畜牧兽医学报  2020, Vol. 51 Issue (1): 90-98. DOI: 10.11843/j.issn.0366-6964.2020.01.011    PDF    
饲喂水平对冬毛生长期雄性北极狐生产性能、器官发育及机体能量沉积的影响
钟伟, 孙伟丽, 穆琳琳, 刘可园, 韩菲菲, 郭肖兰, 张新宇, 李光玉     
中国农业科学院特产研究所, 吉林省特种经济动物分子生物学省部共建实验室, 长春 130112
摘要:旨在研究不同饲喂水平对冬毛生长期雄性北极狐生产性能、器官发育及机体能量沉积的影响。本试验选取46只161日龄,平均体重为(7 285±5.77)g健康的雄性北极狐,其中6只北极狐作为试验初屠宰试验对照,另外40只北极狐随机分成4组(每组10个重复,每个重复1只),分别按照自由采食组(AL,Ⅰ组)、自由采食量的80%组(IR80,Ⅱ组)、自由采食量的60%组(IR60,Ⅲ组)和自由采食量的40%组(IR40,Ⅳ组)4个水平饲喂,预饲期7 d,试验期67 d,通过饲养试验、屠宰试验并结合化学分析方法来评定生长性能、毛皮品质、器官发育及机体能量沉积的各项指标。结果表明:1)随饲喂水平降低,平均干物质采食量(ADFI)呈极显著降低(P < 0.01),Ⅱ组平均日增重(ADG)极显著高于Ⅳ组(P < 0.01),显著高于Ⅲ组(P < 0.05),与Ⅰ组差异不显著(P>0.05);饲喂水平对北极狐末重和料重比(F/G)无显著影响(P>0.05),但Ⅱ组末重略高于其他组,F/G略低于其他组。2)饲喂水平极显著影响了北极狐鲜皮长(P < 0.01),Ⅰ组极显著高于Ⅲ和Ⅳ组,与Ⅱ组无显著差异(P>0.05);随饲喂水平降低,体长、干皮长、针毛长和绒毛长均呈降低趋势,但各组间均无显著性差异(P>0.05)。3)饲喂水平显著影响了北极狐心脏重和心脏指数(P < 0.05或P < 0.01),Ⅱ组心脏重显著高于Ⅲ组(P < 0.05),与Ⅰ组和Ⅳ组差异不显著(P>0.05),Ⅳ组心脏指数极显著高于Ⅰ组(P < 0.01),显著高于Ⅲ组(P < 0.05),与Ⅱ组差异不显著(P>0.05),而饲喂水平对肝、肾、肺和脾重及其脏器指数均无显著影响(P>0.05)。4)随饲喂水平降低,毛皮增重、毛皮脂肪沉积及其能量沉积、毛皮沉积总能量、胴体脂肪沉积及其能量沉积、胴体蛋白沉积及其能量沉积和胴体沉积总能量均呈降低趋势,但饲喂水平对毛皮、胴体能量沉积各项指标均无显著性影响(P>0.05)。采用适当限饲(IR80)不影响冬毛生长期北极狐机体器官的正常发育,能够保证其体重增长及毛皮品质,提高了饲料转化效率,且还降低了机体能量沉积过度带来的肥胖风险。
关键词北极狐    生长性能    毛皮性状    器官发育    能量沉积    
Effects of Feeding Level on Productive Performance, Organ Development and Body Energy Deposition of Male Arctic Foxes during the Winter Fur Growth Period
ZHONG Wei, SUN Weili, MU Linlin, LIU Keyuan, HAN Feifei, GUO Xiaolan, ZHANG Xinyu, LI Guangyu     
Jilin Province Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
Abstract: This experiment was conducted to study the effect of feeding level on productive performance, organ development and body energy deposition of male Arctic foxes during the winter fur growth period. Forty-six healthy 161-day-old male Arctic foxes with average body weight of (7 285±5.77) g were selected, including 6 Arctic foxes as slaughter trial control at the beginning of the trial, another 40 Arctic foxes were randomly divided into 4 groups with 10 replicates per group and 1 fox per replicate. The foxes were offered diet for ad libitum (AL, Group Ⅰ), 80% (IR80, Group Ⅱ), 60% (IR60, Group Ⅲ) and 40% (IR40, Group Ⅳ) of ad libitum intake, respectively. The experiment was 7 days for adaption and 67 days for trial period. The parameters of growth performance, fur quality, organ development and body energy deposition were evaluated by means of feeding, slaughter trials and chemical analysis methods. The results showed as follows:1) With the decrease of feeding level, ADFI showed an extremely significant decrease(P < 0.01), ADG in group Ⅱ was extremely significantly higher than that in group Ⅳ (P < 0.01), and significantly higher than that in group Ⅲ (P < 0.05), and there was no significant difference between group Ⅱ and Ⅰ (P>0.05). Final weight (FW) and F/G were not significantly different among different groups(P>0.05), whereas the FW in group Ⅱ were higher than those in the other groups, and F/G in group Ⅱ were lower than those in the other groups. 2) Different feeding levels extremely significantly affected length of fresh pelt (P < 0.01). Length of fresh pelt in group Ⅰ was extremely significantly higher than those in group Ⅲ and Ⅳ (P < 0.01), and no significant difference was found between group Ⅰ and Ⅱ (P>0.05). With the decrease of feeding level, there were decreased trends in body length, length of dried pelt, length of guard hair and length of under hair, but there were no significant difference among 4 groups (P>0.05). 3) Different feeding levels significantly affected heart weight and heart index (P < 0.05 or P < 0.01). Heart weight in group Ⅱ was significantly higher than that in group Ⅲ (P < 0.05), and no significant difference was found among group Ⅰ, Ⅱ and Ⅳ (P>0.05). Heart index in group Ⅳ was extremely significantly higher than that in group Ⅰ (P < 0.01), and significantly higher than that in group Ⅲ (P < 0.05), but no significant difference was found between group Ⅱ and Ⅳ (P>0.05).Whereas feeding levels did not significantly affect the weight and indexes of liver, kidney, spleen, lung (P>0.05). 4)With the decrease of feeding level, there were all decreased trends in pelt weight gain, pelt fat deposition and its energy deposition, total pelt energy deposition, carcass fat deposition and its energy deposition, carcass protein deposition and its energy deposition as well as total carcass energy deposition, whereas there were no significant difference in all parameters of energy deposition of pelt and carcass among different groups(P>0.05). Feeding 80% of ad libitum intake (IR 80) does not affect the normal development of body organs, could ensure the body weight gain and fur quality, improve the feed efficiency and also reduce the obesity risk due to excessive energy deposition of Arctic foxes during the winter fur growth period.
Key words: Arctic fox    growth performance    fur characteristics    organ development    energy deposition    

