畜牧兽医学报  2019, Vol. 50 Issue (9): 1849-1856. DOI: 10.11843/j.issn.0366-6964.2019.09.012    PDF    
猪源DDX56对口蹄疫病毒的复制及其对病毒诱导的RLR通路调节的研究
付绍祖, 李露露, 张敬, 李丹, 郑海学     
中国农业科学院兰州兽医研究所家畜疫病病原生物学国家重点实验室OIE/国家口蹄疫参考实验室, 兰州 730046
摘要:DEAD框解旋酶56(DDX56)是一种RNA解旋酶,能参与RNA代谢和核糖体的合成。为研究猪源DDX56对口蹄疫病毒(FMDV)复制和对病毒诱导的RLR通路的影响,首先通过免疫共沉淀试验筛选与猪源DDX56互作的FMDV蛋白;接着利用Q-PCR和Western blot检测过表达猪源DDX56对FMDV在PK-15细胞中复制的影响;然后利用双荧光素酶报告基因和Q-PCR检测猪源DDX56对病毒诱导的RLR通路的影响。结果显示,猪源DDX56能与FMDV蛋白VP0、VP1、VP2和3A发生相互作用;过表达猪源DDX56能够促进FMDV的复制;过表达猪源DDX56能抑制仙台病毒(SeV)诱导的RLR通路的激活;猪源DDX56可以协同FMDV蛋白VP0、VP1、VP2和3A抑制病毒诱导的Ⅰ型干扰素的产生。总之,猪源DDX56能与FMDV蛋白VP0、VP1、VP2和3A互作而协同抑制Ⅰ型干扰素的产生,从而促进FMDV的复制。
关键词口蹄疫病毒    天然免疫    猪源DEAD框解旋酶56    干扰素    复制    
Porcine DDX56 Regulates the Foot and Mouth Disease Virus Replication and the Virus-triggered RLR Pathway
FU Shaozu, LI Lulu, ZHANG Jing, LI Dan, ZHENG Haixue     
State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
Abstract: DEAD-box helicase 56 (DDX56) belongs to the DEAD box helicase family that participate in RNA metabolism and ribosome synthesis. To study the effects of porcine DDX56 on replication of FMDV and virus-triggered RLR pathway, we screened the FMDV proteins for interacting with porcine DDX56. The effect of overexpression of porcine DDX56 on the replication of FMDV in PK-15 cells was detected by Q-PCR and Western blot experiments. The effect of porcine DDX56 on the virus-triggered RLR pathway was analyzed by double luciferase report system and Q-PCR assay. The results showed that porcine DDX56 interacts with FMDV VP0, VP1, VP2 and 3A proteins. Overexpression of porcine DDX56 facilitated the replication of FMDV and inhibited the Sendai virus (SeV)-triggered activation of RLR pathway. Porcine DDX56 could cooperate with FMDV VP0, VP1, VP2 and 3A proteins to inhibit the production of the virus-triggered type Ⅰ interferon. In a word, porcine DDX56 promotes the FMDV replication by cooperating with FMDV VP0, VP1, VP2 and 3A proteins to inhibit the production of type Ⅰ interferon.
Key words: foot-and-mouth disease virus     innate immune     porcine DEAD-box helicase 56     interferon     replication    

天然免疫是机体抵御病原体入侵的第一道防线,主要包括免疫分子、皮肤和黏膜等。天然免疫在保护宿主不被病原体入侵中发挥重要的作用[1-2]。机体内的模式识别受体(pattern recognition receptors,PRRs)能识别病原体相关分子模式(pathogens-associated molecular patterns,PAMPs)而激活天然免疫应答[3]。模式识别受体主要包括RIG-Ⅰ样受体(RLRs)、Toll样受体(TLRs)、NOD样受体(NLRs)及小分子DNA受体[4-7]。RLRs主要成员有RIG-Ⅰ、MDA5和LGP2,RLRs能识别细胞质中的病毒RNA,随后发生构象变化,招募并激活下游位于线粒体上的接头蛋白VISA[8-9],VISA激活蛋白激酶TBK1,使TBK1磷酸化修饰IRF3,磷酸化后的IRF3形成二聚体入核,引起干扰素基因的转录,诱导多种IFNs和ISGs的产生,并在其他因子的协同下发挥抗病毒功能[10-12]

