畜牧兽医学报  2019, Vol. 50 Issue (9): 1926-1935. DOI: 10.11843/j.issn.0366-6964.2019.09.022    PDF    
呼伦贝尔羊重要脂肪相关基因mRNA差异表达分析
邓天宇, 樊红樱, 杜立新, 赵福平, 王立贤     
中国农业科学院北京畜牧兽医研究所, 农业部动物遗传育种与繁殖(家禽)重点实验室, 北京 100193
摘要:旨在基于前期尾部极端大小呼伦贝尔羊的尾部脂肪转录组测序研究结果,选择10个重要的脂肪相关基因,研究其在不同组织中的表达情况,进一步验证这些基因与绵羊脂肪代谢的关系。本研究利用实时荧光定量方法检测CFDPLIN4、THY1、IL-18、PTPN11、LPLIRX3、HOXA10、MID1IP1、UGCG基因在6月龄呼伦贝尔羊大尾和小尾品系7种组织(尾部脂肪、臀部脂肪、皮下脂肪、肾周脂肪、网膜脂肪、肝、肌肉)中mRNA的表达差异。研究结果表明:1)10个基因除了在肌肉中存在痕量表达外,在其他各个组织均有表达,而且在不同品系间的一个或多个组织中的表达量存在显著差异。2)IRX3和UGCG基因在大尾羊品系尾部脂肪组织中的表达量均极显著低于小尾羊品系(P < 0.01),表明这两个基因与绵羊尾部脂肪代谢有直接关系。3)PLIN4和PTPN11基因在各个组织的表达趋势相近,且在大尾羊品系的皮下及网膜脂肪组织的表达量极显著高于小尾羊品系(P < 0.01),而THY1基因与它们的表达趋势正好相反,在大尾品系皮下及网膜脂肪的表达量显著低于小尾羊品系(分别为P < 0.01,P < 0.05)。4)LPL基因只在小尾羊的臀部脂肪组织的表达量极显著高于大尾羊(P < 0.01);仅有CFD基因在肝中高表达,并在大尾羊中的表达量极显著高于小尾羊(P < 0.01),而其他基因在肝中低表达或者痕量表达;HOXA10基因仅在肾周脂肪组织中高表达,并且在大尾羊中的表达量极显著高于小尾羊(P < 0.01)。研究结果可为阐明绵羊脂肪代谢的分子调控机理提供参考。
关键词候选基因    表达差异    脂肪组织    实时PCR    呼伦贝尔羊    
Differential Expression Analysis of Important Candidate Genes mRNA Related to Fat in Hulun Buir Sheep
DENG Tianyu, FAN Hongying, DU Lixin, ZHAO Fuping, WANG Lixian     
Key Laboratory of Animal Genetics, Breeding and Reproduction(poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: Based on the transcriptome sequencing results of tail adipose tissue between the big-tailed and small-tailed Hulun Buir sheep, 10 important genes related to fat were selected to explore their expression in different tissues and investigate the relationship between genes and fat metabolism in sheep. The mRNA expression difference of candidate genes, including CFD, PLIN4, THY1, IL-18, PTPN11, LPL, IRX3, HOXA10, MID1IP1 and UGCG, were detected in 7 tissues (tail fat, hip fat, subcutaneous fat, perirenal fat, omental fat, liver and muscle) between big-tailed and small-tailed Hulun Buir sheep of 6-month-old by real-time fluorescence quantitative method. The results showed that:1) Ten genes were expressed in other tissues except for trace expression in muscle, and there was a significant difference at the expression levels in one or more tissues between different lines. 2) The expression levels of IRX3 and UGCG genes in the tail adipose tissue of the big-tailed sheep were significantly lower than those in the small-tailed sheep (P < 0.01), indicating that these 2 genes were directly related to fat metabolism in the tail of sheep. 3) The expression trends of PLIN4 and PTPN11 genes in different tissues were similar, and the expression levels in subcutaneous and omental adipose tissues in the big-tailed sheep were higher than those in the small-tailed sheep (P < 0.01), while the expression trend of THY1 gene was opposite, the expression in subcutaneous and omental fat tissues in the big-tailed sheep was lower than that in the small-tailed sheep (P < 0.01, P < 0.05). 4) The expression of LPL gene in the hip adipose tissue of the small-tailed sheep was significantly higher than that of the big-tailed sheep (P < 0.01); only the CFD gene was highly expressed in the liver and higher in the big-tailed sheep than that in the small-tailed sheep (P < 0.01), while other genes were lowly or tracely expressed in the liver; HOXA10 gene was highly expressed only in perirenal adipose tissue, and the expression level in big-tailed sheep was higher than that in small-tailed sheep (P < 0.01). The results will provide a reference for further elucidate the molecular mechanism of fat metabolism in sheep.
Key words: candidate genes     differential expression     adipose tissue     real-time PCR     Hulun Buir sheep    