北极狐(Alopex lagopus),又称蓝狐,是世界珍贵的毛皮动物之一,原产于亚洲、欧洲、北美洲北部和接近北冰洋地带。北极狐皮誉有“软黄金”之称,是制成高档裘皮服饰的原料。我国是世界上养狐大国,养殖数量和优质狐皮产量均位居世界前列,其中北极狐是狐养殖主要品种。然而,我国尚未建立狐的饲养标准,还缺少对北极狐不同生理阶段营养物质的维持需要和增重需要的数据,我国对猪[1]、鸡[2]、羊[3-5]等畜禽关于营养物质的维持需要和增重生长需求开展了系统研究,但在北极狐上尚未见研究报道。在狐养殖生产中,为了获取尺码大的皮张,通常采取自由采食饲喂,保证狐有充足的饲料供应生长,但在冬毛生长期,一方面毛皮动物采食饲料过多导致的肥胖会伴有繁殖期的配种或妊娠障碍发生[6]或降低产仔成活率[7],以及肥胖带来的相关疾病[8],另一方面饲料能值高和北方骤冷的天气影响了采食量,导致剩余饲料较多,从而降低饲料转化效率[9]

本试验旨在研究不同饲喂水平对冬毛生长期北极狐生产性能、器官发育及机体能量沉积的影响,以期为北极狐的营养需要与科学饲养的研究提供理论依据,进而为制定北极狐的饲养标准提供基础参数。

1 材料与方法 1.1 试验动物、试验设计与饲养管理

本试验选用的北极狐是地产芬系北极狐,即引进的芬兰种狐经过几年改良后形成的地方品种,在中国农业科学院特产研究所毛皮动物试验基地完成。选取46只161日龄平均体重为(7 285±5.77)g的健康雄性北极狐,其中6只用作试验初屠宰试验对照,另外40只随机分成4组,每组设10个重复,每个重复1只北极狐。饲喂同种饲粮,分别按照自由采食组(AL, Ⅰ组)、自由采食量的80%组(IR80,Ⅱ组)、自由采食量的60%组(IR60,Ⅲ组)和自由采食量的40%组(IR40,Ⅳ组) 4个水平饲喂。试验动物单笼饲养。