尽管近十年来的研究发现了许多PRRs,也揭示了天然免疫中宿主对不同病毒的识别和调控机制,但仍然有许多问题需要进一步的研究,特别是病毒的抑制或逃避免疫机制以及致病机制方面,仍然是抗病毒天然免疫研究中的一个重要科学难题。口蹄疫病毒(foot and mouth disease virus, FMDV)就是对天然免疫有比较明显抑制作用的病毒之一,FMDV是单股正链RNA病毒,基因组约含8 500个核苷酸,包含5′非编码区(UTR)、一个完整的开放阅读框(ORF)和一个带有Poly (A)尾巴的3′UTR。ORF编码病毒蛋白,包括VP1、VP2、VP3、VP4、2A、2B、2C、3A、3B、3Cpro、3D和Lpro[13-15]。4个结构蛋白VP1、VP2、VP3和VP4构成病毒衣壳,其中VP1、VP2和VP3作为病毒衣壳的亚单位,主要构成病毒衣壳的外表面。VP0是VP2和VP4的前体蛋白,VP4位于VP2氨基末端的延伸部位。VP4与RNA紧密连接,与病毒衣壳的内部结构有关[16-18]。已经报道或者证实一些FMDV蛋白可以调控宿主的天然免疫应答,影响干扰素的产生。例如,VP1与宿主Sorcin蛋白相互作用抑制Ⅰ型干扰素的产生[19];VP3能破坏JAK1复合体和降解JAK1而抑制Ⅱ型干扰素的产生[20];3A和VP3能与VISA相互作用,抑制VISA的转录,抑制Ⅰ型干扰素的产生[21-22];3Cpro能阻止IRF3/IRF7的活化,同时降解NEMO,抑制Ⅰ型干扰素的产生[23]。3Cpro还可以降解宿主蛋白KPNA1而阻止STAT1/STAT2的入核,从而抑制干扰素的产生[24]。那么是否有其他宿主蛋白与FMDV蛋白互作通过天然免疫途径调控FMDV的增殖?DEAD框解旋酶56(DEAD-box helicase 56,DDX56)是一种RNA解旋酶,有一段高度保守的序列,即Asp-Glu-Ala-Asp[25]。DDX56参与RNA的代谢过程,主要参与核糖体的生成,尤其是核糖体16S亚基的生成[26]。有研究报道DDX56能促进西尼罗病毒(WNV)的复制,参与其病毒粒子的组装[27-29]。DDX56能增强Ⅰ型人类免疫缺陷病毒(HIV-1)Rec蛋白的功能而促进HIV-1的复制[30]。本研究发现猪源DDX56能与FMDV蛋白VP0、VP1、VP2和3A互作而协同抑制宿主产生Ⅰ型干扰素,从而促进FMDV的复制。

1 材料与方法 1.1 材料

pcDNA3.1和pCAGGS载体由兰州兽医研究所口蹄疫流行病学课题组保存。pcDNA3.1-HA-DDX56、pCAGGS载体上的带Flag标签的各口蹄疫病毒蛋白均由兰州兽医研究所口蹄疫流行病学课题组构建、保存。pIFN-β-Luc质粒、pISRE-Luc质粒、pRL-TK质粒以及仙台病毒(Sendai virus,SeV)由武汉大学舒红兵教授馈赠。鼠抗Flag和鼠抗β-actin单抗购于Sigma公司;兔抗DDX56单抗购于Abcam公司;鼠抗VP3单抗,兔抗3A多抗由本实验室制备保存。HRP标记的山羊抗鼠IgG二抗和抗兔IgG二抗均购自Santa Cruze公司。人胚胎肾细胞(HEK293T)、猪肾细胞(PK-15)用含10%灭活胎牛血清(FBS,Gibco)的DMEM培养基(Gibco)在37 ℃、5% CO2温箱中培养。

1.2 免疫共沉淀与Western blot

将PK-15细胞培养在10 cm培养皿中,待其生长为80%左右的单层细胞时,将FMDV带Flag标签的蛋白转染至细胞。24 h后弃掉培养基,加入NP-40裂解液[50 mmol·L-1 Tris(pH8.0),150 mmol·L-1 NaCl,5 mmol·L-1 EDTA,1% NP-40,2 mg·mL-1aprotinin,2 mg·mL-1leupeptin,1 mmol·L-1 phenylmethanesulfonyl fluorid],冰上裂解30 min并收集液体,4 ℃旋转摇床上裂解10 min,12 000 r·min-1离心10 min。取适量上清加入SDS-PAGE蛋白上样缓冲液,煮沸10 min后离心,进行Western blot试验;剩余上清平分,加入IgG抗体和anti-DDX56或者Flag抗体,再加入G蛋白琼脂糖珠(Sigma),用裂解液补至1 mL,4 ℃旋转摇床孵育3 h,用含0.5 mol NaCl的裂解液清洗树脂,加入上样缓冲液,煮沸离心,进行Western blot。

