畜牧兽医学报  2020, Vol. 51 Issue (1): 83-89. DOI: 10.11843/j.issn.0366-6964.2020.01.010    PDF    
影响马胚胎移植成功率的关键因素分析
李楠1, 王涛2, 张凤龙3, 张翔1, 李平岁1, 韩国才1, 曾申明1     
1. 中国农业大学动物科技学院, 北京 100193;
2. 国家胶类中药工程技术研究中心, 东阿阿胶股份有限公司, 东阿 252201;
3. 武汉商学院, 武汉 430050
摘要:旨在探讨影响马胚胎移植效率的几种关键因素。本研究统计了国内北京马场、河北马场和山东马场2013-2018年胚胎移植数据,3个马场供体马数量分别为15、21和25匹,受体母马数量分别为56、50和75匹。所有母马年龄为3~12岁。统计供体马冲胚时间对胚胎回收率的影响;胚胎日龄对移植后受体马妊娠率的影响;供、受体母马排卵同期化程度对移植后妊娠率的影响;受体母马居住移植基地时间对移植后妊娠率的影响。结果显示,母马在配种季节注射前列腺素(PG)+GnRH类似物或PG+hCG诱发排卵,发情周期分别为(14.5±0.8)和(14.3±1.1)d,显著低于对照组的((20.5±2.6)d,P < 0.05);排卵后第8天冲洗子宫的胚胎回收率均高于第7天,但差异不显著;8日龄胚胎移植后受体马的妊娠率均高于7日龄,差异不显著;供体母马排卵比受体母马早1 d时,胚胎移植后的妊娠率最高;受体母马在移植基地居住时间大于1年时,移植后妊娠率高于居住时间小于0.5年的受体马。根据以上结果,本研究得出如下结论,PG与hCG或GnRH类似物联合使用可缩短母马发情周期,母马排卵后第8天的胚胎回收率和移植后妊娠率较高,胚胎移植时选择居住时间大于1年且排卵时间比供体晚1 d的母马作受体。
关键词    胚胎移植    妊娠率    
The Analysis of Key Factors Affecting the Success Rate of Equine Embryo Transfer
LI Nan1, WANG Tao2, ZHANG Fenglong3, ZHANG Xiang1, LI Pingsui1, HAN Guocai1, ZENG Shenming1     
1. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Dong'e 252201, China;
3. Wuhan Business University, Wuhan 430050, China
Abstract: This study aimed to research factors affecting the efficiency of equine embryo transfer. The data of embryo transfer in 3 horse farms from 2013 to 2018 were analyzed.The number of donor horses in the 3 farms were 15, 21 and 25, respectively, and the number of recipient mares were 56, 50 and 75 respectively. All mares were 3 to 12 years old. The following items were counted:The effect of flushing day post ovulation of donor horses on the embryo recovery rate; The effect of embryonic age on the pregnancy rate of recipient mares after transplantation; The effect of the degree of ovulation synchronization of the donor and recipient mares on the pregnancy rate after transplantation; The effect of residence time at farm of recipient mares on pregnancy rate after transplantation. The results indicated that, mares were injected with prostaglandin (PG)+GnRH analogues or PG + hCG to induce ovulation during the breeding season, the estrous cycle were (14.5±0.8) and (14.3±1.1)d, respectively, which was significantly lower than the control group ((20.5±2.6) d, P < 0.05). The embryo recovery rate of washing the uterus on the 8th day after ovulation was higher than that on the 7th day, but the difference was not significant; The pregnancy rate of recipient horses after 8-day-old embryo transfer was higher than that of 7-day-old, and the difference was not significant; After embryo tranfer, the recipients which ovulated 1 day later than donors had the highest pregnancy rate. When the residence time at farm of recipients was longer than 1 year, the pregnancy rate was significantly higher than those shorter than 0.5 year. In conclusion, the injection of PG + hCG or PG + GnRH anologue could shorten estrus cycle of mares. The embryo recovery rate and the pregnancy rate after transplantation of the 8th day embryo after ovulation were higher. When the embryos were transplanted, the mares with the residence time at farm more than 1 year and the ovulation time 1 day later than the donors were used as recipients.
Key words: horse    embryo transfer    pregnancy rate    

