCR产物浓度进行等量混样,充分混匀后1.5%琼脂糖凝胶125 V电泳30 min;切取条带,并用GeneJET Gel Extraction Kit(Thermo Fisher Scientific,USA)纯化目的条带;对每个PCR产物定量后,稀释并获得储备溶液(1 μg·mL-1)。按照Ion Plus Fragment Library Kit 48 rxns(Thermo Fisher Scientific,USA)试剂盒说明书构建序列文库,文库经Qubit2.0 FLuorometer (Thermo Scientific,USA)定量和Q-PCR检测合格后,运用IonS5TMXL(Thermofisher,USA)高通量测序平台进行测序。

1.2.3 数据处理与分析

运用Cutadapt(V1.9.1, http://cutadapt.readthedocs.io/en/stable/)[19]对测序获得的序列(reads)进行低质量部分剪切;根据Barcode分离出4个样品相对应的数据,截去Barcode和引物序列后得到原始数据(raw reads);经UCHIME Algorithm(http://www.drive5.com/usearch/manual/uchime_algo.html)[20]与物种注释数据库进行比对、检测,去除嵌合体序列后获得有效数据(clean reads)。利用Uparse(V7.0.1001,http://drive5.com/uparse/)[21]对4个样品的全部clean reads进行聚类,默认以97%的一致性(identity)将序列聚类成为OTUs(operational taxonomic units),选取OTUs中出现频数最高的序列作为OTUs代表序列。运用Mothur方法与SILVA(http://www.arb-silva.de/)[22]的SSUrRNA数据库[23]进行物种注释分析,获得分类学信息并分别在各个分类水平上统计各样本的群落组成。以样品中数据量最少的为标准进行均一化处理后,使用Qiime软件(Version 1.9.1)计算Chao1、ACE、Good’s coverage等指数,使用R软件(Version 2.15.3)绘制稀释曲线和Rank abundance曲线,并使用R软件进行Alpha多样性分析。

2 结果 2.1 数据统计与α多样性分析

经测序获得原始序列331 777条,处理后获得有效序列320 935条(其中80 221条来自于Dn.pm,80 066条来自于Dn.fm,80 341条来自于Ds.pm,80 307条来自于Ds.fm)。将有效序列进行OTUs聚类,获得359个OTUs。Dn.pm、Dn.fm、Ds.pm、Ds.fm拥有的OTUs数分别为87、96、99和77,其中36个OTUs为4样品所共有(图 1),说明不同蜱种在不同饱血状态下有部分菌群结构相似。

Dn.pm.草原革蜱半饱血中肠内容物;Dn.fm.草原革蜱饱血中肠内容物;Ds.pm.森林革蜱半饱血中肠内容物;Ds.fm.森林革蜱饱血中肠内容物 Dn.pm. Midgut contents from half engorged Dermacentor nuttalli; Dn.fm. Midgut contents from fully engorged Dermacentor nuttalli; Ds.pm. Midgut contents from half engorged Dermacentor silvarum; Ds.fm. Midgut contents from fully engorged Dermacentor silvarum 图 1 4个样品OTUs分布韦恩图 Fig. 1 Venn figure of OTUs distribution of four samples

4个样本α多样性指数见表 1。从表 1可见,4个样本的测序覆盖率(Good’s coverage)均为99.9%,说明本试验测序深度已满足细菌多样性分析的要求。草原革蜱饱血中肠的Chao1和ACE指数大于半饱血,说明草原革蜱饱血中肠内的细菌多样性高于半饱血中肠;森林革蜱半饱血中肠的Chao1和ACE指数大于饱血,说明森林革蜱半饱血中肠内的细菌多样性高于饱血中肠。稀释曲线同样可反映出样品的物种丰富度。从图 2可见,随测序深度的增加,4个样本获得的OTUs数量排序如下:Ds.pm>Dn.fm>Dn.pm>Ds.fm,说明森林革蜱半饱血中肠内的细菌多样性最高,草原革蜱饱血和半饱血中肠内的细菌多样性次之,森林革蜱饱血中肠内的细菌多样性最低。

表 1 样品的细菌多样性指数 Table 1 Indices of bacterial diversity in samples
图 2 物种稀释曲线 Fig. 2 Rarefaction curves of species
2.2 菌群结构特征 2.2.1 细菌在门水平上的分布

