畜牧兽医学报  2019, Vol. 50 Issue (9): 1920-1925. DOI: 10.11843/j.issn.0366-6964.2019.09.021    PDF    
右美托咪定在LPS致大鼠心脏损伤中的保护作用及其相关机制研究
白静纯, 姚玉杰, 刘涛, 董博文, 于世明, 范宏刚     
东北农业大学动物医学学院, 哈尔滨 150030
摘要:本试验旨在探究右美托咪定(DEX)对脓毒血症致大鼠心肌损伤的保护作用机制。选取体重180~220 g的健康雄性SD大鼠30只,随机均分为3组:空白对照组(CON组)、模型组(LPS组)、DEX干预组(DEX组)。LPS组和DEX组通过腹腔注射10 mg·kg-1LPS建立脓毒血症模型,DEX组在腹腔注射LPS前30 min注射30 μg·kg-1右美托咪定预处理;CON组腹腔注射等量灭菌生理盐水。4 h后剖杀打开腹腔,通过大鼠腹主动脉采集血液并获取心肌组织,检测血清中肌酸激酶(CK)、乳酸脱氢酶(LDH)含量;HE染色观察心肌组织病理学变化;Western blot法检测心肌组织中NOX2、NLRP3、IL-1β和IL-18表达水平。结果显示:与CON组相比,LPS组大鼠血清中CK、LDH含量极显著升高(P < 0.01或P < 0.001),组织病理学观察发现心肌组织损伤加重,心肌纤维间隔增宽;NOX2及下游NLRP3炎症小体相关蛋白表达量均显著或极显著(P < 0.05,P < 0.01或P < 0.001)升高。DEX组大鼠上述指标均较LPS组显著或极显著(P < 0.05,P < 0.01或P < 0.001)下降,并与CON组无显著差异(P>0.05)。结果表明,DEX通过降低NOX2活性,抑制NLRP3炎症小体活化,最终下调炎症因子表达量,改善大鼠脓毒血症引起的心肌损伤。
关键词脓毒血症    大鼠    右美托咪定    心脏    
Pathogenesis of Lipopolysaccharide on Rat Heart Injury and Protective Mechanism of Dexmedetomidine
BAI Jingchun, YAO Yujie, LIU Tao, DONG Bowen, YU Shiming, FAN Honggang     
School of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
Abstract: The aim of this study was to explore the protective mechanism of dexmedetomidine (DEX) on myocardial injury induced by LPS in rats. Firstly, thirty healthy male SD rats, weighing 180-220 g, were randomly and evenly divided into three groups:control group (CON), lipopolysaccharide group (LPS) and DEX group (DEX), with 10 rats in each group. The sepsis model was established by intraperitoneal injection of 10 mg·kg-1 LPS in rat of LPS, and DEX group; and in DEX group, the rats were pretreated with 30 μg·kg-1 DEX 30 minutes before LPS injection. Four hours later, the abdominal cavities of rats were opened by dissection, blood samples were collected from abdominal aorta, and at the same time, myocardial tissues were obtained. Serous creatine kinase (CK) and lactic dehydrogenase (LDH) levels were measured. HE staining was used to detect myocardial pathological changes in rats. Western blot was applied to detect the expression of NOX2, NLRP3, IL-1β and IL-18 in myocardial tissue. Results were as follows:Compared with CON group, serous CK and LDH levels in LPS group increased significantly (P < 0.01 or P < 0.001); histopathological observation revealed that myocardial tissue injury was aggravated, and myocardial fibrous septum was widened. The expression of NOX2 and downstream NLRP3 inflammatory body-related proteins were increased significantly (P < 0.05, P < 0.01 or P < 0.001). The above indexes in DEX group were significantly lower than those in LPS group (P < 0.05, P < 0.01 or P < 0.001), and there was no significant difference between DEX group and CON group (P>0.05).The results showed that DEX inhibited the activation of NLRP3 inflammatory bodies by reducing the activity of NOX2. Finally, the expression of inflammatory factors was reduced to improve myocardial injury induced by sepsis in rats.
Key words: sepsis     rat     dexmedetomidine     heart    

脓毒血症(sepsis)是由炎症感染引起的全身性炎症反应综合征,其特征是伴随炎症、凝血和纤维蛋白溶解级联反应发生[1]。在临床兽医学领域,动物脓毒血症主要继发于犬、猫子宫蓄脓、脓皮症及严重外科感染等过程中,如不及时治疗将导致多器官衰竭,最终致使患畜死亡。近年来,由革兰阴性菌细胞壁中的脂多糖(lipopolysaccharide, LPS)为主要致病因素引起的脓毒血症的发病率逐年上升,造成机体多组织、器官继发性损伤[2],心脏是主要受侵害的靶器官之一[3-5]。相关研究表明,心脏功能障碍是脓毒血症病情加重及影响预后的重要因素之一,发生脓毒血症的动物超过70%会出现心脏功能障碍,随着病情恶化,导致死亡率升高[6]