胚胎移植能提高优良母马的年产驹数量,并使竞技马在赛季或老龄时期以及习惯性流产的良种母马仍可繁育后代[1]。1972年,Allen和Rowson[2-3]首次报道马胚胎移植技术获得成功。在随后的30年内,众多的马业协会逐步准许登记胚胎移植的马驹,使得该项技术在世界范围内迅速推广[4]。我国自2010年起开始引进胚胎移植技术,随着马主良种扩繁意识的提高,胚胎移植技术在国内逐渐被接受。

影响胚胎回收率的因素,除了公马和供体母马本身的繁殖力外,最主要的是输精与排卵时间间隔[5-6]。在控制好输精时间的基础上,胚胎回收率取决于精液质量、保存方法和输精剂量。当使用繁殖力高的公马配种时,年轻供体母马的胚胎回收率高达70%[7]。当使用低温运输精液或冻精输精时[8],胚胎回收率会大大降低,特别是年龄大于14岁的母马[9]。马胚胎一般在排卵后144~156 h进入子宫[10],因此在排卵后第6天冲洗子宫,胚胎回收率较低[11]。同时,其它因素也会延迟胚胎进入子宫的时间,例如繁殖季节初期,老龄马[8, 12]以及用冻精配种等。

影响胚胎移植后妊娠率的因素包括胚胎质量、移植技术、供受体母马排卵间隔以及受体母马状态等。通常通过冲洗子宫获得的胚胎超过90%以上都为1级或2级[13],因为质量差的胚胎无法通过输卵管进入子宫[14]。在移植后50天,2级或以下的胚胎较1级胚胎更容易发生流产(26% vs 12%)[14]。在移植胚胎操作中,有两点会导致妊娠失败,一是细菌感染[15],二是子宫颈开张导致催产素[16]和前列腺激素[17]的释放。因此,大多技术人员在移植胚胎前后给受体母马使用全身性抗生素以降低子宫感染的风险[18],同时使用氟尼辛葡甲胺并注射2~3周孕酮激素,降低子宫感染的同时抑制前列腺激素产生。影响移植后妊娠率最重要的因素是供受体母马的排卵间隔,多数研究表明[19-20],供体母马比受体母马早1 d排卵(-1)至晚3 d排卵(+3)为最佳移植时间,在此范围外移植后的妊娠率会大大降低。Carnevale等[14]报道,胚胎移植到排卵7 d以上受体的子宫内,易发生早期流产。受体马年龄也是影响移植后妊娠率的重要因素,应挑选3~12岁且发情周期正常的母马[21],年龄小于10岁的马妊娠率较高[14]。供受体母马体型差异也会影响移植后妊娠率,将纯血马胚胎移植到矮马子宫内,胚胎和受体母马的“遗传大小”之间的不匹配会影响马驹宫内和产后发育,不适当的母体将导致胎儿生长不足或过度生长[22]

根据以上因素分析,结合近几年课题组的胚胎移植实践,本试验重点研究在供体排卵后不同天数冲胚对回收率的影响,同时探索胚龄、供受体母马排卵同期化程度以及受体马在胚胎移植基地居住时长对移植后妊娠率的影响,为提高马胚胎移植技术成功率提供参考。

1 材料与方法 1.1 供体和受体母马

本试验统计2014-2018年繁育季节(4~9月份)国内3个马场的胚胎移植数据,3个马场的供体母马数量分别为:北京马场15匹、河北马场21匹、山东马场25匹。所有供体母马年龄3~14岁,体重350~500 kg,无繁殖疾病且发情周期正常。采取舍饲方式,马房尺寸4 m×5 m,每天保证充足的干草、精料、水、矿物质和光照。