4个样本共有的细菌门包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、梭杆菌门(Fusobacteria)和一种未被鉴定的细菌门(unidentified Bacteria),其中变形菌门在Dn.pm、Dn.fm、Ds.pm和Ds.fm中的相对丰度分别为99.8%、99.7%、99.6%和99.8%,占总菌门的比例均大于99.6%,具有显著优势;其他菌门所占总菌门比例均小于0.4%,相对丰度较低。

2.2.2 细菌在属水平上的分布

4个样品共有的细菌属为24个,各菌属相对丰度见表 2。相对丰度前20的菌属在4个样本中的分布特点见图 3。在4个样本中无形体属(Anaplasma)、立克次体属(Rickettsia)、寡养单胞菌属(Stenotrophomonas)和柯克斯体属相对丰度较高,为优势菌属。4个优势菌属在不同样本中的相对丰度显著不同,无形体属在草原革蜱和森林革蜱饱血中肠内的含量高于2种蜱半饱血中肠,且草原革蜱饱血中肠内无形体属的含量显著大于森林革蜱饱血中肠;立克次体属在2种蜱的半饱血中肠内含量明显大于饱血中肠,且森林革蜱中肠内的立克次体属含量高于草原革蜱;柯克斯体属在2种蜱的半饱血中肠内含量大于饱血中肠,且草原革蜱半饱血中肠内柯克斯体属的含量高于森林革蜱半饱血中肠;寡养单胞菌属在4个样本中的含量相近,不同饱血状态下其相对丰度变化较小。除优势菌外,杀雄菌属、鞘脂单胞菌属(Sphingomonas)、叶状杆菌属(Phyllobacterium)、沃尔巴克体属、不动杆菌属(Acinetobacter)在4个样本中均被检测到,但相对丰度较低,为次优势菌。

表 2 4个样本中24个细菌属的相对丰度 Table 2 The relative abundance of 24 bacteria genera in four samples
图 3 相对丰度前20的细菌属在4个样本中的分布特点 Fig. 3 Distribution characteristics of relative abundance of the top 20 bacteria genera in four samples

除24个共有菌属外,有些菌属只在特定的蜱种或饱血状态下存在,如莫勒菌属(Moellerella)、单胞菌属(Brevundimonas)、致湿杆菌属(Psychrobacter)和肠球菌属(Enterococcus)只在草原革蜱饱血和半饱血中肠内被检测到,在森林革蜱中肠内不存在;巴尔通体属(Bartonella)、嗜酸杆菌属(Enhydrobacter)和半乳糖球菌属(Jeotgalicoccus)只在森林革蜱饱血和半饱血中肠内被检测到,在草原革蜱中肠内不存在;芽胞杆菌属(Bacillus)只在草原革蜱和森林革蜱饱血中肠内存在,而在2种蜱半饱血中肠内未检测到该菌;水生杆菌属(Aquabacterium)和丙酸菌属(Propionigenium)只在草原革蜱和森林革蜱半饱血中肠内存在,而在2种蜱饱血中肠内未被检测到。

2.2.3 细菌在种水平上的分布

4个样本共有菌种包括:边缘无形体(Anaplasma marginale)、弯曲假单胞菌(Pseudomonas geniculata)、柯克斯体科RFE02菌(Coxiellaceae bacterium RFE02)、鞘氨醇单胞菌(Sphingomonas koreensis)、溶血不动杆菌(Acinetobacter haemolyticus)和WH1-8菌(bacterium WH1-8),6种细菌种的相对丰度见表 3。从表 3可见,边缘无形体、溶血不动杆菌在草原革蜱和森林革蜱饱血中肠内的含量高于2种蜱半饱血中肠,且草原革蜱饱血中肠内边缘无形体的含量显著大于森林革蜱饱血中肠;柯克斯体科RFE02菌在2种蜱半饱血中肠内的含量高于饱血中肠,且草原革蜱半饱血中肠内柯克斯体科RFE02菌的含量显著大于森林革蜱半饱血中肠;其余菌种相对丰度差异较小。

表 3 4个样本中6个细菌种的相对丰度 Table 3 The relative abundance of 6 bacteria species in four samples

