畜牧兽医学报  2019, Vol. 50 Issue (4): 887-892. DOI: 10.11843/j.issn.0366-6964.2019.04.022    PDF    
新疆牛源产志贺毒素大肠杆菌耐药性及其ESBLs基因鉴定
佟盼盼, 马凯琪, 刘争辉, 谢金鑫, 苏红, 王栋, 孙雪, 高姣姣, 苏战强     
新疆农业大学动物医学学院, 乌鲁木齐 830052
摘要:本研究的目的是通过调查新疆地区分离的牛源产志贺毒素大肠杆菌(STEC)的耐药表型和基因型,掌握STEC耐药性的发展和传播规律。本研究对新疆6个地区的牛源(非O157:H7)STEC分离株进行了18种抗生素的药物敏感性试验,并检测菌株中携带的超广谱β-内酰胺酶(ESBLs)基因。结果显示:4.31% STEC表现为多重耐药,1.91%为产ESBLs菌株。检测到的主要ESBLs基因包括blaTEMblaCTX-M。这是首次在新疆STEC中检测到blaTEMblaCTX-M。本研究分离出的多数多重耐药STEC属于系统发育A群。多重耐药STEC可能是由非致病性大肠杆菌获得毒性和耐药基因而形成的。抗生素的选择压力可能对细菌在牛肠道中的定植表现出一定竞争优势,从而增加了耐药STEC对食物的污染。
关键词产志贺毒素大肠杆菌    耐药性    食源性致病菌    抗生素    ESBLs    
Characterization of Antimicrobial Resistance and Extended-Spectrum β-Lactamase Genes in Bovine Origin Shiga Toxin-producing Escherichia coli in Xinjiang
TONG Panpan, MA Kaiqi, LIU Zhenghui, XIE Jinxin, SU Hong, WANG Dong, SUN Xue, GAO Jiaojiao, SU Zhanqiang     
College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: The objective of this study was to investigate the phenotypic and genotypic basis of bovine Shiga toxin-producing Escherichia coli (STEC) from Xinjiang and obtain the evolution and spread of STECs resistance. Susceptibility testing to 18 antimicrobials was performed on bovine (non-O157:H7)STEC isolates from 6 regions of Xinjiang. Meanwhile, the extended spectrum β-lactamases(ESBL) genes were amplified. In this study 4.31% STEC isolates were multidrug resistant to antimicrobials (MDR), and 1.91% were ESBLs-producing strains. The predominant ESBL genes detected were blaTEM and blaCTX-M. This is the first report of blaTEM and blaCTX-M in STEC isolates in Xinjiang. Most resistant STECs (91.67%) isolated in this study belong to phylogenetic groups A. These findings suggest that MDR STECs are emerging as a result of nonpathogenic E. coli acquiring virulence and resistance genes. This may convey a certain competitive advantage for the colonization of these STECs in cattle when antimicrobial selective pressures are present, potentially leading to an increase in contamination of food with resistant STECs.
Key words: Shiga toxin-producing Escherichia coli     drug resistance     foodborne pathogen     antimicrobial     ESBLs    

产志贺毒素大肠埃希菌(Shiga toxin-producing E. coli,STEC)是一类能产生志贺毒素,并引起人腹泻、出血性结肠炎以及溶血性尿毒综合征等疾病的食源性病原菌[1-2]。已知与人类食源性疾病相关的STEC血清型有200多种,其中以O157血清型为主[3]。近年来,由非O157 STEC感染的病例数量已有超过O157 STEC感染的趋势[4]。牛是STEC的天然宿主,也是STEC感染人类的主要来源[5]。虽然在人类感染STEC的治疗上不建议使用抗生素,但抗生素在养殖业上的应用,使STEC暴露于抗生素的选择压力之下从而产生了耐药性,甚至产生了多重耐药性[6],这种同时具有毒力和耐药性的菌株,对人类健康构成更严重的威胁。