右美托咪定(dexmedetomidine, DEX)是一种新型的高选择性α2肾上腺素能受体激动剂,是美托咪定的活性右旋异构体[7]。DEX不仅具有镇静、镇痛、抗焦虑、抗交感、稳定血流动力学的作用,还具有心脏保护作用[8-11]。研究表明,DEX在心脏缺血再灌注损伤中通过抑制心血管手术中的交感神经反应,稳定血流动力学,降低患畜术后心肌梗死的发生率[12]。此外,DEX可减轻内毒素引起的氧自由基的产生和促炎因子的释放,并进一步抑制炎症介质的放大效应[13]。然而其在脓毒血症致心脏损伤中是否通过抑制NOX2的表达降低NLRP3炎症小体的活化尚有待研究。

1 材料与方法 1.1 实验动物及饲养

饲养健康雄性SD大鼠30只,体重180~220 g,购自哈尔滨医科大学,进行标准化饲养管理,饲养温度控制在22~24 ℃,相对湿度50%~60%,保持室内光照12 h/12 h昼夜交替,保持通风良好,自由饮食饮水,所有大鼠饲养1周后进入正式试验。

1.2 主要试剂

脂多糖(LPS,Sigma-Aldrich),右美托咪定(DEX,Pfizer pharmaceutical Ltd.,U.S.);血清心肌酶——肌酸激酶(CK)、乳酸脱氢酶(LDH)检测试剂盒购自南京建成生物工程研究所。NOX2、NLRP3、IL-1β、IL-18抗体购自沈阳万类生物科技有限公司。

1.3 仪器设备

3K-15高速低温离心机购自德国Sigma公司,Epoch2酶标仪购自美国BioTek公司,KD-3358组织切片机购自金华科尔诺电子科技有限公司,A101441通用型电泳仪、电泳及转膜装置均购自美国Bio-Rad公司,Tanon 5200化学发光分析系统购自上海天能生物科技有限公司,Forma(-80 ℃)超低温冰箱购自美国Thermo Fisher Scientific公司,Beckman 255型自动pH计购自美国Beckman公司,METTLER TOLEDO高压蒸汽灭菌器购自瑞士METTLER公司,ZE260微量电子天平购自杭州汇尔仪器设备有限公司,恒温培养摇床购自上海一恒科技有限公司,玻璃匀浆器购自南通市卫宁实验器材有限公司等。

1.4 实验动物分组及处理

将30只健康SD大鼠随机均分为3组,分别是空白对照组(CON组)、模型组(LPS组)、DEX干预组(DEX组)。

LPS组腹腔注射10 mg·kg-1脂多糖;CON组腹腔注射与LPS组等容量的灭菌生理盐水;DEX组腹腔注射30 μg·kg-1右美托咪定,30 min后腹腔内再注射10 mg·kg-1 LPS。

1.5 取材及处理

造模4 h后将所有大鼠放置于内充1.5%异氟醚和氧气自制透明麻醉箱进行化学保定。麻醉确实后,剖开腹腔,经腹主动脉采血4 mL,1 500 r·min-1离心15 min后收集血清,置于-80 ℃保存;麻醉确实后,剖开大鼠腹腔,显露心脏,沿主动脉根部分离心脏,用0.9%生理盐水灌洗心脏直至灌注液为清亮透明液体。除去心脏周围血管及结缔组织,沿房室沟剪去左心室和右心房,沿室间隔剪去右心室游离壁,沿垂直于心脏近心底区三分之一处剪取心肌组织,其中一部分浸入10%福尔马林溶液中,4 ℃固定48 h,乙醇梯度脱水,使用二甲苯透明,之后石蜡包埋,切片厚4~5 mm,HE染色,光学显微镜下进行观察;另一部分置于-80 ℃用于蛋白含量检测。

1.6 血清生化指标检测

取血清液按试剂盒说明书分别检测CK、LDH的含量。

1.7 Western blot法测定炎症蛋白含量

称取50 mg大鼠心脏组织,匀浆后取上清液备用,向蛋白质样本中按比例加入PAGE loading buffer,充分混匀,置于100 ℃沸水煮10 min使蛋白发生变性。通过制备分离胶和浓缩胶、电泳、转膜、封闭、一抗孵育、二抗孵育和化学自发光操作对NOX2、NLRP3、IL-1β及IL-18等相关蛋白表达量进行检测。