3个马场受体母马数量分别为:北京马场56匹、河北马场50匹、山东马场75匹。受体母马年龄3~12岁,体重300~400 kg,无繁殖疾病且发情周期正常。饲养方式与供体马相同。供受体母马排卵间隔在-1~+4 d。

1.2 母马发情鉴定及人工授精

使用B超经直肠检查母马发情情况。B超型号为KX5600(凯信,江苏,中国),装备5.0 MHz的直肠探头。每天上午8:00~10:00进行供受体母马发情鉴定,用B超探头扫描母马卵巢和子宫,记录卵巢内卵泡、黄体、子宫内膜水肿和腔内积液等情况。当最大卵泡直径达到35~40 mm、子宫内膜水肿正常且无明显积液时,供体母马肌肉注射1 000 IU hCG(宁波第二激素厂,宁波,中国)或1 mg GnRH类似物(Deslorelin,美国)。

3个马场均有3匹以上5~12岁种公马,身体健康,无传染性疾病。在繁殖季节开始时,精子活力、密度等指标检查均合格。供体母马在注射hCG 24~36 h内用新鲜或冷冻精液输精。鲜精为单次输精,精液体积20 mL、有效精子数>5×108个、直线前进运动率>50%;冻精一次输精4支、有效精子数>2×108个、直线前进运动率>35%,总计输精2次,时间分别在排卵前后12 h内。随后,每天B超检查直至排卵,排卵当天记为第0天。

1.3 供体母马胚胎回收及受体母马胚胎移植

供体母马在排卵后第7或8天冲洗子宫,胚胎日龄为排卵至冲胚的时间间隔。冲胚时,供体母马在四柱栏内保定,充分清洗外阴,必要时可使用镇定剂。连接冲胚管、三通管、胚胎过滤器和冲胚液(乳酸钠林格液),将冲胚管插入子宫颈5~10 cm后,注射50 mL空气使管前端气球膨胀以防止从子宫内脱出。打开进液开关,注入1 L乳酸钠林格冲洗液,随后打开出液开关,边按摩子宫边流出子宫冲洗液,重复3次。冲洗完毕后,供体母马肌肉注射0.4 mg氯前列烯醇钠(宁波第二激素厂,宁波,中国)。同时,去除过滤器的上下连接管,将过滤器带入胚胎操作实验室,在体式显微镜下检查胚胎,发现胚胎后,用移胚器将胚胎在胚胎操作液滴中过10遍,洗掉附着在胚胎周围的杂质。按照标准[13]进行胚胎分级。

在进行胚胎移植时,单枚胚胎首先移入0.25 mL塑料细管中,再将细管插入移胚枪,套上外套后和外层防尘薄膜,准备移植。挑选黄体发育良好,子宫内膜无水肿和积液的受体母马,按照供体母马的方式保定、清洗外阴后,将移胚枪缓慢插入子宫内,胚胎快速注入子宫内,同时抽出移胚枪,全程注意无菌操作。

1.4 受体母马移植后妊娠检查

排卵后第15天(即移植后第7或8天)首次检查受体妊娠状态,若妊娠,分别在排卵后第30和45天两次复检,尽早发现早期胚胎丢失情况。

1.5 数据分析

胚胎回收率指获得胚胎次数与冲洗子宫次数比值,妊娠率指移植后第23天妊娠母马数量与移植胚胎数量比值,用χ2检验组间差异。当P<0.05时,表示差异显著;当P<0.01时,表示差异极显著。

2 结果 2.1 不同激素组合对供体母马发情周期的影响

不同激素组合处理对母马发情周期的影响如表 1所示。对照组(n=21)平均周期为(20.5±2.6)d,PG组(n=28)平均周期(17.1±1.9)d。PG+GnRH类似物组(n=36)和PG+ hCG组(n=97)平均周期分别为(14.5±0.8)和(14.3±1.1)d,显著低于对照组(P<0.05)。同时,PG+ GnRH类似物组和PG+ hCG组注射促排激素后,排卵时长极显著低于对照组(P<0.01)。