随着人们生活质量的提高,我国城乡居民营养水平有着明显改善,人们的能量摄入基本能达到营养目标,但是蛋白质摄入量相对不足,脂肪摄入量超标等问题愈发严重,这就使得对畜禽肉类的育种目标也由高油高脂转变为高蛋白低脂[1]。羊肉作为最具有价值的畜产品之一,其富含高品质蛋白,瘦肉多、脂肪和胆固醇含量少、肉质鲜嫩,备受广大消费者的青睐。在绵羊的生物进化过程中,为了适应各种极端的环境,通过长期的自然选择和人工选育,分化出了极具特点的不同尾型,脂尾储存的脂肪能在极端的自然条件和食物短缺的情况下为绵羊提供能量,也使脂尾羊比其他品种有更好的适应性[2-4]。但是脂尾中脂肪沉积效果明显,部分品种羊的尾部脂肪重量甚至可以超过胴体重的25%[5],大部分尾脂被抛弃或不完全利用。因此,探索绵羊尾部脂肪沉积机理对肉羊产业具有重要意义。

呼伦贝尔羊主要分布在呼伦贝尔草原及其周围,具有适应性强、耐寒耐粗饲、生长发育速度快、日增重高、繁殖率高、遗传性能稳定、体格健壮匀称等优良品质。经过长期分化和选育,呼伦贝尔羊形成了尾部相对大而下垂的半椭圆状尾羊(巴尔虎品系)和尾部短小扁宽的小桃状尾羊(短尾品系)两个品系[6]。目前关于同品种内不同品系羊尾部脂肪沉积机理的研究相对较少。基于前期对呼伦贝尔羊极端大小的尾部脂肪组织进行了转录组测序(RNAseq)研究,获得了一些与脂肪代谢相关的差异表达基因[7]。为了进一步验证这些基因与绵羊脂肪代谢的关系,本研究筛选出了10个重要候选基因:补体因子D基因(complement factor D, CFD)、脂滴包被蛋白4基因(perilipin 4, PLIN4)、CD90蛋白基因(thy-1 cell surface antigen, THY1)、白细胞介素18基因(interleukin 18, IL-18)、蛋白酪氨酸磷酸酶11基因(tyrosine-protein phosphatase non-receptor type 11, PTPN11)、脂蛋白脂肪酶基因(lipoprteinlipase,LPL)、易洛魁族同源盒蛋白3基因(iroquois homeobox 3, IRX3)、同源框A10基因(homeobox A10, HOXA10)、MID1互作蛋白1基因(MID1 interacting protein 1, MID1IP1)、UDP-葡萄糖神经酰胺糖基转移酶基因(UDP-glucose ceramide glucosyltransferase, UGCG),通过实时荧光定量PCR技术研究其在呼伦贝尔羊不同品系间不同组织的表达量差异,为揭示绵羊尾部脂肪沉积机理和通过标记辅助选择选育新的绵羊品种提供理论参考。

1 材料与方法 1.1 试验动物样本

本试验从呼伦贝尔市新巴尔虎左旗和鄂温克族自治旗随机选择6月龄2 000只体型均一的健康羔羊。为避免亲缘关系,本试验的个体均为随机抽样,选择尾巴差异极显著的个体分为2组,每组6只(公母各半),共12只进行屠宰(样品编号分别为MB1、MB2、MB3、FB1、FB2、FB3、MS1、MS2、MS3、FS1、FS2、FS3),并采集其尾部脂肪、皮下脂肪、臀部脂肪、肝脂肪、肾周脂肪、网膜和背最长肌组织。将所有采集的样本储存于RNAlater (Ambion, Austin, TX)中,前24 h室温保存,然后储存于-80 ℃,并进行RNA提取。

1.2 主要仪器及试剂

PrimeScriptTM Ⅱ 1st Strand cDNA Synthesis Kit试剂盒、SYBR Premix Ex Taq Ⅱ试剂盒(TaKaRa公司,日本);微量移液器、5430R型高速低温离心机(Eppendorf公司,德国);YT-CJ-2D超净工作台(亚泰科隆仪器技术有限公司,北京);ABI7500荧光定量仪(Applied Biosystems公司,美国);Qubit®2.0荧光定量仪(Life Technologies公司,美国);VORTEX-5型涡旋振荡器(Scientific Industries公司,美国)等。

1.3 RNA的提取及反转录

将样品加液氮快速研磨至粉末状,后用TRIzol(Invitrogen,Carlsbad,CA)法提取组织样本总RNA,并使用分光光度计和荧光定量仪对提取的RNA纯度和浓度进行检测,同时通过1%的琼脂糖凝胶电泳和生物分析仪检测RNA的污染、降解情况和完整性。反转录:将12个个体的6个组织总RNA通过TaKaRa公司的PrimeScriptTM Ⅱ 1st Strand cDNA Synthesis Kit试剂盒进行反转录合成cDNA。