Western blot试验方法:将质粒转染至细胞,20 h后收取细胞样品,加入上样缓冲液,煮沸10 min后12 000 r·min-1离心10 min。将样品上样跑胶,跑至底部,用NC膜转膜。转膜结束后用5%的脱脂奶粉封闭30 min,之后加入一抗4 ℃水平摇床过夜,回收一抗,用TBST洗3次,每次10 min,加入二抗,室温孵育1 h,用TBST洗3次,每次10 min,曝光显影。

1.3 双荧光素酶报告试验

将HEK293T细胞铺于48孔板,待细胞生长至70%左右,将IFN-β-Luc/ISRE-Luc报告质粒、pRL-TK内参质粒以及DDX56重组质粒共转入细胞,用相应的空载体确保每孔质粒量一致,20 h后SeV(100 HAU·mL-1)进行接毒,12 h后收取细胞样品按照双荧光素酶报告基因试剂盒(Promega)说明书进行试验。

1.4 RT-PCR 1.4.1 绝对定量PCR(探针法)

按探针法绝对定量PCR试剂盒进行,先配好混合体系。反应体系:23 μL预混液,2 μL样品RNA。反应程序:42 ℃ 15 min;90 ℃ 10 s,55 ℃ 30 s,45个循环。FMDV 3D引物如下,Forward:5′-ACTGGGTTTTACAAACCTGTGA-3′,Reverse:5′-GCGAGTCCTGCCACGGA-3′;TaqMan探针5′-TCCTTTGCACGCCGTGGGAC-3′,均由天一辉远公司合成。

1.4.2 相对定量PCR(SYBRGreen法)

采用SYBR法进行实时荧光定量PCR。收集的细胞样品,用Trizol法提取总RNA,以该RNA为模板反转录获得cDNA。以GAPDH作为内参,并将cDNA稀释40倍进行实时荧光定量PCR。反应体系:10 μL SYBR Permix Ex Taq Ⅱ,0.6 μL上游引物,0.6 μL下游引物,0.8 μL ddH2O,以及稀释的cDNA 5 μL。反应程序:95 ℃ 3 min;95 ℃ 3 s,60 ℃ 10 s,总共40个循环。定量引物见表 1,引物序列由天一辉远公司合成。

表 1 定量PCR引物 Table 1 Q-PCR primers
1.5 数据分析

使用单因素方差分析法进行统计学分析(数据为3次独立试验的平均值)。差异显著性用“*”表示(*. 0.01<P<0.05,**. P<0.01)。

2 结果 2.1 猪源DDX56与FMDV蛋白VP0、VP1、VP2和3A的相互作用

为了探究能与猪源DDX56发生相互作用的FMDV蛋白,将带Flag标签的FMDV蛋白表达质粒(均10 μg)分别转染PK-15细胞,20 h后收取细胞样品,用相应的抗体进行免疫共沉淀试验。结果表明猪源DDX56能与FMDV蛋白VP0、VP1、VP2和3A发生相互作用(图 1)。

FMDV带Flag标签的蛋白表达质粒(均10 μg)分别转染PK-15细胞,20 h后收取细胞样品,用Flag/IgG抗体进行免疫共沉淀,随后用DDX56和Flag抗体进行Western blot试验 PK-15 cells were transfected with the FMDV proteins plasmids (10 μg). Twenty hours after transfection, Co-immunoprecipitations were performed with anti-Flag or control IgG. Immunoblotting analysis was performed with anti-DDX56 (below panels). Expression levels of the proteins were analyzed by Western blot analysis of the lysates with anti-Flag and anti-DDX56 图 1 DDX56与FMDV蛋白VP0、VP1、VP2和3A发生相互作用 Fig. 1 DDX56 interacts with VP0, VP1, VP2 and 3A of FMDV
2.2 猪源DDX56促进FMDV的复制