表 1 不同激素处理对母马发情周期的影响 Table 1 Effects of different hormone treatments on the estrous cycle of mares
2.2 供体母马冲胚天数对胚胎回收率的影响

排卵后第7、8天冲胚对胚胎回收率的影响如表 2所示。北京马场第7、8天胚胎回收率分别为69.57%和73.13%,河北马场第8天胚胎回收率为77.98%,山东马场第7、8天胚胎回收率分别为66.67%和72.22%。排卵后第8天冲洗子宫,胚胎回收率高于第7天,但差异不显著。其中,北京马场3次冲胚出现双胚胎,4次冲胚出现三胚胎,共92枚胚胎;河北马场6次冲胚出现双胚胎,共91枚胚胎;山东马场未出现多胚胎情况,共112枚胚胎。

表 2 供体马冲胚天数对胚胎回收率的影响 Table 2 The effect of flushing day post ovulation on embryo recovery rate of donor mares
2.3 胚胎日龄对移植后受体母马妊娠率的影响

胚胎日龄对移植后受体母马妊娠率的影响如表 3所示。北京马场,供体母马冲出的7、8日龄胚胎移植给受体母马后妊娠率分别为58.33%和62.50%;河北马场,供体马冲出的8日龄胚胎移植后受体马妊娠率为62.64%;山东马场,供体母马冲出的7、8日龄胚胎移植后受体马妊娠率分别为62.5%和78.85%。总体来看,8日龄胚胎移植给受体母马后妊娠率高于7日龄胚胎,但差异不显著。

表 3 胚胎日龄对移植后受体母马妊娠率的影响 Table 3 The effect of embryonic age on pregnancy rate of recipient mares after embryo transfer
2.4 供受体母马排卵同期化程度对胚胎移植后受体母马妊娠率的影响

供受体母马的排卵同期化程度对胚胎移植后受体母马妊娠率的影响如表 4所示。3个马场供受体母马在排卵间隔为+1 d时(即供体母马排卵时间比受体早1 d),移植后受体马妊娠率均最高;在排卵间隔为-1 d时(即供体母马排卵时间比受体晚1 d),移植后受体马妊娠率均为最低。山东马场胚胎移植后受体马妊娠率整体水平高于其他两个马场。

表 4 供受体母马排卵间隔对移植后妊娠率的影响 Table 4 Effect of donor-recipient synchrony on pregnancy rates after embryo transfer
2.5 受体母马居住胚胎移植基地时长对移植后受体母马妊娠率的影响

受体母马居住胚胎移植基地时长对移植后受体母马妊娠率影响如表 5所示。3个马场受体母马居住时长大于1年时,移植后受体马妊娠率均最高,分别为72.73%、72.73%和80.72%。同时,受体马居住时长小于0.5年时,移植后妊娠率均最低。其中北京马场受体马居住时长大于1年时,移植后妊娠率显著高于居住时长小于0.5年的受体马(P < 0.05)。

表 5 受体母马在胚胎移植基地居住时间对移植后妊娠率的影响 Table 5 The effect of resident time of recipients at farm on pregnancy rate after embryo transfer
3 讨论

马属动物为季节性发情动物,一年分为发情期、过渡期和休情期[23]。北半球母马,每年9月至次年4月为过渡期和休情期,此时下丘脑-垂体-性腺轴功能的部分或完全停止,其表观为于生殖活动部分或完全停止[24]。本试验统计的3个马场分别位于北京、河北和山东,地域差异对马季节发情影响不大,母马正常周期性发情出现在每年的4月中旬至8月中旬。自然发情状态下,每匹马有4~5个情期。为缩短发情周期,在黄体期使用前列腺素以缩短间情期[25]。在最大卵泡直径达到35~40 mm时,肌肉注射1 500~3 000 IU hCG,80%以上的母马会在36~48 h内排卵,但多次使用hCG后,母马体内会产生抗体[26]。为提高供体母马的冲胚次数,肌肉注射GnRH类似物能达到相同的诱发排卵效果,同时马体内不会产生抗体[27]