1.4 引物设计合成与实时荧光定量PCR

根据试验对象基因的ID和名称,在NCBI (http://www.ncbi.nlm.nih.gov/)下载相应的mRNA序列,内参基因为GAPDH。用Primer5软件设计特异性引物,引物合成工作由天一辉远生物科技有限公司完成。荧光定量引物具体信息见表 1。Real-time PCR使用ABI7500荧光定量PCR仪进行扩增反应。荧光定量酶是TaKaRa公司的SYBR Premix Ex Taq Ⅱ试剂盒,选择反应体系为25 μL:SYBR®Premix Ex TaqTM Ⅱ12.5 μL, 上、下游引物各1 μL,ROX Reference Dye Ⅱ0.5 μL,DNA模板2 μL,灭菌蒸馏水8 μL。PCR循环条件:95 ℃预变性10 s;95 ℃变性5 s,60 ℃退火/延伸34 s,40个循环。

表 1 荧光定量引物信息列表 Table 1 RT-PCR primer information
1.5 数据统计与分析

本试验采用Real-time PCR技术,对与脂肪代谢相关的10个基因在呼伦贝尔羊两个品系的不同组织表达水平进行了分析。其相对表达量的值用2-ΔΔCt的平均值表示,其中ΔΔCt的计算过程为目的基因的表达量减去内参基因(GADPH)值得到ΔCt,再以尾部脂肪的ΔCt均值为对照组,用各组ΔCt值减去对照组得到ΔΔCt,具体公式:

$ \begin{array}{l} \;\;\;\;\;\Delta \Delta {\rm{Ct = }}{\left( {{{\rm{C}}_{{\rm{T\_target}}}} - {{\rm{C}}_{{\rm{T\_GAPDH}}}}} \right)_{{\rm{sample\_A}}}} - \left( {{{\rm{C}}_{{\rm{T\_control}}}} - } \right.\\ {\left. {{{\rm{C}}_{{\rm{T\_GAPDH}}}}} \right)_{{\rm{sample\_B}}}}, \end{array} $

其中CT为循环阈值,样本A为被测个体,样本B为对照组个体。并利用SPSS 22.0软件对所得表达量进行单因素方差分析(One-way ANOVA),P<0.05表示差异显著,P<0.01表示差异极显著。

2 结果 2.1 绵羊组织RNA的提取及质量检测

RNA经过1%琼脂糖凝胶电泳检测,其结果如图 1所示,发现RNA条带清晰完整无降解。利用Nanodrop检测RNA的纯度和浓度,结果A260 nm/A280 nm值均在1.8~2.2范围内(表 2);Agilent2100检测RNA的完整性(表 2),获得RIN值均大于等于7,且28S/18S的比值大于等于1.5(表 2),表明RNA的质量合格,可用于后续试验。

M. DNA相对分子质量标准 M.Marker 图 1 RNA电泳图 Fig. 1 Gel electrophoresis of the RNA
表 2 转录组样品RNA质量检测数据统计表 Table 2 The data statistics of the RNA quality for transcriptome sequencing
2.2 绵羊脂肪相关基因的组织表达分析

图 2A所示,IRX3基因在大尾羊的尾部脂肪和皮下脂肪组织中的表达量极显著低于小尾羊相应组织中的表达量(P < 0.01)。UGCG基因(图 2B)在大小尾呼伦贝尔羊尾部、臀部、皮下、网膜、肾周、肝脂肪组织中表达量相对较高,在大尾羊尾部脂肪组织中的表达量极显著低于小尾羊(P < 0.01)。LPL基因(图 2C)在尾部、臀部、皮下、网膜、肾周脂肪组织中表达量相对较高,仅在大尾羊臀部脂肪组织中的表达量极显著低于小尾羊(P < 0.01),而其他组织中的表达无显著差异。

1.尾部脂肪;2.臀部脂肪;3.皮下脂肪;4.网膜脂肪;5.肾周脂肪;6.肌肉;7.肝。*. P<0.05;**. P<0.01 1. Tail fat; 2. Hip fat; 3. Subcutaneous fat; 4. Omental fat; 5. Perirenal fat; 6. Muscle; 7. Liver. *. P < 0.05; **. P < 0.01 图 2 脂肪相关基因在绵羊不同组织中的表达 Fig. 2 Expression of genes related to fat in different tissues of sheep

PLIN4基因(图 2D)在臀部、皮下、网膜、肾周脂肪组织中表达量较高,并且大尾羊皮下脂肪和网膜脂肪中的表达量极显著高于小尾羊(P < 0.01)。PTPN11基因(图 2E)在臀部、皮下、网膜、肾周脂肪组织中表达量相对较高,在大尾羊的皮下脂肪和网膜脂肪组织中的表达量均极显著高于小尾羊相应组织中的表达量(P < 0.01)。THY1基因(图 2F)在大小尾呼伦贝尔羊臀部、皮下、网膜、肾周脂肪组织中表达量相对较高,在大尾羊皮下脂肪的表达量极显著低于小尾羊(P < 0.01),在大尾羊网膜脂肪的表达量显著低于小尾羊(P < 0.05)。IL-18基因(图 2G)在两个品系的呼伦贝尔羊的尾部、臀部、皮下、网膜、肾周脂肪组织的表达量相对较高,在大尾羊和小尾羊的肾周脂肪和网膜脂肪的表达量中出现极显著差异(P < 0.01)。MID1IP1基因(图 2H)在大小尾呼伦贝尔羊尾部、臀部、皮下、网膜、肾周、肝脂肪组织中表达量相对较高,在大尾羊皮下脂肪组织中的表达量极显著低于小尾羊(P < 0.01)。