猪源DDX56能与FMDV蛋白VP0、VP1、VP2和3A发生相互作用。为了验证猪源DDX56对FMDV复制的影响,将PK-15细胞铺12孔板,待细胞长至80%左右时,将2 μg Flag-DDX56重组质粒和相应的空载体分别转染细胞,20 h后用FMDV(MOI=0.1)感染细胞,分别在感染后0、4和8 h收取细胞样品,进行RT-PCR试验和Western blot试验。结果发现过表达猪源DDX56使FMDV基因的转录水平明显上调(图 2a),同时也增加了FMDV VP3和3A蛋白的表达(图 2b)。结果表明过表达猪源DDX56能促进FMDV的复制。

a,b.将2 μg Flag-DDX56质粒和2 μg相应的空载体分别转染至PK-15细胞,20 h后用FMDV(MOI=0.1)感染细胞,分别在感染后0、4和8 h收取细胞样品进行绝对定量PCR试验,用FMDV VP3、3A、Flag和β-actin的抗体进行Western blot试验。EV指相应的空载体,每组数据均为三次独立试验结果。**.P<0.01为差异极显著,*.0.01<P<0.05为差异显著 a, b. PK-15 cells were transfected with Flag-DDX56 plasmids or empty vectors (2 μg). Twenty hours after transfection, cells were infected with FMDV (MOI=0.1) or left uninfected for 0, 4 and 8 h before qRT-PCR was performed. Western blot were performed with the indicated antibodies. EV. Empty vector, all of the abovementioned experiments were repeated three times with similar results. **.P < 0.01, considered highly significant; *. 0.01 < P < 0.05, considered significant 图 2 DDX56促进FMDV的复制 Fig. 2 DDX56 enhances the FMDV replication
2.3 猪源DDX56负调控SeV诱导的IFN-β的表达

猪源DDX56可以促进FMDV的复制,那么猪源DDX56是否通过影响天然免疫反应而影响FMDV的复制。为了探究猪源DDX56对Ⅰ型干扰素通路的影响,首先将HEK293T细胞铺于48孔细胞板,每组样品设置3个重复,12 h后将不同剂量的Flag-DDX56重组质粒(0、75、150、300 ng)和相应的空载体与100 ng IFN-β-Luc/ISRE-Luc报告质粒和20 ng pRL-TK质粒共同转染,20 h后用SeV刺激12 h,收取细胞样品进行双荧光素酶报告系统检测。结果表明猪源DDX56呈剂量依赖抑制病毒诱导的IFN-β和ISRE的激活(图 3ab)。将HEK293T细胞铺12孔板,分别转染2 μg Flag-DDX56质粒和2 μg相应的空载体,20 h后细胞用SeV刺激12 h,收取细胞样品进行RT-PCR试验,结果表明过表达DDX56能抑制病毒诱导的干扰素下游相关基因,即IFNB1、TNFaISG56、Il8基因的转录(图 3c~f)。结果表明过表达猪源DDX56能抑制病毒诱导的Ⅰ型干扰素的产生。

a,b.将不同剂量的重组质粒Flag-DDX56 (0、75、150、300 ng)与100 ng IFN-β-Luc/ISRE-Luc报告质粒和20 ng pRL-TK质粒共同转染HEK293T细胞,20 h后细胞用SeV刺激12 h,收取细胞样品进行双荧光素酶报告系统检测。c~f.将2 μg Flag-DDX56质粒和2 μg相应的空载体分别转染HEK293T细胞,20 h后细胞用SeV刺激12 h,收取细胞样品进行RT-PCR试验。Mock指空白对照,EV指相应的空载体,每组数据均为三次独立试验结果,**.P<0.01为差异极显著 a, b. HEK293T cells were transfected with the Flag-DDX56 plasmid (0, 75, 150, 300 ng), 100 ng IFN-β-Luc/ISRE-Luc reporter plasmid and 20 ng pRL-TK. Twenty hours after transfection, cells were infected with SeV for 12 h before reporter assays were performed. c-f. HEK293T cells were transfected with the 2 μg Flag-DDX56 plasmids or 2 μg empty vectors. Twenty hours after transfection, cells were infected with SeV for 12 h before RT-PCR was performed. All of the abovementioned experiments were repeated three times with similar results, Mock. Control; EV. Empty vector; **. P < 0.01, considered extremely significant 图 3 猪源DDX56抑制病毒诱导的IFN-β的表达 Fig. 3 Porcine DDX56 inhibits the production of virus-induced IFN-β
2.4 共表达猪源DDX56和FMDV蛋白对SeV诱导的IFN-β启动子和ISRE激活的影响