除6个共有菌种外,氢碳单胞菌(Marinobacter hydrocarbonoclasticus)、威斯康星米勒菌(Moellerella wisconsensis)、枯萎梭杆菌(Fusobacterium mortiferum)、嗜冷杆菌属亚种(Psychrobacter sanguinis)和缺陷假单胞菌(Brevundimonas diminuta)只在森林革蜱饱血和半饱血中肠内存在,在草原革蜱饱血和半饱血中肠中未被检出;奥斯陆莫拉菌(Moraxella osloensis)和淀粉乳杆菌(Lactobacillus amylovorus)只存在于草原革蜱饱血和半饱血中肠内,在森林革蜱饱血和半饱血中肠内未被检测到。

3 讨论

草原革蜱和森林革蜱均属于硬蜱科(Ixodidae)革蜱属(Dermacentor),两者在分布范围、寄生宿主、形态结构及分子标记物特征方面也较为相近。以往的研究证实,2种蜱均可传播饶氏立克次体、嗜吞噬细胞无形体、土拉弗朗西斯菌、伯氏疏螺旋体等病原体,但两者中肠内是否携带其他病原菌、携带的病原菌和共生菌是否存在差异、吸血后2种蜱中肠菌群结构是否发生变化,尚不明确。本研究利用IonS5TMXL高通量测序技术,对草原革蜱和森林革蜱不同饱血状态下的中肠菌群结构进行了对比分析,发现在2种蜱不同饱血中肠内共有的细菌门为6个、细菌属24个、细菌种6个,其中优势菌门为变形菌门,这与褐黄血蜱(Haemaphysalis flava)[24]、微小牛蜱[18]、海湾花蜱(Amblyomma maculatum)[17]、疣状花蜱(Amblyomma tuberculatum)[25]、长角血蜱(Haemaphysalis longicornis)[26]等蜱种的优势菌门相一致;优势菌属为无形体属、立克次体属、寡养单胞菌属和柯克斯体属,立克次体属、柯克斯体属在诸多蜱种[27-30]中均被检测到且优势显著,而无形体属和寡养单胞菌属只在本研究中的2种蜱中肠内为优势菌属;优势菌种为边缘无形体,虽然高通量测序技术能够捕获和分析丰度较低的细菌,但大多OUTs只能注释到属水平,极少数可注释到种,本研究首次将草原革蜱和森林革蜱中肠内的无形体属注释为边缘无形体,对边缘无形体的防治意义重大。

蜱中肠和其他组织内的菌群结构及多样性受蜱的发育阶段[30]、地理位置[31]、吸血[32]、饱血状态[27, 33]、性别[28]、宿主及蜱种[34]等不同因素的影响而发生变化。本研究采集到的草原革蜱位于内蒙古呼伦贝尔、森林革蜱位于宁夏固原,宿主均为绵羊,性别和发育阶段均为雌蜱,饱血状态分别为半饱血和饱血,即2种蜱的蜱种、地理位置和饱血状态不同。通过对比发现,只在草原革蜱中肠内检测到的菌属包括:莫勒菌属、单胞菌属、致湿杆菌属和肠球菌属;菌种包括:奥斯陆莫拉菌和淀粉乳杆菌。只在森林革蜱中肠内检测到的菌属包括:巴尔通体属、嗜酸杆菌属和半乳糖球菌属;菌种包括:氢碳单胞菌、威斯康星米勒菌、枯萎梭杆菌、嗜冷杆菌属亚种和缺陷假单胞菌,说明上述菌属和菌种易受到蜱种或地理位置的影响而在蜱中肠内的分布表现不同。在森林革蜱中肠内检测到的巴尔通体属,已被证实可引起卡瑞恩病、战壕热、猫抓病等疾病,因此在宁夏固原地区除加强对森林革蜱的防治外,还应注重防控与巴尔通体属相关的疾病。

随着吸血时间的延长,草原革蜱中肠内的菌群多样性逐渐增加,而森林革蜱中肠内的菌群多样性逐渐降低,这表明吸血行为对不同蜱种中肠菌群结构的影响不同[26, 33]。同时,吸血对不同菌属和菌种在蜱中肠内的定植和增殖影响也不同,其中立克次体属和柯克斯体科RFE02菌在2种蜱半饱血中肠内的含量明显大于饱血中肠,说明其数量随吸血时间延长而逐渐减少,这可能与蜱吸血产生的氧化应激有关[17];边缘无形体和溶血不动杆菌在2种蜱饱血中肠内的含量高于半饱血中肠,说明这2种菌会随蜱的吸血在中肠内大量定植和增殖,并在饱血时达到顶峰。除共有优势菌外,芽胞杆菌属只在草原革蜱和森林革蜱饱血中肠内存在,这可能是由于芽胞杆菌属为规避氧化应激反应,在半饱血时以芽胞形式存在,而在饱血后才萌发形成杆状菌;水生杆菌属、丙酸菌属只在草原革蜱和森林革蜱半饱血中肠内存在,说明这两种菌属随蜱的吸血而因氧化应激等作用最终被杀灭。