图 2I可见,CFD基因在所有脂肪组织和肝中表达,该基因在肝组织中表达量最高,并且在大尾羊肝组织中的表达量极显著高于小尾羊(P < 0.01)。对HOXA10基因(图 2J)的分析结果显示,其在肾周脂肪组织的表达量远远高于其他各部位脂肪组织,并且在大尾羊肾周脂肪组织中的表达量极显著高于小尾羊(P < 0.01)。

3 讨论 3.1 脂肪相关基因在绵羊尾部及臀部脂肪组织的差异表达

在尾部脂肪组织的差异对比中,IRX3和UGCG基因在大尾羊中的表达量远低于小尾羊(P < 0.01);而在大小尾羊臀部脂肪中LPL基因的表达量存在显著差异,表现为小尾羊高于大尾羊(P < 0.01)。

已经证明,IRX3基因与FTO基因突变的相互作用是导致肥胖的关键因素,且IRX3在脂肪细胞分化早期的表达存在一定的发育阶段特异性[8-9]。敲除IRX3基因的小鼠脂肪明显减少,而且白色脂肪褐变,体重比正常小鼠降低了25%~30%[8]。Kang等[10]也发现,IRX3基因在滩羊的皮下脂肪、尾部脂肪和内脏脂肪组织间均存在表达差异。宁越等[11]发现,基因在脂肪组织中的表达量与不同时期育种秦川牛生长速度呈正相关,推测IRX3基因在该品种牛发育过程中与脂肪沉积有密切联系。因此,初步推断IRX3与尾型分化有一定关联,但具体关系有待进一步研究。UGCG基因是调控葡萄糖神经酰胺合成的关键酶,对机体各个生长阶段都起到极其重要的作用[12-14]。小鼠中枢神经系统中的UGCG可以调节能量稳态,小鼠前脑神经元UGCG特异性缺失会导致小鼠肥胖、体温过低和交感神经活性降低,而在恢复UGCG表达后,对肥胖等效果有明显改善[15]。本试验中,UGCG基因可能在尾部的脂肪代谢中起到了重要的调节作用,是影响大小尾羊尾部性状分化的重要基因。韦璇等[16]发现,LPL基因在脂尾型或肥臀型绵羊尾部脂肪组织中的表达水平比瘦尾型绵羊高,而在同品种中,长脂尾型同羊尾部脂肪中的表达量显著高于短脂尾型同羊。对奶牛的研究发现,脂肪含量越高,LPL基因表达水平越高[17]。也有其他研究发现,LPL基因表达的升高可引起脂肪细胞体积增加[16, 18];不同动物的脂肪组织中,LPL的表达调控模式各不相同,其受多种因素影响和调节[17, 19-20]。本试验发现,LPL可能参与对脂尾的调控,通过将脂肪囤积在臀部,导致尾部脂肪沉积较少。

3.2 脂肪相关基因在绵羊皮下及网膜脂肪组织的差异表达

皮下和网膜是动物机体重要的脂肪沉积部位。PLIN4、PTPN11和THY1在大小尾羊皮下脂肪和网膜脂肪组织均存在显著的表达差异;IL-18基因在肾周和网膜脂肪组织的表达量在大小尾羊间存在显著差异;MID1IP1则只在皮下存在大小尾羊间的表达差异。

PLIN4基因主要在白色脂肪相关组织中表达[21-22]PLIN4基因在肥胖动物和人中表达水平更高,可能与胰岛素抵抗和肥胖有关,而在敲除了PLIN4基因编辑的围脂滴蛋白后,在同等饮食量的情况下,基因敲除的小鼠脂肪增长量是野生小鼠脂肪增长量的1/3,瘦肉含量更高,也有更高的瘦素表达量和胰岛素抵抗倾向[23-24]PTPN11基因普遍存在于动物细胞中,Krajewska等[25]发现,泛神经元PTPN11缺陷小鼠体重增加、肥胖,且出现高瘦素血症和糖尿病症状。Banno等[26]在表达阿黑皮素原的神经元PTPN11缺陷小鼠的研究中也得到了同样的结果。He等[27]发现,PTPN11在前偶联瘦素和雌激素信号传导中起到重要作用,且只在雌性转基因小鼠中产生肥胖抗性。此外,给肝PTPN11基因敲除小鼠喂食高脂肪日粮后,小鼠的体重增加较少、能量消耗增大、脂肪肝有所缓解,这些小鼠增强的胰岛素抑制肝葡萄糖产生和因胰岛素抵抗而防止肥胖效果[28]。本研究中,PTPN11与PLIN4基因在大小尾羊中差异表达,表达趋势一致,可能是导致两品系呼伦贝尔羊脂肪组织含量差异的重要因素,但不是影响尾部脂肪沉积的重要基因。