为了探索FMDV蛋白对DDX56在病毒诱导的Ⅰ型干扰素通路中的作用影响。将FMDV蛋白VP0、VP1、VP2、VP3、2B、2C、3A、3C和L(均100 ng)分别与Flag-DDX56(100 ng),100 ng IFN-β-Luc/ISRE-Luc报告质粒和20 ng pRL-TK质粒共同转染HEK293T细胞,20 h后细胞用SeV刺激12 h,收取细胞样品进行双荧光素酶报告系统检测。结果表明FMDV蛋白VP0、VP1、VP2和3A能增加DDX56对病毒诱导的IFN-β和ISRE的抑制作用(图 4ab)。

a,b.将293T细胞转染100 ng IFN-β启动子报告质粒或ISRE报告质粒,然后分别共转染Flag-DDX56和FMDV不同蛋白VP0、VP1、VP2、VP3、2B、2C、3A、3C和L,均转染100 ng。转染20 h后细胞用SeV刺激12 h,然后进行报告基因检测。Mock指空白对照,EV指相应的空载体,每组数据均为三次独立试验结果,**.P<0.01为差异极显著,*.0.01<P<0.05为差异显著 a, b. HEK293T cells were transfected with the Flag-DDX56 and indicated FMDV expression plasmids (100 ng each), 100 ng IFN-β-Luc/ISRE-Luc reporter plasmid and 20 ng pRL-TK. Twenty hours after transfection, cells were infected with SeV for 12 h before reporter assays were performed. All of the above mentioned experiments were repeated three times with similar results; Mock. Control; EV. Empty vector; **. P < 0.01, considered extremely significant, *. 0.01 < P < 0.05, considered significant 图 4 共表达猪源DDX56和FMDV蛋白对SeV诱导的IFN-β启动子和ISRE激活的影响 Fig. 4 Effects of co-expression FMDV proteins and DDX56 on SeV-triggered activation of IFN-β promoter and ISRE
3 讨论

口蹄疫是口蹄疫病毒引起的急性、热性传染病,对全球经济贸易带来巨大的影响[14]。FMDV宿主范围广,变异频率高,使得防治口蹄疫变得异常困难[31]。FMDV能利用宿主细胞蛋白来促进自身的复制和逃避免疫反应,但是这其中的机制尚不清楚。为了操控宿主细胞,FMDV与宿主蛋白发生相互作用。例如,FMDV VP1与宿主蛋白Sorcin相互作用抑制Ⅰ型干扰素的产生[19]。FMDV非结构蛋白3A和结构蛋白VP3能与VISA相互作用,抑制VISA的转录,从而抑制Ⅰ型干扰素的产生[21-22]。FMDV的非结构蛋白2C能绑定细胞蛋白Beclin1而防止自噬体与溶酶体的融合,利于自身的存活[32]。FMDV 2C也能与Vimentin发生相互作用,Vimentin在FMDV感染早期,在2C周围形成笼状结构,随后在病毒复制的过程中会逐渐溶解[33]。FMDV Lpro能与LGP2发生相互作用,并且切割LGP2降低宿主的抗病毒活性而促进自身的复制[34]。FMDV Lpro能与转录因子ADNP相互作用抑制干扰素的表达而拮抗宿主的抗病毒反应[35]。在本研究中,笔者发现DDX56能与FMDV VP0、VP1、VP2和3A发生相互作用而协同抑制宿主Ⅰ型干扰素的产生。

DDX56属于DEAD-box解旋酶家族[26]。据报道,DDX56参与WNV衣壳蛋白的形成,从而有利于自身病毒粒子的组装[27-28]。同时有报道DDX56通过促进Rev蛋白的功能进而促进HIV-1的复制[30]。但是并不清楚DDX56是否参与天然免疫反应,也不清楚DDX56对口蹄疫病毒复制的影响。本研究中,笔者发现猪源DDX56可能通过协同FMDV VP0、VP1、VP2和3A抑制Ⅰ型干扰素产生而促进FMDV的复制。

FMDV可以通过各种方式来逃避宿主的天然免疫系统, 而猪源DDX56在天然免疫的过程中也发挥着至关重要的作用, 作者猜测猪源DDX56可能协同FMDV VP0、VP1、VP2和3A抑制RLR通路某些分子而影响Ⅰ型干扰素的产生。因此,关于猪源DDX56如何协同FMDV蛋白影响Ⅰ型干扰素的产生,进而如何促进FMDV的复制将是下一步的研究方向和重点。