试验从2017年10月2日开始至2017年12月14日结束,预饲期7 d,正式期67 d,每天8:00和15:00各饲喂1次,自由饮水。

1.2 试验日粮

饲粮配制参考美国National Research Council(NRC, 1982)[10]和芬兰Nordic Association of Agricultural Scientists(NJF,2012)[11]标准,以膨化玉米、豆粕、玉米蛋白粉、鱼粉、肉骨粉、大豆油等为主要原料,同时添加由矿物质元素、维生素等组成的营养性添加剂配制的试验饲粮。饲粮组成及营养水平详见表 1

表 1 试验饲粮组成及营养水平(风干基础) Table 1 The composition and nutrient of the experimental diet(air-dry basis) 
1.3 样品采集与指标测定 1.3.1 生长性能指标

试验初称量试验狐体重作为初始体重,试验期结束称量试验狐体重为末重(FW),计算平均日增重(ADG)。记录每天的饲喂量和剩料量,计算平均干物质采食量(ADFI)和料重比(F/G)。

1.3.2 毛皮性状指标

试验结束,通过注射琥珀乙酰胆碱处死全部试验狐并测定其毛皮指标。从毛皮背中部采集带有毛囊的毛发样本用于测量针毛和绒毛的长度。测量时将每只北极狐的针毛、绒毛用眼科镊子分别放于表面湿润的载玻片上,让其自然伸直后用游标卡尺测量长度,每只北极狐针毛、绒毛分别测量30根,计算其平均值。使用皮尺量取鼻尖至尾根的长度为体长。将剥下的毛皮自然拉伸后固定到楦板上量取鼻尖至尾根的长度为鲜皮长,鲜皮长经烘干处理后的长度为干皮长。

1.3.3 器官发育及脏器指数

处死后的试验狐分别称量各脏器的重量并计算脏器指数:脏器指数=脏器重量(g)/试验末活体重(g)×100%。

1.3.4 毛皮和胴体的蛋白、脂肪及其能量沉积

试验初选取6只北极狐作为对照,早晨空腹全部处死,剥皮称重为试验初毛皮重;去毛皮的胴体先冷冻防止血液流失, 然后弃掉肠道内容物, 称量狐胴体重量为试验初胴体重, 然后将狐胴体剁碎, 绞肉机绞成肉酱后, 制成风干样。检测分析试验初狐胴体中蛋白质和脂肪含量。饲喂4种水平饲粮后,试验末40只北极狐全部处死,剥皮称重为试验末毛皮重,胴体称重为试验末胴体重,计算皮增重和胴体增重,然后绞碎、烘干处理后分别检测毛皮和胴体的蛋白质和脂肪含量,计算毛皮与胴体脂肪和蛋白沉积及其产热量:

毛皮增重(kg)=试验末毛皮重(kg)-试验初毛皮重(kg);

胴体增重(kg)=试验末胴体重(kg)-试验初胴体重(kg);

毛皮脂肪沉积(g)=[试验末毛皮重(g)×皮粗脂肪含量(%)]-[试验初毛皮重(g)×皮粗脂肪含量(%)];

毛皮蛋白沉积(g)=[试验末毛皮重(g)×皮粗蛋白含量(%)]-[试验初毛皮重(g)×皮粗蛋白含量(%)];

毛皮以脂肪形式沉积能量(MJ)=[毛皮脂肪沉积(g)×39.76 kJ·g-1]/1 000;

毛皮以蛋白形式沉积能量(MJ)=[毛皮蛋白沉积(g)×23.86 kJ·g-1]/1 000;

毛皮沉积总能量(MJ)=毛皮以脂肪形式沉积能量+毛皮以蛋白形式沉积能量;

胴体脂肪沉积(g)=[试验末胴体重(g)×胴体粗脂肪含量(%)]-[试验初胴体重(g)×胴体粗脂肪含量(%)];

胴体蛋白沉积(g)=[试验末胴体重(g)×胴体粗蛋白含量(%)]-[试验初胴体重(g)×胴体粗蛋白含量(%)];

胴体以脂肪形式沉积能量(MJ)=[胴体脂肪沉积(g)×39.76 kJ·g-1]/1 000;

胴体以蛋白形式沉积能量(MJ)=[胴体蛋白沉积(g)×23.86 kJ·g-1]/1 000;

胴体沉积总能量(MJ)=胴体以脂肪形式沉积能量+胴体以蛋白形式沉积能量。

其中,39.76和23.86分别是每克脂肪和蛋白燃烧产热的常数。

1.3.5 饲料、毛皮及胴体养分的测定

饲粮中水分、粗灰分、钙、磷含量和饲粮、毛皮、胴体中粗蛋白质、粗脂肪含量测定参考张丽英[12]的方法。饲粮中总能采用氧弹量热仪(C2000, IKA Works Inc., Staufen, 德国)测定。饲粮中氨基酸采用全自动氨基酸分析仪(HITACHI,L-8900,日本)进行测定。