Woeller等[29-30]发现,THY1敲除小鼠与正常小鼠相比体重明显增加,脂肪生成相关基因的表达也增加了,还通过对3T3-L1前体脂肪细胞的研究发现,大鼠THY1的表达抑制脂肪生成,四溴双酚A可以使THY1表达降低,从而诱导microRNA-103促进脂肪生成。同时,THY1(CD90)在脂肪细胞的形成过程中起到重要作用,在分化后的细胞中显示为阳性[31-34]。本研究显示,THY1基因功能与前人所得结论相符,并且THY1基因的表达趋势与PLIN4和PTPN11相反,这说明THY1在小尾羊中的高表达可以抑制脂肪形成,在大小尾羊的性状分化中起到了一定作用。

IL-18可由脂肪组织、体外脂肪细胞和骨骼肌细胞合成释放[35-38]。在肥胖者血浆中IL-18基因的表达量明显高于纤瘦者,且不随之后体重的降低而变化,IL-18基因也与胰岛素抵抗现象有关,降低体重和血浆IL-18含量后,胰岛素敏感性明显上升[39-40]。食用高脂肪食物后,IL-18的表达量显著提升[41-42]。本研究表明,IL-18对大小尾羊内脏脂肪组织有重要影响,但并不是影响尾型分化的主要基因。

MID1IP1基因是位于X染色体上的细胞质蛋白基因[43-44]。Resnyk等[45]发现,MID1IP1在肥胖鸡胸部脂肪中的表达量显著高于其在瘦鸡胸部脂肪中的表达量。乙酰辅酶A羧化酶α(ACACA)是脂肪酸合成过程中的限速酶,MID1IP1基因的过表达可以增强ACACA的聚合及其酶活性,从而影响脂肪合成[43, 46-47]MID1IP1与甲状腺激素反应基因位点14(THRSP)的叠加作用能够直接参与肝脂肪的合成[48]。本研究中,MID1IP1仅在小尾羊皮下脂肪中的表达量显著高于大尾羊,表明该基因对大小尾羊尾部脂肪的影响不大。

3.3 脂肪相关基因在绵羊其他脂肪组织的差异表达

CFD基因只在大小尾羊肝脂肪组织中存显著表达差异,而HOXA10基因只在肾周脂肪组织存在大小尾间的表达差异。李星艳等[49]研究发现,CFD基因在阿勒泰大尾羊尾部脂肪、脾和肝组织中有高丰度表达,且在饥饿饲养组尾脂组织中的表达量极显著高于正常饲养组。研究发现,CFD是由生脂小分子诱导在脂肪内生成,在某些特定脂肪组织中表达,通常情况下对脂肪细胞的分化具有促进作用,但在糖尿病或达到肥胖标准的样本中,CFD基因表达水平会有所降低[50-52]。本研究中,CFD基因在肝中的表达量远高于其他各组织,而在身体各个脂肪沉积部位(肾周脂肪、皮下脂肪、网膜脂肪、臀部脂肪)也有较高表达,这与前人研究结果相符。同时,本试验还发现,CFD基因在大尾羊肝组织中的表达量显著高于小尾羊(P < 0.01),这表明CFD基因可能促进大尾羊肝对脂肪的分解,进而运输到尾部沉积脂肪,在呼伦贝尔羊的脂尾分化中起到了一定作用。在人和小鼠的白色(皮下)和棕色脂肪组织中都可以检测到HOXA10基因[53-55]。Liu等[56]对中国多尾型绵羊的研究发现,HOXA10基因在中国短脂尾羊品种中显示出强烈的选择特征,可能是导致短脂尾羊品种间繁殖性状差异的重要因素。Kang等[10]研究报道,HOXA10基因在滩羊的皮下脂肪、尾部脂肪和内脏脂肪组织间均存在表达差异。本试验中,HOXA10基因在呼伦贝尔羊中的表达不仅存在显著的组织差异,并且其表达也与品种相关,但可能并不是调节尾型分化的重要基因。

4 结论

本试验利用实时荧光定量PCR研究了IL-18、LPLIRX3、MID1IP1、UGCGPLIN4、THY1、PTPN11、CFDHOXA10在不同尾型呼伦贝尔羊7个组织中的表达差异。结果表明,IRX3和UGCG基因可能对呼伦贝尔羊的尾型分化有直接影响,而其余的8个基因也分别在不同尾型的不同组织中存在表达差异,说明本试验所选基因对绵羊的脂肪组织分化与脂肪沉积具有一定的调控作用,为探究绵羊脂肪组织分化与脂肪沉积的分子机理提供了依据。