马胚胎在排卵后第6天进入子宫[28],但在第7天胚胎回收率仍然较低[29]。本研究中,3个马场均未在第6天冲洗子宫,第7天冲洗子宫的胚胎回收率均低于第8天。胚胎进入子宫后,随着时间的延长胚胎体积会成倍数增长,在排卵后第9、10天冲胚会有较高的胚胎回收率,但冲胚液的流体体积与大龄胚胎体表面积接触增加,使9、10日龄的胚胎在冲胚时容易受到损伤[30]。在北京马场,3次排卵后第9.5天冲洗子宫均获得胚胎,但3枚胚胎冲出后胶膜破裂,无法进行移植。据文献报道,7日龄胚胎移植后受胎率较6、8和9日龄高[14, 31]。但在本统计中,北京和山东马场移植8日龄胚胎后妊娠率均高于移植7日龄。移植7日龄以下的胚胎时,由于胚胎体积较小,在不相匹配的子宫环境内更加敏感,不易生存[23];移植8日龄以上的胚胎时,由于胚胎体积较大,在转移时容易发生破损[13],移植后妊娠率均较低。研究表明,胚胎移植时供受体母马排卵最佳间隔期为-1~+3 d,在此间隔期内移植到受体母马的妊娠率较高。在本研究中,使用排卵间隔+4 d的受体母马,在3个马场均能获得移植成功,且在河北马场和山东马场有较高的移植妊娠率。当受体母马较供体早排卵大于1 d以上时,移植妊娠率会显著降低[32],且受体母马在排卵后第9天的子宫环境支持早期胚胎生存的条件较差[33]

为节约胚胎移植成本,多数马场的受体母马采用临时异地购买的方式。然而,异地受体母马在新马场居住时长对移植后妊娠率的影响是人们一直以来忽视的问题。马匹在长距离运输途中,容易发生脱水、疲劳、减重和患病的风险[34]。经过运输后的母马,在随后几天内皮质醇激素会显著升高,肾上腺皮质激素或皮质类固醇激素能减弱黄体功能并推迟发情及排卵[35]。马运输到新环境后,新的厩舍、草料、人员和种群[36]会对其精神造成很大的压力,从而诱发肾上腺皮质释放皮质激素影响繁殖性能。适应性强的马匹会在1周内适应新环境,而有些马匹则需要几个月甚至半年以上。本研究中,3个马场的受体母马居住时长大于1年后,胚胎移植后受孕率均高于居住半年以内的母马,其移植后妊娠率均维持在70%以上。山东马场受体母马居住时长小于半年时,移植妊娠率(68.97%)虽然高于其他两个马场,但半年内的受体马发生早期流产率(55.00%,11/20)显著高于1年以上的受体母马(21.88%,7/32)。

4 结论

供体母马在冲胚完成后肌肉注射0.4 mg氯前列烯醇钠,当最大卵泡直径生长至35~40 mm时,肌肉注射1 000 IU hCG或1 mg GnRH类似物,能使发情周期缩短6 d左右。排卵后第8天冲洗子宫,胚胎回收率高于第7天,且8日龄胚胎移植后受胎率高于7日龄。供体母马排卵比受体早1 d时,受胎率最高;而受体马较供体马早排卵时,妊娠率较低。受体母马在胚胎移植地居住时长对移植后妊娠率和早期流产率至关重要,居住时长大于1年,受胎率较高且早期流产率较低。