在本研究中,杀雄菌属和沃尔巴克体属为草原革蜱和森林革蜱中肠内的共生菌。杀雄菌属在2种蜱饱血中肠内的相对丰度显著高于半饱血中肠,说明杀雄菌属随吸血时间的延长在中肠内进行了增殖。沃尔巴克体属在草原革蜱饱血中肠内的含量大于半饱血中肠,而在森林革蜱半饱血与饱血中肠内的含量相同,说明沃尔巴克体属在草原革蜱中易受到吸血行为的影响,且可随吸血的进行而增殖,但在森林革蜱中肠内沃尔巴克体属不易受到吸血的影响,这也更进一步说明,吸血对同种菌属在不同蜱种中的影响不同。

4 结论

运用IonS5TMXL高通量测序技术,对草原革蜱和森林革蜱半饱血、饱血中肠内的菌群结构及变化情况进行分析,发现2种蜱在不同饱血中肠内共有的细菌门为6个、细菌属24个、细菌种6个,且共有菌的相对丰度易受到蜱种、地理位置和饱血状态的影响而发生变化;在特定蜱种和不同饱血状态时,中肠内存在特定的菌属和菌种。

参考文献
[1] SPECK S, DERSCHUM H, DAMDINDORJ T, et al. Rickettsia raoultii, the predominant Rickettsia found in Mongolian Dermacentor nuttalli[J]. Ticks Tick Borne Dis, 2012, 3(4): 227–231. DOI: 10.1016/j.ttbdis.2012.04.001
[2] ENKHTAIVAN B, NARANTSATSRAL S, DAVAASUREN B, et al. Molecular detection of Anaplasma ovis in small ruminants and ixodid ticks from Mongolia[J]. Parasitol Int, 2019, 69: 47–53. DOI: 10.1016/j.parint.2018.11.004
[3] YIN X H, GUO S C, DING C L, et al. Spotted fever group Rickettsiae in Inner Mongolia, China, 2015-2016[J]. Emerg Infect Dis, 2018, 24(11): 2105–2107. DOI: 10.3201/eid2411.162094
[4] WEI F, SONG M X, LIU H H, et al. Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from northeastern China[J]. Front Microbiol, 2016, 7: 1913.
[5] CAO W C, ZHAN L, DE VLAS S J, et al. Molecular detection of spotted fever group Rickettsia in Dermacentor silvarum from a forest area of northeastern China[J]. J Med Entomol, 2008, 45(4): 741–744.
[6] IGOLKINA Y, RAR V, VYSOCHINA N, et al. Genetic variability of Rickettsia spp. in Dermacentor and Haemaphysalis ticks from the Russian Far East[J]. Ticks Tick Borne Dis, 2018, 9(6): 1594–1603. DOI: 10.1016/j.ttbdis.2018.07.015
[7] TIAN Z C, LIU G Y, SHEN H, et al. First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China[J]. Parasit Vectors, 2012, 5: 19. DOI: 10.1186/1756-3305-5-19
[8] ZHANG F, LIU W, WU X M, et al. Detection of Francisella tularensis in ticks and identification of their genotypes using multiple-locus variable-number tandem repeat analysis[J]. BMC Microbiol, 2008, 8: 152. DOI: 10.1186/1471-2180-8-152
[9] WEN B H, CAO W C, PAN H. Ehrlichiae and ehrlichial diseases in China[J]. Ann N Y Acad Sci, 2003, 990(1): 45–53. DOI: 10.1111/j.1749-6632.2003.tb07335.x
[10] KHASNATINOV M A, LIAPUNOV A V, MANZAROVA E L, et al. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species[J]. Parasitol Res, 2016, 115(2): 501–510. DOI: 10.1007/s00436-015-4766-7
[11] ZHONG J, JASINSKAS A, BARBOUR A G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness[J]. PLoS One, 2007, 2(5): e405. DOI: 10.1371/journal.pone.0000405
[12] ZHANG C M, LI N X, ZHANG T T, et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis[J]. Exp Appl Acarol, 2017, 73(3-4): 429–438. DOI: 10.1007/s10493-017-0194-y
[13] GUIZZO M G, PARIZI L F, NUNES R D, et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus[J]. Sci Rep, 2017, 7(1): 17554. DOI: 10.1038/s41598-017-17309-x
[14] HUNTER D J, TORKELSON J L, BODNAR J, et al. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis[J]. PLoS One, 2015, 10(12): e0144552. DOI: 10.1371/journal.pone.0144552
[15] GHERNA R L, WERREN J H, WEISBURG W, et al. Notes: Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis[J]. Int J Syst Bacteriol, 1991, 41(4): 563–565. DOI: 10.1099/00207713-41-4-563