目前,临床上最广泛使用的抗菌药物为β-内酰胺类,自2002年以来,已在食品动物上分离到越来越多的产超广谱β-内酰胺酶(ESBLs)的肠杆菌科细菌,在全球引起了极大关注[7]。细菌对β-内酰胺类产生耐药的重要机制是产生ESBLs,ESBLs主要由质粒和染色体介导,能够通过接合、转化和转导等转移方式在自然界中传播耐药性[8]。目前已发现400多种ESBLs型别,其基因型和基因亚型因国家或地区的不同而存在差异[9]。ESBLs编码的基因家族主要有窄谱的TEM型和广谱的CTX-M型[10]。产ESBLs菌株可在动物和人之间相互传播[11-13],产ESBLs菌株的出现给兽医临床使用抗生素敲响警钟。随着新疆畜牧业的发展,有关新疆牛源STEC菌株的报道越来越多,而研究新疆牛源STEC菌株耐药性的报道罕见,因此本研究对2015—2017年新疆部分地区牛源STEC菌株的耐药性进行研究,为监测牛源STEC的耐药性提供数据支持,同时为临床合理用药提供参考。

1 材料与方法 1.1 菌株来源

2015—2017年收集新疆博乐、伊犁、石河子、五家渠、昌吉及乌鲁木齐周边牛场肛拭子、新鲜粪便、料槽内饲料、水槽内饮水(地下水)和屠宰场胴体样品。肛拭子:用无菌棉签采集牛肛拭子,置于2 mL无菌营养肉汤;粪便:用无菌PE手套抓取新鲜牛粪中心,根据圈舍分组进行编号;饲料:每个牛场采集不同料槽内饲料,置于无菌自封袋;饮水:每个牛场采集不同水槽内饮水,置入无菌营养肉汤;胴体:取新鲜屠宰胴体拭子,置于2 mL无菌营养肉汤,低温运输并及时处理。样品共计1 459份,分离209株(非O157:H7)STEC(表 1)。

表 1 本研究中牛源样本与STEC分离株情况 Table 1 Bovine origin samples and STEC isolates in this study
1.2 主要材料

TSB、MH肉汤、MH培养基购自青岛海博生物科技有限公司。18种药敏片:氨苄西林(AMP)、阿莫西林-克拉维酸(AMC)、头孢噻肟(CTX)、头孢他啶(CAZ)、头孢吡肟(FEP)、哌拉西林-他唑巴坦(TZP)、氨苄西林-舒巴坦(SAM)、庆大霉素(GEN)、氨曲南(ATM)、阿米卡星(AMI)、左氧氟沙星(LVX)、环丙沙星(CIP)、四环素(TET)、磺胺甲基异恶唑(SXT)、氯霉素(CHL)、哌拉西林(PIP)、多黏菌素B(PB)、链霉素(STR)购自杭州滨和微生物试剂有限责任公司。E. coli ATCC 25922保存于本实验室。E. coli J53(NaN3抗性)作为接合试验受体菌(由军事兽医研究所惠赠)。头孢噻肟、头孢他啶药粉购自中国药品生物制品检定所。引物由上海生工生物工程有限责任公司合成。

1.3 实验动物

雌性昆明鼠(18±2)g,购自新疆医科大学实验动物中心,SCXK(新)2018-0001。

1.4 大肠杆菌系统进化发育分群

根据Clermont等[14]的方法对STEC分离株进行多重PCR检测,扩增chuAyjaA、TspE4.C2、arpAtrpA基因,根据文献方法判定分群结果。

1.5 STEC毒力基因及致病性检测

PCR检测209株STEC的stx1、stx2、eaehly毒力基因[15-16]。选择代表性菌株进行小鼠致病性试验。50只小鼠随机分成5组,每组10只,饲养观察2 d。挑取纯化的单菌落接种于无菌EC肉汤中培养12 h,进行活菌计数,以无菌EC肉汤稀释细菌,调整细菌浓度为107~1011 CFU·mL-1。第3天采用腹腔注射的方法用稀释后的菌液分别接种于5组小鼠,0.3 mL·只-1。攻毒后正常饲养,观察记录发病死亡情况,采用改良寇氏法计算LD50

1.6 药敏试验

采用K-B法对STEC进行18种抗生素的药敏试验,将菌株接种于MH肉汤中,37 ℃培养12 h,调整菌液至0.5麦氏浊度,用无菌棉签均匀涂布于MH平板上,将药敏片贴于MH表面,37 ℃培养约16 h,用游标卡尺测量抑菌圈直径,参照CLSI标准判断结果[17],并记录数据。