1.4 数据整理与统计分析

试验数据采用EXCEL 2010进行整理,利用SAS 8.0软件中的GLM程序进行统计与分析,多重比较采用Ducan氏法进行,P < 0.01表示差异极显著,P<0.05表示差异显著,P>0.05表示差异不显著;结果均以“平均值±标准差”表示。

2 结果 2.1 饲喂水平对冬毛生长期北极狐生长性能的影响

表 2可知,饲喂水平对冬毛生长期北极狐ADFI和ADG产生极显著影响(P < 0.01),随饲喂水平降低,ADFI呈极显著降低(P < 0.01)。Ⅱ组ADG极显著高于Ⅳ组(P < 0.01),显著高于Ⅲ组(P < 0.05),与Ⅰ和Ⅳ组差异不显著(P>0.05), Ⅲ和Ⅳ组间差异不显著(P>0.05)。饲喂水平对北极狐末重和F/G未产生显著影响(P>0.05),但Ⅱ组的末重略高于其他组,而F/G略低于其他组。

表 2 饲喂水平对冬毛生长期北极狐生长性能的影响 Table 2 Effects of different feeding levels on growth performance of Arctic fox during the winter fur growth period
2.2 饲喂水平对冬毛生长期北极狐毛皮性状的影响

表 3可知,饲喂水平极显著影响了冬毛生长期北极狐鲜皮长(P < 0.01),Ⅰ和Ⅳ组极显著高于Ⅲ和Ⅳ组(P < 0.01),与Ⅱ组无显著性差异(P>0.05)。随饲喂水平降低,体长、干皮长、针毛长和绒毛长均呈逐渐降低趋势,但各组间差异均不显著(P>0.05)。

表 3 饲喂水平对冬毛生长期北极狐毛皮性状的影响 Table 3 Effects of different feeding levels on fur characteristics of Arctic fox during the winter fur growth period
2.3 饲喂水平对冬毛生长期北极狐器官重量及其脏器指数的影响

表 4可知,饲喂水平显著影响了冬毛生长期北极狐心脏重量和心脏指数(P < 0.05,P < 0.01),Ⅱ组心脏重显著高于Ⅲ组(P < 0.05),与Ⅰ和Ⅳ组和Ⅳ组差异不显著(P>0.05),Ⅰ、Ⅲ和Ⅳ组间差异不显著(P>0.05);Ⅳ组心脏指数极显著高于Ⅰ和Ⅳ组(P < 0.01),显著高于Ⅲ组(P < 0.05),与Ⅱ组差异不显著(P>0.05),Ⅱ组显著高于Ⅰ和Ⅳ组(P < 0.05),与Ⅲ组差异不显著(P>0.05),Ⅰ和Ⅳ组与Ⅲ组差异不显著(P>0.05)。饲喂水平对肾、脾、肺和肝重及其脏器指数影响均不显著(P>0.05),但肾重及肾脏指数和肝重随饲喂水平降低呈降低趋势,对其他脏器重及其指数影响未呈规律性变化。

表 4 饲喂水平对冬毛生长期北极狐器官发育的影响 Table 4 Effects of different feeding levels on organs development of Arctic fox during the winter fur growth period
2.4 饲喂水平对冬毛生长期北极狐毛皮和胴体脂肪、蛋白沉积及其能量沉积的影响

表 5可知,饲喂水平对冬毛生长期北极狐毛皮增重、毛皮脂肪沉积及其能量沉积、毛皮蛋白沉积及其能量沉积和毛皮沉积总能量均无显著性影响(P>0.05),但各组的毛皮增重、毛皮脂肪沉积及其能量沉积和毛皮沉积总能量均随饲喂水平降低呈降低趋势,毛皮蛋白沉积及其能量沉积未呈规律性变化。

表 5 饲喂水平对冬毛生长期北极狐毛皮脂肪与蛋白沉积及其能量沉积的影响 Table 5 Effects of different feeding levels on fat and protein deposition and their energy deposition in fur of Arctic fox during the winter fur growth period

表 6可知,饲喂水平对冬毛生长期北极狐胴体增重、胴体脂肪沉积及其能量沉积、蛋白沉积及其能量沉积和胴体沉积总能量均无显著性影响(P>0.05)。但胴体脂肪沉积及其能量沉积、蛋白沉积及其能量沉积和胴体沉积总能量均随饲喂水平降低呈降低趋势,胴体增重未呈规律性变化。