参考文献
[1] 司智陟.基于营养目标的我国肉类供需分析[D].北京: 中国农业科学院, 2012.
SI Z Z.Study on meat supply and demand with the goal of nutrition in China[D].Beijing: Chinese Academy of Agricultural Sciences, 2012.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82101-1013174709.htm
[2] FARAHANI A H K, SHAHRBABAK H M, SHAHRBABAK M M, et al. Relationship of fat-tail and body measurements with some economic important traits in fat-tail Makoei breed of Iranian sheep[J]. Afr J Biotechnol, 2010, 9(36): 5989–5992.
[3] KHALDARI M, KASHAN N E J, AFZALZADEH A, et al. Growth and carcass characteristics of crossbred progeny from lean-tailed and fat-tailed sheep breeds[J]. South Aft J Anim Sci, 2007, 37(1): 51–56.
[4] MORADI M H, NEJATI-JAVAREMI A, MORADI-SHAHRBABAK M, et al. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition[J]. BMC Genet, 2012, 13: 10.
[5] 甘尚权, 沈敏, 李欢, 等. X染色体60149273位点在脂尾(臀)和瘦尾绵羊品种中的多态性及其基因定位[J]. 中国农业科学, 2013, 46(22): 4791–4799.
GAN S Q, SHEN M, LI H, et al. Polymorphism of the 60149273th Loci on X chromosome among fat tail and thin tail breeds and its gene mapping[J]. Scientia Agricultura Sinica, 2013, 46(22): 4791–4799. DOI: 10.3864/j.issn.0578-1752.2013.22.017 (in Chinese)
[6] 董淑霞, 康静, 王永军, 等. 草原优良新品种--呼伦贝尔羊简介[J]. 畜牧兽医科技信息, 2010(3): 104–105.
DONG S X, KANG J, WANG Y J, et al. A new variety of grassland--introduction to Hulunbeier sheep[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2010(3): 104–105. DOI: 10.3969/J.ISSN.1671-6027.2010.03.087 (in Chinese)
[7] 樊红樱.呼伦贝尔绵羊尾部脂肪组织的转录组差异表达分析[D].兰州: 甘肃农业大学, 2016.
FAN H Y.Transcriptomic difference analysis for tail adipose tissue of Hulun Buir sheep[D].Lanzhou: Gansu Agricultural University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10733-1016902416.htm
[8] SMEMO S, TENA J J, KIM K H, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3[J]. Nature, 2014, 507(7492): 371–375. DOI: 10.1038/nature13138
[9] CLAUSSNITZER M, DANKEL S N, KIM K H, et al. FTO obesity variant circuitry and adipocyte browning in humans[J]. N Engl J Med, 2015, 373(10): 895–907. DOI: 10.1056/NEJMoa1502214
[10] KANG D J, ZHOU G X, ZHOU S W, et al. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep[J]. Sci Rep, 2017, 7(1): 14491. DOI: 10.1038/s41598-017-14967-9
[11] 宁越, 吴森, 张乐, 等. IRX3基因在秦川牛不同组织中的表达分析[J]. 西北农林科技大学学报:自然科学版, 2018, 46(6): 15–19, 47.
NING Y, WU S, ZHANG L, et al. Expression of IRX3 gene in different tissues of Qinchuan cattle[J]. Journal of Northwest A & F University:Natural Science Edition, 2018, 46(6): 15–19, 47. (in Chinese)
[12] NOMURA K H, MURATA D, HAYASHI Y, et al. Ceramide glucosyltransferase of the nematode Caenorhabditis elegans is involved in oocyte formation and in early embryonic cell division[J]. Glycobiology, 2011, 21(6): 834–848. DOI: 10.1093/glycob/cwr019
[13] WEGNER M S, GRUBER L, MATTJUS P, et al. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1)[J]. BMC Cancer, 2018, 18(1): 153. DOI: 10.1186/s12885-018-4084-4
[14] HAYASHI Y, NEMOTO-SASAKI Y, MATSUMOTO N, et al. Complex formation of sphingomyelin synthase 1 with glucosylceramide synthase increases sphingomyelin and decreases glucosylceramide levels[J]. J Biol Chem, 2018, 293(45): 17505–17522. DOI: 10.1074/jbc.RA118.002048
[15] NORDSTRÖM V, WILLERSHÄUSER M, HERZER S, et al. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis[J]. PLoS Biol, 2013, 11(3): e1001506. DOI: 10.1371/journal.pbio.1001506
[16] 韦璇, 徐小春, 杨雨鑫, 等. CCAAT/增强子结合蛋白α(C/EBPα)与脂蛋白酯酶(LPL)基因在不同尾型绵羊品种尾部脂肪组织中的表达[J]. 农业生物技术学报, 2014, 22(5): 598–606.
WEI X, XU X C, YANG Y X, et al. Differential expression of CCAAT/enhancer binding protein α(C/EBPα) and Lipoprotein Lipase(LPL) genes in tail adipose tissues of sheep (Ovis aries) with different types of tail[J]. Journal of Agricultural Biotechnology, 2014, 22(5): 598–606. DOI: 10.3969/j.issn.1674-7968.2014.05.008 (in Chinese)
[17] REN M Q, WEGNER J, BELLMANN O, et al. Comparing mRNA levels of genes encoding leptin, leptin receptor, and lipoprotein lipase between dairy and beef cattle[J]. Domest Anim Endocrinol, 2002, 23(3): 371–381. DOI: 10.1016/S0739-7240(02)00179-0