[16] KOSE H, KARR T L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody[J]. Mech Dev, 1995, 51(2-3): 275–288. DOI: 10.1016/0925-4773(95)00372-X
[17] BUDACHETRI K, BROWNING R E, ADAMSON S W, et al. An insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae)[J]. J Med Entomol, 2014, 51(1): 119–129. DOI: 10.1603/ME12223
[18] 段德勇, 程天印. 不同饱血状态微小牛蜱中肠和唾液菌群结构的分析[J]. 畜牧兽医学报, 2017, 48(3): 530–537.
DUAN D Y, CHENG T Y. Bacterial flora analysis of saliva and midgut contents from partially or fully engorged female adult Rhipicephalus microplus[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(3): 530–537. (in Chinese)
[19] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 200.
[20] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194–2200. DOI: 10.1093/bioinformatics/btr381
[21] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996–998. DOI: 10.1038/nmeth.2604
[22] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(Database issue): D590–D596.
[23] WANG Q, GARRITY G M, TIEDJE J M, et al. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007, 73(16): 5261–5267. DOI: 10.1128/AEM.00062-07
[24] DUAN D Y, CHENG T Y. Determination of the microbial community features of Haemaphysalis flava in different developmental stages by high-throughput sequencing[J]. J Basic Microbiol, 2017, 57(4): 302–308. DOI: 10.1002/jobm.201600557
[25] BUDACHETRI K, GAILLARD D, WILLIAMS J, et al. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species[J]. Ticks Tick Borne Dis, 2016, 7(6): 1225–1229. DOI: 10.1016/j.ttbdis.2016.07.010
[26] ZHANG R L, HUANG Z D, YU G F, et al. Characterization of microbiota diversity of field-collected Haemaphysalis longicornis (Acari: Ixodidae) with regard to sex and blood meals[J]. J Basic Microbiol, 2019, 59(2): 215–223. DOI: 10.1002/jobm.201800372
[27] HEISE S R, ELSHAHED M S, LITTLE S E. Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia[J]. J Med Entomol, 2010, 47(2): 258–268. DOI: 10.1093/jmedent/47.2.258
[28] WILLIAMS-NEWKIRK A J, ROWE L A, MIXSON-HAYDEN T R, et al. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum)[J]. PLoS One, 2014, 9(7): e102130. DOI: 10.1371/journal.pone.0102130
[29] LALZAR I, HARRUS S, MUMCUOGLU K Y, et al. Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities[J]. Appl Environ Microbiol, 2012, 78(12): 4110–4116. DOI: 10.1128/AEM.00323-12
[30] CLAY K, KLYACHKO O, GRINDLE N, et al. Microbial communities and interactions in the lone star tick, Amblyomma americanum[J]. Mol Ecol, 2008, 17(19): 4371–4381. DOI: 10.1111/j.1365-294X.2008.03914.x
[31] CARPI G, CAGNACCI F, WITTEKINDT N E, et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks[J]. PLoS One, 2011, 6(10): e25604. DOI: 10.1371/journal.pone.0025604
[32] SWEI A, KWAN J Y. Tick microbiome and pathogen acquisition altered by host blood meal[J]. ISME J, 2017, 11(3): 813–816. DOI: 10.1038/ismej.2016.152
[33] ZHANG X C, YANG Z N, LU B, et al. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal[J]. Ticks Tick Borne Dis, 2014, 5(6): 864–870. DOI: 10.1016/j.ttbdis.2014.07.009
[34] XU X L, CHENG T Y, YANG H, et al. Identification of intestinal bacterial flora in Rhipicephalus microplus ticks by conventional methods and PCR-DGGE analysis[J]. Exp Appl Acarol, 2015, 66(2): 257–268. DOI: 10.1007/s10493-015-9896-1