参考文献
[1] STOUT T A E. Equine embryo transfer:review of developing potential[J]. Equine Vet J, 2006, 38(5): 467–478.
[2] ALLEN W R, ROWSON L E A.Transfer of ova between horses and donkeys[C]//Proceedings of the 7th International Congress on Animal Reproduction and Artificial Insemination.Munich, 1972: 484-487.
[3] ALLEN W R, ROWSON L E A. Surgical and non-surgical egg transfer in horses[J]. J Reprod Fertil Suppl, 1975(23): 525–530.
[4] JACOB J C F, DE OLIVEIRA SANTOS G, OLIVEIRA J P, et al. Evaluation of reproductive parameters in a commercial equine embryo transfer program[J]. Anim Reprod Sci, 2010, 121(1/2): 305–306.
[5] SQUIRES E L, MCCUE P M, VANDERWALL D. The current status of equine embryo transfer[J]. Theriogenology, 1999, 51(1): 91–104. DOI: 10.1016/S0093-691X(98)00234-9
[6] STOUT T A E. Selection and management of the embryo transfer donor mare[J]. Pferdeheilkunde, 2003, 19(6): 685–688.
[7] LOSINNO L, AQUILAR J J, LISA H.Impact of multiple ovulations in a commercial equine embryo transfer programme[C]//Proceedings of the 5th International Symposium on Equine Embryo Transfer.R & W Publications (Newmarket) Ltd, 2001: 81-83.
[8] MEADOWS S, LISA H, WELSH C.Factors affecting embryo recovery, embryo development and pregnancy rate in a commercial embryo transfer programme[C]//Proceedings of the 1st European Equine Gamete Group, Havemeyer Foundation Monograph Series 1.2000: 61-62.
[9] VOGELSANG S G, VOGELSANG M M. Influence of donor parity and age on the success of commercial equine embryo transfer[J]. Equine Vet J, 1989, 21(S8): 71–72.
[10] BATTUT I, GRANDCHAMP D R A, NICAISE J L, et al.When do equine embryos enter the uterine cavity?An attempt to answer[C]//Proceedings of the 5th International Symposium on Equine Embryo Transfer Havemeyer Foundation Monograph Series 3.Newmarket, UK: R&W Publications, 2001: 60-61.
[11] BOYLE M S, SANDERSON M W, SKIDMORE J, et al. Use of serial progesterone measurements to assess cycle length, time of ovulation and timing of uterine flushes in order to recover equine morulae[J]. Equine Vet J, 1989, 21(S8): 10–13.
[12] SQUIRES E L, MCCUE P M, VANDERWALL D. The current status of equine embryo transfer[J]. Theriogenology, 1999, 51(1): 91–104. DOI: 10.1016/S0093-691X(98)00234-9
[13] MCKINNON A O, SQUIRES E L. Morphologic assessment of the equine embryo[J]. J Am Vet Med Assoc, 1988, 192(3): 401–406.
[14] CARNEVALE E M, RAMIREZ R J, SQUIRES E L, et al. Factors affecting pregnancy rates and early embryonic death after equine embryo transfer[J]. Theriogenology, 2000, 54(6): 965–979. DOI: 10.1016/S0093-691X(00)00405-2
[15] ALLEN W R. The development and application of the modern reproductive technologies to horse breeding[J]. Reprod Domest Anim, 2005, 40(4): 310–329. DOI: 10.1111/j.1439-0531.2005.00602.x
[16] HANDLER J, KÖNIGSHOFER M, KINDAHL H, et al. Secretion patterns of oxytocin and PGF2α-metabolite in response to cervical dilatation in cyclic mares[J]. Theriogenology, 2003, 59(5/6): 1381–1391.
[17] KASK K, ODENSVIK K, KINDAHL H. Prostaglandin F release associated with an embryo transfer procedure in the mare[J]. Equine Vet J, 1997, 29(4): 286–289. DOI: 10.1111/j.2042-3306.1997.tb03125.x
[18] WILSHER S, ALLEN W R. An improved method for nonsurgical embryo transfer in the mare[J]. Equine Vet Educ, 2004, 16(1): 39–44.