1.7 产ESBLs菌株确认

采用双纸片扩散法确认产ESBLs菌株。将CAZ和/或CTX耐药的受试菌株均匀涂布于MH琼脂平板,分别进行CAZ、CAZ/CAL和CTX、CTX/CAL两组药敏纸片试验,37 ℃培养约16 h,当CAZ和CTX中有任何一个,在加CAL后,抑菌环直径与不加CAL的抑菌环相比,增大值≥5 mm时,判定为产ESBLs。

1.8 ESBLs菌株耐药基因检测

采用PCR方法检测ESBLs基因型,包括blaCTX-M-1blaCTX-M-2blaCTX-M-9blaTEMblaSHV[18],参照文献合成引物进行PCR检测,产物经1%琼脂糖凝胶电泳检测,阳性产物由上海生工生物有限公司测序,并进行BLAST比对分析,确定其耐药基因亚型。

1.9 接合转移试验

将携带ESBLs基因的STEC作为供体菌,E. coli J53作为受体菌,通过滤过膜接合法进行接合试验,通过CAZ 4 μg·mL-1或CTX 4 μg·mL-1与NaN3 200 μg·mL-1的双抗TSA平板筛选接合子,对接合子进行耐药表型和ESBLs确认,并进行耐药基因检测。

2 结果 2.1 STEC系统发育分群

0.96%(2/209)的STEC属于系统发育D群,此群与病原菌相关。94.74%(198/209)和2.39%(5/209)分别属于系统发育A群和E群。0.48%(1/209)和1.44%(3/209)分配至系统发育B1群和F群。与毒力相关的2株菌均来自肛拭子。

2.2 STEC毒力基因及致病性

209株STEC中携带stx1(210 bp)菌株占31.58%(66/209),携带stx2(484 bp)菌株占27.27%(57/209),携带hly(319 bp)菌株占48.33%(101/209)(图 1),同时携带stx1和stx2菌株占41.15%(86/209),同时携带stx1、stx2和hly菌株占23.44%(49/209),未检测到eae基因(375 bp)。采用腹腔注射法将分离株W-R33(stx1+stx2,肛拭子),107~1011 CFU·mL-1接种小鼠。48 h后开始出现死亡,107和108 CFU·mL-1组小鼠全部耐过,109和1010 CFU·mL-1组部分小鼠耐过,1011 CFU·mL-1组小鼠全部死亡,根据改良寇氏法计算出LD50为1.8×1010 CFU。

M. DL2000 DNA相对分子质量标准;1、2. stx1和stx2引物扩增;3、4. hly引物扩增;5.阴性对照 M. DL2000 DNA marker; 1 and 2 were amplified with stx1 and stx2 primes; 3 and 4 were amplified with hly primes; 5. Negative control 图 1 stx1、stx2和hly基因PCR扩增产物 Fig. 1 PCR products of stx1, stx2 and hly gene
2.3 药敏试验与产ESBLs菌株确认

209株STEC中24株(11.48%)表现为耐药菌株。AMP耐药性在牛场STEC分离株中相对普遍。经鉴定,9株(4.31%)多重耐药菌对3~11种抗生素具有耐药性,共显示9个不同的抗生素耐药谱,在多重耐药菌株中,最常见的耐药模式为CHL+ STR+TET,占总分离株的2.4%,其中有4株(1.91%)产ESBLs。

2.4 β-内酰胺酶基因检测

对B-R14、C-R30、W-R33和U-R32进行CTX-M、TEM和SHV基因检测,结果blaTEMblaCTX-M群扩增出目的片段(图 2),W-R33和U-R32为blaTEM阳性(861 bp),测序2株均携带TEM-1型基因;B-R14、C-R30和U-R32为blaCTX-M阳性(593 bp),U-R32同时携带blaTEMblaCTX-M基因。4株菌呈blaCTX-M-1blaCTX-M-2blaCTX-M-9blaSHV阴性。

M. DL2000 DNA相对分子质量标准;1、2. blaCTX-M引物扩增;3、4. blaTEM引物扩增;5.阴性对照 M. DL2000 DNA marker; 1 and 2 were amplified with blaCTX-M primes; 3 and 4 were amplified with blaTEM primes; 5. Negative control 图 2 blaCTX-MblaTEM基因PCR扩增产物 Fig. 2 PCR blaCTX-M and blaTEM gene
2.5 接合试验