表 6 饲喂水平对冬毛生长期北极狐胴体脂肪和蛋白沉积及其能量沉积的影响 Table 6 Effects of different feeding levels on fat and protein deposition and their energy deposition in carcass of Arctic fox during the winter fur growth period
3 讨论 3.1 饲喂水平对冬毛生长期北极狐生产性能的影响

在畜禽养殖生产中,通常采用限饲达到生产目的。研究表明,通过适当限饲可使生长肥育猪胴体脂肪沉积减少,改善饲料转化率,降低生产成本[13];显著降低后期仔猪腹泻率,且并不影响后期仔猪的增重[14];降低3~20周龄樱桃谷育雏育成期种鸭胴体脂肪含量,提高产蛋量[15];降低产蛋期肉种鸭体增重,提高产蛋率,但过度限饲会影响其生产性能[16];提高家兔饲料转化率[17-18]

研究报道,随饲喂水平降低,杂交肉羊的末重和平均日增重(ADG)均显著降低[3, 19],但限饲30%组料重比与自由采食组差异不显著[3];限饲对山羊日增重无显著影响,但会提高饲料转化效率[20]。在水产养殖中,通过限饲的方式可提高饲料利用效率,降低排泄物排放,改善水质生态环境[21]

本试验结果显示,随饲喂水平降低,冬毛生长期北极狐体重和ADG均呈降低趋势,与上述研究报道基本一致,IR80组末重比AL组高出3.28%,比IR60组和IR40组分别高出7.27%、14.70%,IR80组ADG比AL组略高出4.33 g·d-1,显著高出IR60组10.45 g·d-1,极显著高出IR40组17.67 g·d-1,这说明适当限饲降低了饲料食糜通过肠道的流速,增加了食糜与肠道消化酶接触的时间,从而提高了饲料的消化利用率[22-26],促使IR80组北极狐体重高于AL组。IR80组料重比略低于其他组,与上述文献报道相一致,说明适当限饲不影响冬毛生长期北极狐体重增长速度,还会提高饲料转化效率。

狐皮品质的优劣主要通过鲜皮的长度、皮板的厚度、针、绒毛长度及密度、毛皮的光泽度等指标来评价。毛皮的主要成分为蛋白质,因此促进毛皮生长发育主要是满足蛋白质的供给,同时毛皮下的脂肪层具有改善毛皮色泽,增加皮张柔韧度的作用。蛋白质供应不充足,皮下脂肪层囤积较少,会出现皮张小而薄、弹性差、针毛短且易断、绒毛少而空洞等情况。本研究中,随饲喂水平降低,北极狐蛋白质和脂肪的摄入量逐渐降低,从而影响了北极狐的毛皮性状,体长、鲜皮长、干皮长和针、绒毛长均呈降低趋势,但除鲜皮长外,其他指标各组间均差异不显著,AL组鲜皮长显著高于IR60和IR40组,与IR80组差异不显著,这与生长性能指标相吻合,通过毛皮增重和脂肪沉积数据也能反映出限饲水平越高,皮板越薄,光泽度越差,说明适当限饲能满足毛皮生长发育的营养供应,保证毛皮的品质,但过度限饲会影响皮张的大小和质量。

3.2 饲喂水平对冬毛生长期北极狐器官重量及其脏器指数的影响

内脏器官的重量和脏器指数在一定程度上反映了动物机体的机能状况,是动物机体生长发育的重要组成部分[27]。许贵善等[3]研究表明,饲喂水平显著影响了肉羊的器官发育,显著影响了肝重量和肝体指数,对心、肾和肺重量也有显著影响,但对这3个脏器指数影响不显著。冯昕炜等[4]研究报道,多浪羊公羔的主要内脏器官发育受饲喂水平的影响程度不一致,其中肝受到的影响最为显著。本试验结果显示,饲喂水平仅显著影响了冬毛生长期北极狐的心重和心脏指数,对其他脏器(肝、肾、脾和肺)重量及脏器指数无显著性影响,但随饲喂水平的降低,肝和肾重及肾脏指数呈逐渐降低趋势,而对其他脏器指数的影响无规律性变化,这与上述文献报道不尽相同,可能由于北极狐物种的特异性,长期进化已适应严寒地区食物匮乏的环境条件,在饥饿条件下,体内营养物质代谢与其他物种存在差异[28],从而导致器官发育变化的差别,研究报道,当冬季食物资源短缺导致代谢减慢时,动物的内脏脂肪组织和皮下脂肪组织中瘦素、脂联素基因表达的降低可能抑制脂肪生成和刺激脂肪分解,加强动员身体储备,以保护身体免受饥饿的威胁[29]及减少对其健康造成的损害[30]。但具体机制还有待于进一步研究。