1.8 统计学处理

采用SPSS 23.0统计学软件进行显著性分析。结果采用平均值±标准误(x+sx)表示,P>0.05差异不显著,P < 0.05认为差异有统计学意义,P<0.01差异极显著。

2 结果 2.1 血清中CK和LDH含量

对血清中CK和LDH检测结果表明:与CON组比较,LPS组中该两项指标极显著升高(P < 0.01或P < 0.001);与LPS组相比,DEX组CK、LDH含量显著降低(P < 0.05或P < 0.01),CON组与DEX组比较,无统计学差异(P>0.05),具体试验结果见图 1

与对照组(CON)比较,*. P < 0.05;**. P < 0.01;***. P < 0.001。与LPS组比较,#. P < 0.05;##.P < 0.01;###. P < 0.001。下图同 Compared with control group(CON), *. P < 0.05;**. P < 0.01;***. P < 0.001.Compared with LPS group, #. P<0.05;##. P < 0.01;###. P < 0.001. The same as below 图 1 血清CK、LDH水平 Fig. 1 Biochemical indicators of CK and LDH
2.2 组织病理学分析

大鼠心肌组织病理学观察结果显示:与CON组相比,LPS组大鼠心肌细胞排列紊乱,间质水肿,心肌纤维间隔增宽(蓝色箭头所示),心肌纤维断裂(绿色箭头所示),红细胞渗出(黄色箭头所示);DEX组与LPS组比较大鼠心肌组织损伤程度明显减轻,心肌细胞结构完整,心肌纤维排列整齐。结果见图 2

a. CON组;b. LPS组;c. DEX组 a. Control group; b. LPS group; c. DEX group 图 2 心肌组织HE染色(400×) Fig. 2 HE staining of myocardial tissue(400×)
2.3 NOX2、NLRP3、IL-1β和IL-18蛋白量测定

试验结果显示,与CON组比较,LPS组大鼠心肌组织中NOX2表达量极显著增加(P < 0.001),NLRP3炎症小体(P < 0.001)及IL-1β(P < 0.05)、IL-18 (P < 0.01)表达量显著或极显著增加;与LPS组比较,DEX组大鼠心肌组织NOX2(P < 0.01)、NLRP3 (P < 0.001)和IL-1β(P < 0.01)表达量极显著降低,IL-18表达量显著降低(P < 0.05)。结果见图 3

图 3 NOX2、NLRP3、IL-1β和IL-18蛋白表达量 Fig. 3 Changes in proteins expression of NOX2, NLRP3, IL-1β and IL-18
3 讨论

脓毒血症是由多种感染因素导致的炎症反应综合征,LPS是其中的主要致病因素,并可导致心功能障碍,主要表现为心肌细胞炎症损伤[14]。本次试验发现,对大鼠注射LPS后,血清CK和LDH含量显著增高,同时心肌组织切片也观察到心肌纤维间隔增宽,心肌纤维断裂和红细胞渗出等现象,这表明LPS引起大鼠心脏功能改变和器质性损伤,脓毒血症致大鼠心脏损伤模型制造成功[15-16]。以往研究表明,氧化应激和炎症反应是脓毒血症致心脏损伤的主要致病机制。心脏发生损伤时常伴有大量的活性氧产生,另有研究表明,NADPH氧化酶的激活可导致ROS生成增多[17]。ROS大量积聚引发机体内源性氧化应激反应,并进一步促进炎性因子的释放,加剧炎症反应。在体外试验,LPS可诱导原代小胶质细胞NLRP3炎症小体的活化[18]。另外,中性粒细胞内NADPH氧化酶在脑缺血再灌注损伤引起的NLRP3活化过程中发挥了重要作用[19]。NOX2作为NADPH家族的重要亚型,在心脏组织中高度表达[20]。课题组在试验中观察到,使用LPS后,在大鼠心脏中NOX2、NLRP3、IL-18及IL-1β表达量显著增加,说明NOX2可能参与NLRP3的活化,进而增加炎症因子IL-18和IL-1β表达水平,介导炎症放大效应。综上所述,NOX2和NLRP3在LPS致心脏损伤的过程中发挥着重要的作用。