以4株产ESBLs分离株(NaN3敏感)作为供体菌,以E. coli J53作为受体菌进行接合试验,通过双抗平板筛选分别获得W-R33和U-R32的阳性接合子tW-R33和tU-R32,接合转移发生率为50%。

药敏检测显示,经接合转移W-R33将AMP+CTX+GEN+STR+SXT+TET耐药性转移至E. coli J53,CHL+CIP+LVX耐药性未发生转移;U-R32将AMP+CTX+GEN+ LVX+PB+PIP+ STR+SXT+TET耐药性转移至E. coli J53,CHL+ CIP耐药性未发生转移。

对tW-R33和tU-R32进行β-内酰胺酶基因的检测结果显示,W-R33将携带的blaTEM转移至E. coli J53;U-R32将携带的blaTEMblaCTX-M均转移至E. coli J53。

3 讨论

近年来,非O157血清群STEC感染人类的报道越来越多,引起人们的广泛关注[19]。人类感染STEC主要通过直接或间接食用了被牛粪污染的肉类、牛奶、蔬菜、水果和水而发病[20],因此研究牛源STEC具有重要的公共卫生学意义。本研究在2015—2017年采集新疆部分地区牛源样品进行STEC分离鉴定,其中在肛拭子中STEC的分离率最高为19.7%(194/984),低于日本(28.1%)和加拿大(49.2%)牛源STEC的分离率[21-22]。值得注意的是,分布于饲料和饮水中的STEC可能成为其在牛场的扩散源头。

通常情况下,属于系统发育B2群和D群的大肠杆菌更可能具有致病性,而A群和B1群为非致病共生菌[23]。Alizade等[24]研究表明,来自健康牛的STEC主要属于A群和B1群,Kennedy等[25]研究表明,来自牛场多数多重耐药STEC主要属于A群和B1群。本研究中分离株W-R33属于A群,携带stx1和stx2,多重耐药且产ESBLs,对小鼠致病性不强。这些发现提示多重耐药STEC很可能是由非致病性大肠杆菌获得毒性和耐药性基因而形成的,导致多重耐药STEC污染食品。从牛场饮水中仅分离出一株对AMC和AMP耐药的A群STEC,而多重耐药的STEC均分离自肛拭子。令人担忧的是,一株D群与毒力相关的STEC对头孢菌素类耐药,成为毒力和耐药性共选择的证据。本研究未在胴体上获得耐药的STEC是值得庆幸的,但采集胴体样本量有限。

笔者发现新疆牛源STEC对更新的、更具临床重要性的抗生素(如氟喹诺酮和头孢菌素)开始出现耐药性。革兰阴性菌产生β-内酰胺酶是对头孢菌素类耐药的主要机制[22]。本研究首次在我国新疆牛源STEC菌株中鉴定了blaTEMblaCTX-M。Kennedy等[25]之前从牛场和屠宰场的STEC中鉴定了blaTEMblaCTX-M引物可扩增的亚型包括CTX-M-1~30,TOHO-1~3,FEC-1,UOE-1和UOE-2[18]blaCTX-M-1blaCTX-M-2blaCTX-M-9在人类和动物源产ESBLs菌株中较常见[13, 26],而在本研究中并未确定这三个亚型中的任何一种,尚需进一步鉴定。牛源STEC携带的blaTEMblaCTX-M可以通过接合的方式在细菌间扩散。

本研究中24株耐药的STEC有6株对多黏菌素耐药。由于针对多重耐药的革兰阴性菌缺乏新型抗生素,导致多黏菌素作为最后一道防线被重新启用[27],细菌对黏菌素产生耐药性可能是细菌细胞外膜或外排泵/钾系统改变[27]。已鉴定MCR-1和MCR-2为质粒介导的多黏菌素耐药机制[28-29]。不是所有质粒都可以通过接合而发生转移[30],在本研究中证实黏菌素的耐药性可发生接合转移,关于多黏菌素耐药性的数据需谨慎对待。

4 结论

通过对新疆不同地区牛源STEC的药物敏感性试验,初步分析新疆牛源STEC的耐药规律,对临床用药具有一定参考。同时通过对STEC中ESBLs基因的检测,发现ESBLs基因在牛源STEC中开始流行,且以blaTEMblaCTX-M基因为主要基因型。