3.3 饲喂水平对冬毛生长期北极狐毛皮和胴体脂肪、蛋白沉积及其能量沉积的影响

限饲对动物机体组成及蛋白或脂肪沉积产生影响的研究结果并不一致,Butzen等[31]研究报道,早期限饲会影响肉鸡机体组成及蛋白和脂肪的沉积;会降低家兔脂肪沉积,从而降低体重[32],但有些研究显示,限饲不会影响肉鸡机体脂肪沉积[33-34],动物的性别和限饲形式均是影响限饲效果的主要因素[29]

野生的北极狐生活在北半球北极地区,能够适应严寒的环境条件,从秋季开始就储备皮下脂肪,有时会使体重增加50%以上,从而为机体提供更大的隔热层,并在食物稀缺时提供能源[28]。在人工养殖条件下,进入冬毛生长期的北极狐也会囤积厚厚的脂肪层为抵御严寒做准备。同时,它们也处于毛皮生长的关键期,丰厚的毛绒也能为北极狐抵抗严寒。

本试验结果显示,饲喂水平越低(即限饲比例越高),毛皮脂肪沉积越少,毛皮增重越小,即皮板越薄,这与毛皮性状指标相一致。但毛皮蛋白沉积并未呈现规律性变化,可能由于IR60组和IR40组不能满足北极狐生产需要,为提供其毛皮发育所需,机体会减少蛋白的沉积,优先供应其毛皮生长,因此出现了IR60组和IR40组毛皮蛋白沉积略高于AL组和IR80组的现象。毛皮中以脂肪形式沉积的能量约占总沉积能量的71%,以蛋白形式沉积的能量约占总沉积能量的29%,并随饲喂水平降低,毛皮沉积总能量逐渐降低,说明在食物资源供应不充足的状态下,北极狐通过毛皮产热供应机体的能量也逐渐减少。随饲喂水平的降低,胴体以脂肪和蛋白形式沉积能量、胴体沉积总能量均呈降低趋势,其中以蛋白形式沉积的能量分别是24.40、22.26、22.86、17.49 MJ,而以脂肪沉积形式沉积的能量分别是55.13、47.09、33.03、27.84 MJ,沉积的总能量分别为79.53、69.35、55.89、45.33 MJ,这与Zhang等[5]在绵羊和Liu等[2]在肉鸡上结果相一致,说明饲喂水平与机体能量沉积间存在较强的相关性,无论是野生还是人工养殖北极狐,当食物供给水平降低,机体贮存的能量就会减少,如果长期供应不足,就会调用自身的能源来满足机体需求。

4 结论

从本试验结果综合分析,采用适当限饲(IR80)未影响冬毛生长期北极狐机体器官的正常发育,能够保证其体重增长及毛皮品质,提高了饲料转化效率,且还减少了机体能量沉积过度带来的肥胖风险。