DEX是医学和兽医学临床中常用的药物,除具有镇静、止疼作用外,还具有抑制交感兴奋、调节免疫、抗感染等多重作用。本试验结果表明,DEX预处理后,LPS组大鼠血清中CK、LDH含量显著降低,心肌病理损伤也明显减轻,证明DEX可改善LPS诱导的心肌损伤。以往研究表明,DEX可通过下调NOX2表达量减轻糖尿病大鼠脑缺血再灌注损伤中的氧化损伤和炎症反应[21]。同时,DEX还能通过阻断NLRP3炎性小体的形成和活化在小鼠肺缺血-再灌注损伤模型中发挥抗炎作用[22]。本次试验进一步证实DEX预处理可显著降低NOX2、NLRP3、IL-1β及IL-18的表达量。综上所述,DEX在LPS诱导的心脏损伤中可能通过降低NOX2表达,进而抑制NLRP3炎症小体活化及下游IL-18、IL-1β炎症因子的表达,从而发挥心脏保护作用。

4 结论

DEX可能通过抑制氧化应激相关酶NOX2介导的NLRP3炎症小体的激活,发挥抗氧化和抗炎作用,从而减轻LPS诱导的心肌损伤。

参考文献
[1] KOCA U, OLGUNER Ç G, ERGÜR B U, et al. The effects of dexmedetomidine on secondary acute lung and kidney injuries in the rat model of intra-abdominal sepsis[J]. Sci World J, 2013, 2013: 292687.
[2] 张录.右美托咪定对脓毒症大鼠炎症反应的作用及机制的研究[D].南昌: 南昌大学, 2018.
ZHANG L. The effect and the responding mechanism of dexmedetomidine on inflammatory response in rats with sepsis[D]. Nanchang: Nanchang University, 2018. (in Chinese) http://d.wanfangdata.com.cn/Thesis/y2422531
[3] 胡海涛, 胡衍辉. 脓毒血症对心肌损害的研究进展[J]. 实用临床医学, 2016, 17(10): 102–104.
HU H T, HU Y H. Research progress on myocardial damage caused by sepsis[J]. Practical Clinical Medicine, 2016, 17(10): 102–104. (in Chinese)
[4] 李丹丹. 脓毒血症时心肌损伤和心肌标志物的研究进展[J]. 医学叙述, 2016, 22(2): 223–226.
LI D D. Research progress in cardiac marker of myocardial injury in sepsis[J]. Medical Recapitulate, 2016, 22(2): 223–226. (in Chinese)
[5] 夏继辉, 徐世荣, 夏文胜, 等. 右旋美托咪定对脓毒血症大鼠心功能障碍的影响[J]. 中国循证心血管医学杂志, 2015, 7(6): 843–845.
XIA J H, XU S R, XIA W S, et al. Influence of dexmedetomidine on cardiac dysfunction in rats with sepsis[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2015, 7(6): 843–845. DOI: 10.3969/j.issn.1674-4055.2015.06.37 (in Chinese)
[6] RUSSELL J A. Management of sepsis[J]. N Engl J Med, 2006, 355(16): 1699–1713. DOI: 10.1056/NEJMra043632
[7] DELLINGER R P, CARLET J M, MASUR H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock[J]. Intensive Care Med, 2004, 30(4): 536–555. DOI: 10.1007/s00134-004-2210-z
[8] MENDA F, KÖNER O, SAYIN M, et al. Dexmedetomidine as an adjunct to anesthetic induction to attenuate hemodynamic response to endotracheal intubation in patients undergoing fast-track CABG[J]. Ann Card Anaesth, 2010, 13(1): 16–21. DOI: 10.4103/0971-9784.58829
[9] SANDERS R D, SUN P, PATEL S, et al. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain[J]. Acta Anaesthesiol Scand, 2010, 54(6): 710–716.
[10] KOCOGLU H, OZTURK H, OZTURK H, et al. Effect of dexmedetomidine on ischemia-reperfusion injury in rat kidney: a histopathologic study[J]. Ren Fail, 2009, 31(1): 70–74. DOI: 10.1080/08860220802546487
[11] YANG C H, TSAI P S, WANG T Y, et al. Dexmedetomidine-ketamine combination mitigates acute lung injury in haemorrhagic shock rats[J]. Resuscitation, 2009, 80(10): 1204–1210. DOI: 10.1016/j.resuscitation.2009.06.017
[12] 钱何布. 右美托咪定的抗炎及器官保护作用研究进展[J]. 医学综述, 2015, 21(15): 2706–2709.
QIAN H B. Research advances in the anti-inflammatory and organ protection of dexmedetomidine[J]. Medical Recapitulate, 2015, 21(15): 2706–2709. DOI: 10.3969/j.issn.1006-2084.2015.15.007 (in Chinese)