[18] BARBER M C, WARD R J, RICHARDS S E, et al. Ovine adipose tissue monounsaturated fat content is correlated to depot-specific expression of the stearoyl-CoA desaturase gene[J]. J Anim Sci, 2000, 78(1): 62–68. DOI: 10.2527/2000.78162x
[19] ROPKA-MOLIK K, KNAPIK J, PIESZKA M, et al. Nutritional modification of SCD, ACACA and LPL gene expressions in different ovine tissues[J]. Arch Anim Breed, 2017, 60(3): 243–250. DOI: 10.5194/aab-60-243-2017
[20] COLEMAN D N, MURPHY K D, RELLING A E. Prepartum fatty acid supplementation in sheep.Ⅱ.Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue[J]. J Anim Sci, 2018, 96(3): 1181–1204. DOI: 10.1093/jas/skx013
[21] BRASAEMLE D L. Thematic review series:Adipocyte biology.The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis[J]. J Lipid Res, 2007, 48(12): 2547–2559. DOI: 10.1194/jlr.R700014-JLR200
[22] DE LA ROSA RODRIGUEZ M A, KERSTEN S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10): 1212–1220. DOI: 10.1016/j.bbalip.2017.07.007
[23] SOENEN S, MARIMAN E C M, VOGELS N, et al. Relationship between perilipin gene polymorphisms and body weight and body composition during weight loss and weight maintenance[J]. Physiol Behav, 2009, 96(4-5): 723–728. DOI: 10.1016/j.physbeh.2009.01.011
[24] TANSEY J T, SZTALRYD C, GRUIA-GRAY J, et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity[J]. Proc Natl Acad Sci U S A, 2001, 98(11): 6494–6499. DOI: 10.1073/pnas.101042998
[25] KRAJEWSKA M, BANARES S, ZHANG E E, et al. Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase[J]. Am J Pathol, 2008, 172(5): 1312–1324. DOI: 10.2353/ajpath.2008.070594
[26] BANNO R, ZIMMER D, DE JONGHE B C, et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice[J]. J Clin Invest, 2010, 120(3): 720–734. DOI: 10.1172/JCI39620
[27] HE Z, ZHANG S S, MENG Q Y, et al. Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals[J]. Mol Cell Biol, 2012, 32(10): 1867–1878. DOI: 10.1128/MCB.06712-11
[28] NAGATA N, MATSUO K, BETTAIEB A, et al. Hepatic Src homology phosphatase 2 regulates energy balance in mice[J]. Endocrinology, 2012, 153(7): 3158–3169. DOI: 10.1210/en.2012-1406
[29] WOELLER C F, O'LOUGHLIN C W, POLLOCK S J, et al. Thy1 (CD90) controls adipogenesis by regulating activity of the Src family kinase, Fyn[J]. FASEB J, 2015, 29(3): 920–931. DOI: 10.1096/fj.14-257121
[30] WOELLER C F, FLORES E, POLLOCK S J, et al. THY1 (CD90) expression is reduced by the environmental chemical tetrabromobisphenol-A to promote adipogenesis through induction of microRNA-103[J]. Toxicol Sci, 2017, 157(2): 305–319. DOI: 10.1093/toxsci/kfx046
[31] 李江璇, 肖丽玲, 饶从强, 等. 人与大鼠脂肪干细胞提取方法及生物学特性的比较研究[J]. 暨南大学学报:自然科学与医学版, 2015, 36(4): 324–329.
LI J X, XIAO L L, RAO C Q, et al. Comparison of isolation and biological characteristics of adipose-derived stem cells from human and rat[J]. Journal of Jinan University:Natural Science & Medicine Edition, 2015, 36(4): 324–329. (in Chinese)
[32] 王娜. 人脂肪源性干细胞体外培养和鉴定研究[J]. 湖北科技学院学报:医学版, 2016, 30(6): 468–470.
WANG N. Culture and identification of human adipose tissue derived stem cells in vitro[J]. Journal of Hubei University of Science and Technology:Medical Sciences, 2016, 30(6): 468–470. (in Chinese)
[33] 甘露, 罗清礼, 唐飞, 等. TAO患者眼眶CD90+和CD90-成纤维细胞亚群脂成纤维细胞转化的研究[J]. 四川大学学报:医学版, 2016, 47(3): 356–359.
GAN L, LUO Q L, TANG F, et al. The study of lipofibroblasts differentiation of CD90+ and CD90- orbital fibroblasts subsets in patients with TAO[J]. Journal of Sichuan University:Medical Science Edition, 2016, 47(3): 356–359. (in Chinese)
[34] LEE M W, CHOI J, YANG M S, et al. Mesenchymal stem cells from cryopreserved human umbilical cord blood[J]. Biochem Biophys Res Commun, 2004, 320(1): 273–278. DOI: 10.1016/j.bbrc.2004.04.206
[35] YERLY S, GÜNTHARD H F, FAGARD C, et al. Proviral HIV-DNA predicts viral rebound and viral setpoint after structured treatment interruptions[J]. AIDS, 2004, 18(14): 1951–1953. DOI: 10.1097/00002030-200409240-00011