参考文献
[1] ZHANG G F, LIU D W, WANG F L, et al. Estimation of the net energy requirements for maintenance in growing and finishing pigs[J]. J Anim Sci, 2014, 92(7): 2987–2995. DOI: 10.2527/jas.2013-7002
[2] LIU W, LIN C H, WU Z K, et al. Estimation of the net energy requirement for maintenance in broilers[J]. Asian-Australas J Anim Sci, 2017, 30(6): 849–856.
[3] 许贵善, 刁其玉, 纪守坤, 等. 不同饲喂水平对肉用绵羊生长性能、屠宰性能及器官指数的影响[J]. 动物营养学报, 2012, 24(5): 953–960.
XU G S, DIAO Q Y, JI S K, et al. Effects of different feeding levels on growth performance, slaughter performance and organ indexes of Mutton sheep[J]. Chinese Journal of Animal Nutrition, 2012, 24(5): 953–960. DOI: 10.3969/j.issn.1006-267x.2012.05.022 (in Chinese)
[4] 冯昕炜, 马绍楠, 周艳, 等. 饲喂水平对多浪羊生产性能及内脏器官发育的影响[J]. 饲料工业, 2017, 15(38): 36–39.
FENG X W, MA S N, ZHOU Y, et al. Effect of different feeding level on production performance and visceral organ development of Duolang sheep[J]. Feed Industry, 2017, 15(38): 36–39. (in Chinese)
[5] ZHANG H, SUN L W, WANG Z Y, et al. Energy and protein requirements for maintenance of Hu sheep during pregnancy[J]. J Integr Agri, 2018, 17(1): 173–183. DOI: 10.1016/S2095-3119(17)61691-5
[6] TAUSON A H. Effects of flushing on reproductive performance, ovulation rate, implantation rate and plasma progesterone levels in mink[J]. Acta Agric Scand, 1985, 35(3): 295–309. DOI: 10.1080/00015128509435786
[7] HANSEN B K, SU G, BERG P. Genetic variation in litter size and kit survival of mink (Neovison vison)[J]. J Anim Breed Genet, 2010, 127(6): 442–451. DOI: 10.1111/j.1439-0388.2010.00872.x
[8] HANSEN S W, MØLLER S H, DAMGAARD B M. Feed restriction and tubes for environmental enrichment in growing mink-Consequences for behaviour and welfare[J]. Appl Anim Behav Sci, 2011, 134(3-4): 193–200. DOI: 10.1016/j.applanim.2011.06.014
[9] MØLLER S H, NIELSEN V H, HANSEN B K.Individual ad libitum feeding of male + female pairs of mink kits during the growth period increases weight gain and feed efficiency[C]//Ⅷ International Scientific Congress in Fur Animal Production 15-18 September 2004.Hertogenbosch, The Netherlands, 2004: 154-158.
[10] National Research Council (NRC). Nutrient requirements of mink and foxes[M]. 2nd ed. Washington DC: National Academies Press, 1982.
[11] Nordic Association of Agricultural Scientists (NJF). Energy and main nutrients in feed for mink and foxes[M]. 2nd ed. Finland: Fur Animals Nutrition and Feeding Committee, 2012.
[12] 张丽英. 饲料分析及饲料质量检测技术[M]. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed analysis and feed quality detection technology[M]. 3rd ed. Beijing: Chinese Agricultural University Press, 2007. (in Chinese)
[13] 叶耀辉, 许培文. 限饲对猪皮下各脂肪层脂肪沉积及胴体组成的影响[J]. 福建农业学报, 1998(4): 43–46.
YE Y H, XU P W. Effect of limited feeding on various fat layers of back fat and carcass composition in pigs[J]. Fujian Journal of Agricultural Sciences, 1998(4): 43–46. (in Chinese)
[14] 殷宗俊, 卞国保, 王中才, 等. 合理限饲可减少早期断奶对仔猪的影响[J]. 动物科学与动物医学, 2005, 22(9): 38–39.
YIN Z J, BIAN G B, WANG Z C, et al. Rational feeding restriction can reduce the effect of early weaning on piglets[J]. Animal Science and Animal Medicine, 2005, 22(9): 38–39. DOI: 10.3969/j.issn.1673-5358.2005.09.015 (in Chinese)
[15] OLVER M D. Effect of restricted feeding during the rearing period and a "forced moult" at 40 weeks of production on the productivity of Pekin breeder ducks[J]. Br Poult Sci, 1995, 36(5): 737–746. DOI: 10.1080/00071669508417818
[16] 王生雨, 李惠敏, 占志平, 等. 不同限饲水平对产蛋期肉种鸭生产性能的影响[J]. 动物营养学报, 2012, 24(3): 447–452.
WANG S Y, LI H M, ZHAN Z P, et al. Different restricted feeding amounts affect performance of meat-type breeder ducks during the laying period[J]. Chinese Journal of Animal Nutrition, 2012, 24(3): 447–452. DOI: 10.3969/j.issn.1006-267x.2012.03.010 (in Chinese)
[17] BIROLO M, TROCINO A, TAZZOLI M, et al. Effect of feed restriction and feeding plans on performance, slaughter traits and body composition of growing rabbits[J]. World Rabbit Sci, 2017, 25(2): 113–122. DOI: 10.4995/wrs.2017.6748