4 结论

本研究首先通过免疫共沉淀试验证实FMDV VP0、VP1、VP2和3A能与猪源DDX56发生相互作用,表明猪源DDX56与FMDV存在一定关系。随后从转录水平和蛋白质水平两个方面证明猪源DDX56可以促进FMDV的复制。本研究进一步证实猪源DDX56能负调控Ⅰ型干扰素的产生;同时双荧光素酶试验证实FMDV蛋白VP0、VP1、VP2和3A能促进猪源DDX56对Ⅰ型干扰素的抑制作用。由此可知,一些FMDV蛋白可以协同猪源DDX56抑制宿主的天然免疫反应,减少IFN-β的产生,从而促进自身的复制增殖。

参考文献
[1] MACMICKING J D. Interferon-inducible effector mechanisms in cell-autonomous immunity[J]. Nat Rev Immunol, 2012, 12(5): 367–382. DOI: 10.1038/nri3210
[2] CUBILLOS-ZAPATA C, GUZMAN E, TURNER A, et al. Differential effects of viral vectors on migratory afferent lymph dendritic cells in vitro predict enhanced immunogenicity in vivo[J]. J Virol, 2011, 85(18): 9385–9394. DOI: 10.1128/JVI.05127-11
[3] AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783–801. DOI: 10.1016/j.cell.2006.02.015
[4] CHEN G, SHAW M H, KIM Y G, et al. NOD-like receptors:role in innate immunity and inflammatory disease[J]. Annu Rev Pathol, 2009, 4: 365–398. DOI: 10.1146/annurev.pathol.4.110807.092239
[5] JIN X H, ZHENG L L, SONG M R, et al. A nano silicon adjuvant enhances inactivated transmissible gastroenteritis vaccine through activation the Toll-like receptors and promotes humoral and cellular immune responses[J]. Nanomed:Nanotechnol, Biol Med, 2018, 14(4): 1201–1212. DOI: 10.1016/j.nano.2018.02.010
[6] KUMAR H, KAWAI T, AKIRA S. Pathogen recognition in the innate immune response[J]. Biochem J, 2009, 420(1): 1–16.
[7] PILA E A, TARRABAIN M, KABORE A L, et al. A novel toll-like receptor (TLR) influences compatibility between the gastropod Biomphalaria glabrata, and the digenean trematode Schistosoma mansoni[J]. PLoS Pathog, 2016, 12(3): e1005513. DOI: 10.1371/journal.ppat.1005513
[8] XU L G, WANG Y Y, HAN K J, et al. VISA is an adapter protein required for virus-triggered IFN-β signaling[J]. Mol Cell, 2005, 19(6): 727–740. DOI: 10.1016/j.molcel.2005.08.014
[9] KAWAI T, TAKAHASHI K, SATO S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction[J]. Nat Immunol, 2005, 6(10): 981–988. DOI: 10.1038/ni1243
[10] LIN D D, ZHANG M, ZHANG M X, et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6[J]. Proc Natl Acad Sci U S A, 2015, 112(36): 11324–11329. DOI: 10.1073/pnas.1509968112
[11] SHU H B, WANG Y Y. Adding to the STING[J]. Immunity, 2014, 41(6): 871–873. DOI: 10.1016/j.immuni.2014.12.002
[12] HVSSER L, ALVES M P, RUGGLI N, et al. Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference[J]. Virus Res, 2011, 159(1): 9–16. DOI: 10.1016/j.virusres.2011.04.005
[13] BARNETT P V, GEALE D W, CLARKE G, et al. A review of OIE country status recovery using vaccinate-to-live versus vaccinate-to-die foot-and-mouth disease response policies I:benefits of higher potency vaccines and associated NSP DIVA test systems in post-outbreak surveillance[J]. Transbound Emerg Dis, 2015, 62(4): 367–387. DOI: 10.1111/tbed.12166
[14] JAMAL S M, BELSHAM G J. Foot-and-mouth disease:past, present and future[J]. Vet Res, 2013, 44: 116. DOI: 10.1186/1297-9716-44-116
[15] KNIGHT-JONES T J, RUSHTON J. The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur?[J]. Prev Vet Med, 2013, 112(3-4): 161–173. DOI: 10.1016/j.prevetmed.2013.07.013
[16] RUIZ V, MIGNAQUI A C, NUÑEZ M C, et al. Comparison of strategies for the production of FMDV empty capsids using the baculovirus vector system[J]. Mol Biotechnol, 2014, 56(11): 963–970. DOI: 10.1007/s12033-014-9775-8