[13] 邓福谋, 张炳辉, 连芳, 等. 右美托咪定预处理对大鼠肠缺血再灌注损伤的保护效应[J]. 江西医药, 2018, 53(12): 1385–1387.
DENG F M, ZHANG B H, LIAN F, et al. Effect of dexmedetomidine pretreatmenton intestinal ischemia-reperfusion injury in mice[J]. Jiangxi Medical Journal, 2018, 53(12): 1385–1387. DOI: 10.3969/j.issn.1006-2238.2018.12.009 (in Chinese)
[14] 周明明, 蒋正英, 李蕊, 等. 白藜芦醇对脓毒血症所诱导大鼠心肌损伤的保护作用及其机制研究[J]. 免疫学杂志, 2018, 34(12): 1053–1058.
ZHOU M M, JIANG Z Y, LI R, et al. Protective effects and mechanism of resveratrol on myocardial injury induced by sepsis in rats[J]. Immunological Journal, 2018, 34(12): 1053–1058. (in Chinese)
[15] 李健玲, 朱小青, 李学敏, 等. 七氟醚预处理对LPS诱导的小鼠心功能障碍的影响[J]. 中国病理生理杂志, 2012, 28(8): 1410–1414.
LI J L, ZHU X Q, LI X M, et al. Effects of sevoflurane preconditioning on myocardial dysfunction in lipopolysaccharide-challenged mice[J]. Chinese Journal of Pathophysiology, 2012, 28(8): 1410–1414. DOI: 10.3969/j.issn.1000-4718.2012.08.013 (in Chinese)
[16] 刘海峰, 谢田田, 刘婷婷, 等. 黄芪多糖抑制IL-1β表达及改善脓毒症小鼠心功能研究[J]. 中国热带医学, 2018, 18(8): 757–760.
LIU H F, XIE T T, LIU T T, et al. Astragalus polysaccharides inhibits the expression IL-1β protein and improves the cardiac function of mice with sepsis[J]. China Tropical Medicine, 2018, 18(8): 757–760. (in Chinese)
[17] 韩勇, 贺滟, 郭立荣, 等. 心肌缺血再灌注损伤大鼠中20-HETE对ROS生成及NADPH氧化酶活性的影响[J]. 现代医药卫生, 2016, 32(18): 2781–2784.
HAN Y, HE Y, GUO L R, et al. Effect of 20-HETE on ROS production and NADPH oxidase activity in rats with myocardial ischemia reperfusion injury[J]. Journal of Modern Medicine & Health, 2016, 32(18): 2781–2784. DOI: 10.3969/j.issn.1009-5519.2016.18.001 (in Chinese)
[18] 刘富群, 高崎, 王丹丹, 等. 银杏酮酯抑制LPS/ATP诱导原代小胶质细胞NLRP3炎症小体的激活机制研究[J]. 中国中药杂志, 2018, 43(16): 3346–3352.
LIU F Q, GAO Q, WANG D D, et al. Effects of GBE50 on LPS/ATP induced NLRP3 inflammasome activation in primary rat microglia[J]. China Journal of Chinese Materia Medica, 2018, 43(16): 3346–3352. (in Chinese)
[19] 任洪梁, 席宏杰. NADPH氧化酶2在脑缺血再灌注损伤中作用机制研究进展[J]. 现代药物与临床, 2017, 32(6): 1161–1164.
REN H L, XI H J. Research progress on mechanism of NADPH oxidase 2 in cerebral ischemia reperfusion injury[J]. Drugs & Clinic, 2017, 32(6): 1161–1164. (in Chinese)
[20] 叶心怡, 陈刚领, 刘晗, 等. 中性粒细胞NADPH氧化酶与组织缺血再灌注关系的研究进展[J]. 现代生物医学进展, 2017, 17(32): 6380–6385.
YE X Y, CHEN G L, LIU H, et al. Advances in study on relationship between neutrophil nadph oxidase and tissue ischemia reperfusion[J]. Progress in Modern Biomedicine, 2017, 17(32): 6380–6385. (in Chinese)
[21] ZENG X Z, WANG H L, XING X C, et al. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats[J]. PLoS One, 2016, 11(3): e0151620. DOI: 10.1371/journal.pone.0151620
[22] 梁磊, 邓林, 谢冕, 等. 右美托咪定通过Toll样受体4减轻小鼠肺缺血/再灌注损伤[J]. 基础医学与临床, 2018, 38(7): 967–972.
LIANG L, DENG L, XIE M, et al. Dexmedetomidine decreases TLR4 expression to alleviate lung ischemia/reperfusion injury in mice[J]. Basic & Clinical Medicine, 2018, 38(7): 967–972. DOI: 10.3969/j.issn.1001-6325.2018.07.013 (in Chinese)