[19] ALLEN W R, ROWSON L E A. Surgical and non-surgical egg transfer in horses[J]. J Reprod Fertil Suppl, 1975(23): 525–530.
[20] SQUIRES E L, GARCIA R H, GINTHER O J. Factors affecting success of equine embryo transfer[J]. Equine Vet J, 1985, 17(S3): 92–95.
[21] MORRIS L H A, ALLEN W R. Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket[J]. Equine Vet J, 2002, 34(1): 51–60.
[22] ALLEN W R, WILSHER S, TURNBULL C, et al. Influence of maternal size on placental, fetal and postnatal growth in the horse.Ⅰ.development in utero[J]. Reproduction, 2002, 123(3): 445–453. DOI: 10.1530/rep.0.1230445
[23] GINTHER O J. Reproductive biology of the mare, basic and applied aspects 2nd ed[M]. Cross Plains, WI: Equiservices, 1992: 136-170.
[24] HART P J, SQUIRES E L, IMEL K J, et al. Seasonal variation in hypothalamic content of gonadotropin-releasing hormone (GnRH), pituitary receptors for GnRH, and pituitary content of luteinizing hormone and follicle-stimulating hormone in the mare[J]. Biol Reprod, 1984, 30(5): 1055–1062. DOI: 10.1095/biolreprod30.5.1055
[25] LOY R G, PEMSTEIN R, O'CANNA D, et al. Control of ovulation in cycling mares with ovarian steroids and prostaglandin[J]. Theriogenology, 1981, 15(2): 191–200. DOI: 10.1016/S0093-691X(81)80007-6
[26] SIDDIQUI M A R, GASTAL E L, GASTAL M O, et al. Effect of hCG in the presence of hCG antibodies on the follicle, hormone concentrations, and oocyte in mares[J]. Reprod Domest Anim, 2009, 44(3): 474–479. DOI: 10.1111/j.1439-0531.2008.01133.x
[27] GOMES R G, OLIVEIRA R L, DE CASTRO SCHUTZER C G, et al. Effect of deslorelin and/or human chorionic gonadotropin on inducing ovulation in mares during the transition period versus ovulatory season[J]. J Equine Vet Sci, 2014, 34(9): 1140–1142. DOI: 10.1016/j.jevs.2014.06.015
[28] FREEMAN D A, WEBER J A, GEARY R T, et al. Time of embryo transport through the mare oviduct[J]. Theriogenology, 1991, 36(5): 823–830. DOI: 10.1016/0093-691X(91)90348-H
[29] IULIANO M F, SQUIRES E L, COOK V M. Effect of age of equine embryos and method of transfer on pregnancy rate[J]. J Anim Sci, 1985, 60(1): 258–263. DOI: 10.2527/jas1985.601258x
[30] SQUIRES E L, GARCIA R H, GINTHER O J. Factors affecting success of equine embryo transfer[J]. Equine Vet J, 1985, 17(S3): 92–95.
[31] VOGELSANG S G, BONDIOLI K R, MASSEY J M. Commercial application of equine embryo transfer[J]. Equine Vet J, 1985, 17(S3): 89–91.
[32] SQUIRES E L, IMEL K J, IULIANO M F, et al. Factors affecting reproductive efficiency in an equine embryo transfer programme[J]. J Reprod Fertil Suppl, 1982, 32: 409–414.
[33] BARNES F L. The effects of the early uterine environment on the subsequent development of embryo and fetus[J]. Theriogenology, 2000, 53(2): 649–658. DOI: 10.1016/S0093-691X(99)00264-2
[34] FRIEND T H. A review of recent research on the transportation of horses[J]. J Anim Sci, 2001, 79: E32. DOI: 10.2527/jas2001.79E-SupplE32x
[35] BAUCUS K L, SQUIRES E L, RALSTON S L, et al. Effect of transportation on the estrous cycle and concentrations of hormones in mares[J]. J Anim Sci, 1990, 68(2): 419–426. DOI: 10.2527/1990.682419x
[36] STULL C L.Physiology, balance and management of horses during transportation[C]//Proceedings of Horse Breeders and Owners Conference.Canada: Red Deer, 1997.