[36] WOOD I S, WANG B H, JENKINS J R, et al. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFα in human adipocytes[J]. Biochem Biophys Res Commun, 2005, 337(2): 422–429. DOI: 10.1016/j.bbrc.2005.09.068
[37] SKURK T, KOLB H, MÜLLER-SCHOLZE S, et al. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes[J]. Eur J Endocrinol, 2005, 152(6): 863–868. DOI: 10.1530/eje.1.01897
[38] KROGH-MADSEN R, PLOMGAARD P, MØLLER K, et al. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans[J]. Am J Physiol Endocrinol Metab, 2006, 291(1): E108–E114. DOI: 10.1152/ajpendo.00471.2005
[39] BRUUN J M, STALLKNECHT B, HELGE J W, et al. Interleukin-18 in plasma and adipose tissue:effects of obesity, insulin resistance, and weight loss[J]. Eur J Endocrinol, 2007, 157(4): 465–471. DOI: 10.1530/EJE-07-0206
[40] ZILVERSCHOON G R C, TACK C J, JOOSTEN L A B, et al. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus[J]. Int J Obes (Lond), 2008, 32(9): 1407–1414. DOI: 10.1038/ijo.2008.109
[41] GREGERSEN S, SAMOCHA-BONET D, HEILBRONN L K, et al. Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans[J]. J Nutr Metab, 2012, 2012: 238056.
[42] ESPOSITO K, NAPPO F, GIUGLIANO F, et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus[J]. Am J Clin Nutr, 2003, 78(6): 1135–1140. DOI: 10.1093/ajcn/78.6.1135
[43] KIM C W, MOON Y A, PARK S W, et al. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9626–9631. DOI: 10.1073/pnas.1001292107
[44] ZHU Q H, ANDERSON G W, MUCHA G T, et al. The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland[J]. Endocrinology, 2005, 146(8): 3343–3350. DOI: 10.1210/en.2005-0204
[45] RESNYK C W, CARRÉ W, WANG X F, et al. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness[J]. BMC Genomics, 2013, 14: 557. DOI: 10.1186/1471-2164-14-557
[46] YIN L Y, ZHANG Y Q, CHARRON T, et al. Thyroid hormone, glucagon, and medium-chain fatty acids regulate transcription initiated from promoter 1 and promoter 2 of the acetyl-CoA carboxylase-α gene in chick embryo hepatocytes[J]. Biochim Biophys Acta Gene Struct Exp, 2000, 1517(1): 91–99. DOI: 10.1016/S0167-4781(00)00267-0
[47] YIN L Y, ZHANG Y Q, HILLGARTNER F B. Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-α transcription in hepatocytes[J]. J Biol Chem, 2002, 277(22): 19554–19565. DOI: 10.1074/jbc.M111771200
[48] AIPOALANI D L, O'CALLAGHAN B L, MASHEK D G, et al. Overlapping roles of the glucose-responsive genes, S14 and S14R, in hepatic lipogenesis[J]. Endocrinology, 2010, 151(5): 2071–2077. DOI: 10.1210/en.2009-1058
[49] 李星艳, 王世银, 许瑞霞, 等. 阿勒泰羊CFD基因的克隆及其在不同营养状态阿勒泰羊尾脂中的表达分析[J]. 新疆农业科学, 2016, 53(6): 1136–1144.
LI X Y, WANG S Y, XU R X, et al. Cloning of CFD gene in Altay sheep and analysis of expression levels in tail fat of Altay sheep in different nutrition states[J]. Xinjiang Agricultural Sciences, 2016, 53(6): 1136–1144. (in Chinese)
[50] ZEZULAK K M, GREEN H. Specificity of gene expression in adipocytes[J]. Mol Cell Biol, 1985, 5(2): 419–421. DOI: 10.1128/MCB.5.2.419
[51] LEIHERER A, STOEMMER K, MUENDLEIN A, et al. Quercetin impacts expression of metabolism- and obesity-associated genes in SGBS adipocytes[J]. Nutrients, 2016, 8(5): E282. DOI: 10.3390/nu8050282
[52] SONG N J, KIM S, JANG B H, et al. Small molecule-induced complement Factor D (Adipsin) promotes lipid accumulation and adipocyte differentiation[J]. PLoS One, 2016, 11(9): e0162228. DOI: 10.1371/journal.pone.0162228
[53] GESTA S, TSENG Y H, KAHN C R. Developmental origin of fat:tracking obesity to its source[J]. Cell, 2007, 131(2): 242–256. DOI: 10.1016/j.cell.2007.10.004
[54] YAMAMOTO Y, GESTA S, LEE K Y, et al. Adipose depots possess unique developmental gene signatures[J]. Obesity (Silver Spring), 2010, 18(5): 872–878. DOI: 10.1038/oby.2009.512
[55] KARASTERGIOU K, FRIED S K, XIE J, et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots[J]. J Clin Endocrinol Metab, 2013, 98(1): 362–371. DOI: 10.1210/jc.2012-2953
[56] LIU Z H, JI Z B, WANG G Z, et al. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions[J]. BMC Genomics, 2016, 17: 863. DOI: 10.1186/s12864-016-3212-2