[17] CURRY S, FRY E, BLAKEMORE W, et al. Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization:the structure of empty capsids of foot-and-mouth disease virus[J]. J Virol, 1997, 71(12): 9743–9752.
[18] ZHANG G G, CHEN X Y, QIAN P, et al. Immunogenicity of a recombinant Sendai virus expressing the capsid precursor polypeptide of foot-and-mouth disease virus[J]. Res Vet Sci, 2016, 104: 181–187. DOI: 10.1016/j.rvsc.2015.12.009
[19] LI X Y, WANG J C, LIU J, et al. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells[J]. Vet Microbiol, 2013, 166(1-2): 35–46. DOI: 10.1016/j.vetmic.2013.04.028
[20] LI D, WEI J, YANG F, et al. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways[J]. Cell Cycle, 2016, 15(6): 850–860. DOI: 10.1080/15384101.2016.1151584
[21] LI D, YANG W P, YANG F, et al. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway[J]. FASEB J, 2016, 30(5): 1757–1766. DOI: 10.1096/fj.15-281410
[22] LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6: 21888. DOI: 10.1038/srep21888
[23] WANG D, FANG L R, LI K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol, 2012, 86(17): 9311–9322. DOI: 10.1128/JVI.00722-12
[24] DU Y J, BI J S, LIU J Y, et al. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation[J]. J Virol, 2014, 88(9): 4908–4920. DOI: 10.1128/JVI.03668-13
[25] FAIRMAN-WILLIAMS M E, GUENTHER U P, JANKOWSKY E. SF1 and SF2 helicases:family matters[J]. Curr Opin Struct Biol, 2010, 20(3): 313–324. DOI: 10.1016/j.sbi.2010.03.011
[26] ZIRWES R F, EILBRACHT J, KNEISSEL S, et al. A novel helicase-type protein in the nucleolus:protein NOH61[J]. Mol Biol Cell, 2000, 11(4): 1153–1167. DOI: 10.1091/mbc.11.4.1153
[27] XU Z K, ANDERSON R, HOBMAN T C. The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus[J]. J Virol, 2011, 85(11): 5571–5580. DOI: 10.1128/JVI.01933-10
[28] XU Z K, HOBMAN T C. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles[J]. Virology, 2012, 433(1): 226–235. DOI: 10.1016/j.virol.2012.08.011
[29] REID C R, HOBMAN T C. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites[J]. Virology, 2017, 500: 169–177. DOI: 10.1016/j.virol.2016.10.025
[30] YASUDA-INOUE M, KUROKI M, ARIUMI Y. Distinct DDX DEAD-box RNA helicases cooperate to modulate the HIV-1 Rev function[J]. Biochem Biophys Res Commun, 2013, 434(4): 803–808. DOI: 10.1016/j.bbrc.2013.04.016
[31] DOMINGO E, BARANOWSKI E, ESCARMÍS C, et al. Foot-and-mouth disease virus[J]. Comp Immunol Microbiol Infect Dis, 2002, 25(5-6): 297–308. DOI: 10.1016/S0147-9571(02)00027-9
[32] GLADUE D P, O'DONNELL V, BAKER-BRANSTETTER R, et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication[J]. J Virol, 2012, 86(22): 12080–12090. DOI: 10.1128/JVI.01610-12
[33] GLADUE D P, O'DONNELL V, BAKER-BRANSTETTER R, et al. Foot-and-mouth disease virus modulates cellular vimentin for virus survival[J]. J Virol, 2013, 87(12): 6794–6803. DOI: 10.1128/JVI.00448-13
[34] RODRÍGUEZ PULIDO M, SÁNCHEZ-APARICIO M T, MARTÍNEZ-SALAS E, et al. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus[J]. PLoS Pathog, 2018, 14(6): e1007135. DOI: 10.1371/journal.ppat.1007135
[35] MEDINA G N, KNUDSEN G M, GRENINGER A L, et al. Interaction between FMDV Lpro and transcription factor ADNP is required for optimal viral replication[J]. Virology, 2017, 505: 12–22. DOI: 10.1016/j.virol.2017.02.010