[18] LU J, SHEN Y, HE Z, et al. Effects of a short-term feed restriction on growth performance, blood metabolites and hepatic IGF-1 levels in growing rabbits[J]. World Rabbit Sci, 2017, 25(3): 233–239. DOI: 10.4995/wrs.2017.6478
[19] 魏炳栋, 刁其玉, 陈群, 等. 饲喂水平对杂交肉羊(公)营养物质代谢及能量需要量的影响[J]. 动物营养学报, 2017, 29(10): 3551–3562.
WEI B D, DIAO Q Y, CHEN Q, et al. Effects of feeding level on nutrient metabolism and energy requirement parameters of crossbred male sheep[J]. Chinese Journal of Animal Nutrition, 2017, 29(10): 3551–3562. DOI: 10.3969/j.issn.1006-267X.2017.10.016 (in Chinese)
[20] RAJAEI SHARIFABADI H, NASERIAN A A, VALIZADEH R, et al. Growth performance, feed digestibility, body composition, and feeding behavior of high-and low-residual feed intake fat-tailed lambs under moderate feed restriction[J]. J Anim Sci, 2016, 94(8): 3382–3388. DOI: 10.2527/jas.2015-0196
[21] ABBAS G, SIDDIQUI P J A. Effects of different feeding level on the growth, feed efficiency and body composition of juvenile mangrove red snapper, Lutjanus argentimaculatus (Forsskal 1775)[J]. Aquac Res, 2009, 40(7): 781–789. DOI: 10.1111/j.1365-2109.2008.02161.x
[22] MCDONALD P, EDWARDS R A, GREENHALGH J F D, et al. Animal nutrition[M]. 6th ed. Longman, New York: Pearson Education, 2002.
[23] GALVANI D B, PIRES C C, KOZLOSKI G V, et al. Protein requirements of Texel crossbred lambs[J]. Small Rumin Res, 2009, 81(1): 55–62. DOI: 10.1016/j.smallrumres.2008.11.003
[24] DENG K D, DIAO Q Y, JIANG C G, et al. Energy requirements for maintenance and growth of Dorper crossbred ram lambs[J]. Livestock Sci, 2012, 150(1-3): 102–110. DOI: 10.1016/j.livsci.2012.08.006
[25] TŮMOVÁ E, VOLEK D, CHODOVÁ H, et al. The effect of 1-week feed restriction on performance, digestibility of nutrients and digestive system development in the growing rabbit[J]. Animal, 2016, 10(1): 1–9.
[26] ZHANG H, SUN L W, WANG Z Y, et al. Energy and protein requirements for maintenance of Hu sheep during pregnancy[J]. J Integr Agri, 2018, 17(1): 173–183. DOI: 10.1016/S2095-3119(17)61691-5
[27] 张晋青, 岳度兵, 罗海玲, 等. 日粮中维生素E水平对敖汉细毛羊内脏器官生长发育的影响[J]. 中国畜牧杂志, 2010, 46(17): 43–46.
ZHANG J Q, YUE D B, LUO H L, et al. Effects of vitamin E levels in diet on the growth and development of internal organs in Ao Han fine wool sheep[J]. Chinese Journal of Animal Science, 2010, 46(17): 43–46. (in Chinese)
[28] FUGLESTEG B N, HAGA Ø E, FOLKOW L P, et al. Seasonal variations in basal metabolic rate, lower critical temperature and responses to temporary starvation in the arctic fox (Alopex lagopus) from Svalbard[J]. Polar Biol, 2006, 29(4): 308–319. DOI: 10.1007/s00300-005-0054-9
[29] YANG J L, LU X X, HOU X Z, et al. Feed restriction alters lipogenic and adipokine gene expression in visceral and subcutaneous fat depots in lamb[J]. Livestock Sci, 2016, 188: 48–54. DOI: 10.1016/j.livsci.2016.04.007
[30] BRINKMANN L, RIEK A, GERKEN M. Long-term adaptation capacity of ponies:effect of season and feed restriction on blood and physiological parameters[J]. Animal, 2018, 12(1): 88–97. DOI: 10.1017/S1751731117001392
[31] BUTZEN F M, VIEIRA M M, KESSLER A M, et al. Early feed restriction in broilers.Ⅱ:body composition and nutrient gain[J]. J Appl Poult Res, 2015, 24(2): 198–205. DOI: 10.3382/japr/pfv026
[32] ABDEL-WARETH A A A, KEHRAUS S, ALI A H H, et al. Effects of temporary intensive feed restriction on performance, nutrient digestibility and carcass criteria of growing male Californian rabbits[J]. Arch Anim Nutr, 2015, 69(1): 69–78.
[33] PALO P E, SELL J L, PIQUER F J, et al. Effect of early nutrient restriction on broiler chickens.:1.Performance and development of the gastrointestinal tract[J]. Poult Sci, 1995, 74(1): 88–101.
[34] LIPPENS M, ROOM G, DE GROOTE D, et al. Early and temporary quantitative food restriction of broiler chickens.1.Effects on performance characteristics, mortality and meat quality[J]. Br Poult Sci, 2000, 41(3): 343–354. DOI: 10.1080/713654926