参考文献
[1] MUGHINI-GRAS L, VAN PELT W, VAN DER VOORT M, et al. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, the Netherlands (2010-2014)[J]. Zoonoses Public Health, 2018, 65(1): e8–e22. DOI: 10.1111/zph.12403
[2] ABDISSA R, HAILE W, FITE A T, et al. Prevalence of Escherichia coli O157:H7 in beef cattle at slaughter and beef carcasses at retail shops in Ethiopia[J]. BMC Infect Dis, 2017, 17: 277. DOI: 10.1186/s12879-017-2372-2
[3] KARMAIL M A, MASCARENHAS M, SHEN S H, et al. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease[J]. J Clin Microbiol, 2003, 41(11): 4930–4940. DOI: 10.1128/JCM.41.11.4930-4940.2003
[4] GOULD L H, MODY R K, ONG K L, et al. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000-2010:epidemiologic features and comparison with E. coli O157 infections[J]. Foodborne Pathog Dis, 2013, 10(5): 453–460. DOI: 10.1089/fpd.2012.1401
[5] BEUTIN L, FACH P. Detection of Shiga toxin-producing Escherichia coli from nonhuman sources and strain typing[J/OL]. Microbiol Spectr, 2014, 2(3): doi: 10.1128/microbiolspec.EHEC-0001-2013 [2019-02-06]. http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0001-2013.
[6] AMÉZQUITA-LÓPEZ B A, SOTO-BELTRÁN M, LEE B G, et al. Isolation, genotyping and antimicrobial resistance of Shiga toxin-producing Escherichia coli[J]. J Microbiol Immunol Infect, 2018, 51(4): 425–434. DOI: 10.1016/j.jmii.2017.07.004
[7] KARIYAWASAM S, JOHNSON T J, NOLAN L K. Unique DNA sequences of avian pathogenic Escherichia coli isolates as determined by genomic suppression subtractive hybridization[J]. FEMS Microbiol Lett, 2006, 262(2): 193–200. DOI: 10.1111/fml.2006.262.issue-2
[8] D'ANDREA M M, ARENA F, PALLECCHI L, et al. CTX-M-type β-lactamases: a successful story of antibiotic resistance[J]. Int J Med Microbiol, 2013, 303(6-7): 305–317. DOI: 10.1016/j.ijmm.2013.02.008
[9] BUSH K, JACOBY G A, MEDEIROS A A. A functional classification scheme for β-lactamases and its correlation with molecular structure[J]. Antimicrob Agents Chemother, 1995, 39(6): 1211–1233. DOI: 10.1128/AAC.39.6.1211
[10] THOMSON K S. Extended-spectrum-β-lactamase, AmpC, and Carbapenemase issues[J]. J Clin Microbiol, 2010, 48(4): 1019–1025. DOI: 10.1128/JCM.00219-10
[11] JOUINI A, VINUÉ L, SLAMA K B, et al. Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia[J]. J Antimicrob Chemother, 2007, 60(5): 1137–1141. DOI: 10.1093/jac/dkm316
[12] DIWAN V, CHANDRAN S P, TAMHANKAR A J, et al. Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India[J]. J Antimicrob Chemother, 2012, 67(4): 857–859. DOI: 10.1093/jac/dkr564
[13] SMET A, MARTEL A, PERSOONS D, et al. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin:molecular aspects, mobility and impact on public health[J]. FEMS Microbiol Rev, 2010, 34(3): 295–316. DOI: 10.1111/j.1574-6976.2009.00198.x
[14] CLERMONT O, CHRISTENSON J K, DENAMUR E, et al. The Clermont Escherichia coli phylo-typing method revisited:improvement of specificity and detection of new phylo-groups[J]. Environ Microbiol Rep, 2013, 5(1): 58–65. DOI: 10.1111/emi4.2013.5.issue-1
[15] 赵志晶, 刘秀梅. 食品样品中大肠杆菌O157:H7复合PCR检测方法的研究[J]. 卫生研究, 2004, 33(6): 716–719.
ZHAO Z J, LIU X M. Multiplex PCR assay against E. coli O157 in foodstuffs[J]. Journal of Hygiene Research, 2004, 33(6): 716–719. DOI: 10.3969/j.issn.1000-8020.2004.06.019 (in Chinese)
[16] 叶青, 张雪寒, 何孔旺, 等. 牛源大肠杆菌O157:H7的分离及毒力基因鉴定[J]. 中国兽医学报, 2012, 32(8): 1148–1153.
YE Q, ZHANG X H, HE K W, et al. Isolation of Escherichia coli O157:H7 from cattle and detection of its virulence genes[J]. Chinese Journal of Veterinary Science, 2012, 32(8): 1148–1153. (in Chinese)
[17] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement[R]. PA: CLSI, 2013.
[18] TONG P P, SUN Y, JI X, et al. Characterization of antimicrobial resistance and extended-spectrum β-lactamase genes in Escherichia coli isolated from chickens[J]. Foodborne Pathog Dis, 2015, 12(4): 345–352. DOI: 10.1089/fpd.2014.1857
[19] BREHONY C, CULLINAN J, CORMICAN M, et al. Shiga toxigenic Escherichia coli incidence is related to small area variation in cattle density in a region in Ireland[J]. Sci Total Environ, 2018, 637-638: 865–870. DOI: 10.1016/j.scitotenv.2018.05.038
[20] KINTZ E, BRAINARD J, HOOPER L, et al. Transmission pathways for sporadic Shiga-toxin producing E. coli infections: a systematic review and meta-analysis[J]. Int J Hyg Environ Health, 2016, 220(1): 57–67.
[21] NAKAMURA H, IGUCHI A, MAEHARA T, et al. Comparison of three molecular subtyping methods among O157 and non-O157 Shiga toxin-producing Escherichia coli isolates from Japanese cattle[J]. Jpn J Infect Dis, 2017, 71(1): 45–50.
[22] PAQUETTE S J, STANFORD K, THOMAS J, et al. Quantitative surveillance of Shiga toxins 1 and 2, Escherichia coli O178 and O157 in feces of western-Canadian slaughter cattle enumerated by droplet digital PCR with a focus on seasonality and slaughterhouse location[J]. PLoS One, 2018, 13(4): e0195880. DOI: 10.1371/journal.pone.0195880
[23] CLERMONT O, BONACORSI S, BINGEN E. Rapid and simple determination of the Escherichia coli phylogenetic group[J]. Appl Environ Microbiol, 2000, 66(10): 4555–4558. DOI: 10.1128/AEM.66.10.4555-4558.2000
[24] ALIZADE H, GHANBARPOUR R, NEKOUBIN M. Phylogenetic of Shiga toxin -producing Escherichia coli and a typical enteropathogenic Escherichia coli strains isolated from human and cattle in Kerman, Iran[J]. Int J Entric Pathog, 2014, 2(1): e15195.
[25] KENNEDY C A, FANNING S, KARCZMARCZYK M, et al. Characterizing the multidrug resistance of non-O157 Shiga toxin-producing Escherichia coli isolates from cattle farms and abattoirs[J]. Microb Drug Resist, 2017, 23(6): 781–790. DOI: 10.1089/mdr.2016.0082
[26] YUAN L, LIU J H, HU G Z, et al. Molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from chickens in Henan Province, China[J]. J Med Microbiol, 2009, 58: 1449–1453. DOI: 10.1099/jmm.0.012229-0
[27] LANDERSDORFER C B, NATION R L. Colistin: how should it be dosed for the critically ill?[J]. Semin Respir Crit Care Med, 2015, 36(1): 126–135. DOI: 10.1055/s-00000075
[28] LIU Y Y, WANG Y, WALSH T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16(2): 161–168. DOI: 10.1016/S1473-3099(15)00424-7
[29] XAVIER B B, LAMMENS C, RUHAL R, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016[J/OL]. Euro Surveill, 2016, 21(27): doi: 10.2807/1560-7917.ES.2016.21.27.30280 [2019-02-06]. https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2016.21.27.30280.
[30] SMILLIE C, GARCILLÁN-BARCIA P, FRANCIA M V, et al. Mobility of plasmids[J]. Microbiol Mol Biol Rev, 2010, 74(3): 434–452. DOI: 10.1128/MMBR.00020-10