畜牧兽医学报  2019, Vol. 50 Issue (2): 398-405. DOI: 10.11843/j.issn.0366-6964.2019.02.018    PDF    
鸡恒定链协助抗原肽结合MHCⅡ类分子并进入细胞内吞体
陈芳芳, 张旭, 谭红黎, 桂亚萍, 余为一     
安徽农业大学动物科技学院, 合肥 230036
摘要:为探明鸡恒定链(invariant chain,Ii)的胞质区/跨膜区[Ii(Cyt/Tra)]作为载体是否可携带抗原肽在细胞内结合MHCⅡ类分子和进入转运途径的细胞器(内吞体),构建4个基因目的片段[IiIi(Cyt/Tra)F2(新城疫病毒F蛋白片段)和Ii(Cyt/Tra)/F2],分别将它们插入原核表达载体pET-32a和真核表达载体pmCherry-C1/N1中,构建8个重组质粒,再转入工程菌(E.coli)和人肾细胞系(293 T),并应用拉下法(pull-down)检测目的蛋白与MHCⅡβ的结合,应用激光共聚焦确定它们在真核细胞与MHCⅡβ的共定位以及在内吞体的定位。结果表明,构建的重组质粒均能相应地原核或真核表达相应目的蛋白;Ii、Ii(Cyt/Tra)和Ii(Cyt/Tra)/F2不仅能够与MHCⅡβ结合,还能进入细胞内吞体;但是F2既不能与MHCⅡβ结合,也不能进入内吞体。Ii活性片段Cyt/Tra不仅本身具有结合MHCⅡβ的作用,而且还可以携带抗原肽与之结合并一起转入细胞内吞体而进入抗原递呈途径。该结果为进一步研究Ii载体转运抗原提供了理论依据。
关键词Ii    活性片段    免疫载体    内吞体    抗原递呈    
Chicken Ii Helps Antigen Peptide Bind MHC ClassⅡ Molecules and Enter Endosomes
CHEN Fangfang, ZHANG Xu, TAN Hongli, GUI Yaping, YU Weiyi     
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Abstract: This experiment was conducted to clear if chicken invariant chain (Ii) cytoplasmic/transmembrane domains-Ii(Cyt/Tra), as immune carrier-is able to carry antigen peptide to associate with MHC classⅡ molecules and enter the endosomes in cell transport pathway. In this study, 4 gene segments, such as Ii, Ii(Cyt/Tra), F2 (Newcastle disease virus F protein fragment) and Ii(Cyt/Tra)/F2, were amplified and constructed by PCR. They were inserted into prokaryotic expression plasmid pET-32a and eukaryotic expression plasmid pmCherry-C1/N1 respectively, and 8 recombinant plasmids were constructed. Then they were transferred into the engineering bacteria (E. coli) and human renal cell (293 T) respectively. The binding of the target protein to the MHCⅡβ was detected by pull-down assay, and the co-localization in the eukaryotic cells with the MHCⅡβ and the localization in the endosomes were determined by laser confocal. The results showed that all the recombinant target protein molecules were expressed in prokaryotic or eukaryotes; Ii, Ii(Cyt/Tra) and Ii(Cyt/Tra)/F2 were able to bind to MHCⅡβ as well as to enter endosomes except F2. To sum up, the active domains, Ii(Cyt/Tra), not only itself had the effect of associating MHCⅡβ, but also could bring antigenic peptides to bind MHCⅡβ and transport the endosome together, and finally enter the antigen presentation pathway. This provides a theoretical basis for further study of Ii as immune carrier.
Key words: Ii     active fragment     immune carrier     endosome     antigen present    

恒定链(invariant chain, Ii)是MHCⅡ类分子的伴侣蛋白,白细胞分化抗原为CD74,结构呈高度保守性,属Ⅱ型跨膜蛋白分子[1],不同物种的Ii大小稍有差异,但其基本结构相似,均由N端的胞质区(cytoplasmic domain)、跨膜区(transmembrane domain)和网腔区(luminal domain)三个结构域所组成[2]。其中,网腔区还包含CLIP(class Ⅱ-associated invariant chain peptide)、三聚体(trimerzation region)和甲状腺蛋白片段(thyroglobulin)[3]

Ii是辅助MHCⅡ类分子递呈外源性抗原肽的重要分子[4]。在抗原递呈细胞的内质网内,Ii与Ⅱ类分子(αβ)结合,形成九聚体(αβIi)3,在九聚体中,Ii的CLIP占据Ⅱ类分子的肽结合区(peptide binding region, PBR),以阻止内源性抗原肽与Ⅱ类分子的结合[5]。聚合体在细胞内进一步转运[6]。在内吞体中抗原肽取代占据MHCⅡ类分子结合区凹槽中Ii的CLIP片段[7]。最后,抗原肽与MHCⅡ类分子形成复合物转移至细胞表面提呈给T细胞,产生免疫应答。

基于Ii具有结合MHCⅡ类分子和递呈抗原肽的功能,近年来,Ii作为高效的免疫载体被广泛应用。以全长Ii为载体,其中CLIP被抗原肽取代是常用的方式,有的直接用作基因疫苗[8],或转入腺病毒载体制备疫苗[9-10],还有的则表达成蛋白嵌合体免疫动物[11]。作者曾用小鼠Ii的胞质区/跨膜区[Ii(Cyt/Tra)]作为载体,连接新城疫病毒(NDV)的融合蛋白(F)的3个表位,将其免疫动物,可获得较好的效果,其诱导的抗体效价是单一抗原免疫的3~9倍[12]。作者还用鸡Ii(Cyt/Tra)为载体连接NDV-F蛋白中的一个表位F2(148-182 aa)[13],免疫小鼠,也获得了跨种增强免疫效果[14],由于抗原肽必须结合MHCⅡ类分子才能被递呈,由此推测正是Ii载体与MHCⅡ类分子的结合,才使与之连接的抗原肽直接进入递呈途径,从而提高了免疫效果。但是迄今未有证据表明Ii载体/抗原肽不仅结合MHCⅡ类分子,还能进入递呈途径中的关键细胞器内吞体。为此,作者在本研究中将Ii(Cyt/Tra)为载体连接F2,探明该载体在携带抗原肽结合鸡MHCⅡ类分子和进入细胞内吞体中的作用。

1 材料与方法 1.1 主要试剂

PCR plus mix购自东盛生物公司(广州)、T4链接酶购自东洋纺有限公司(日本),限制性内切酶购自TaKaRa公司(大连)、转染试剂(xfact)和内吞体定位质粒pEGFP-endo购自Clontech有限公司(北京);大肠杆菌(E. coli)Rostta(DE3)菌株由本实验室保存;DH5α感受态细胞购自南京擎科有限公司(南京);广谱彩虹预染蛋白Marker购自康为世纪公司(北京);质粒提取和胶回收试剂盒购自捷倍斯生物科技有限公司(广州);DNA Marker DL2000和蛋白Marker购自东盛生物科技有限公司(广州)。血清和DMEM培养基购自Hyclone公司;镍柱、Gluttathione Sepharose 4B柱和电化学发光(electrogenerated chemiluminescence, ECL)试剂盒购自GE公司;His抗山羊抗鼠IgG抗体购自北京中杉金桥有限公司;重组质粒pmCherry-C1、pEGFP-C1/N1、pEGFP-C1-Mhcβ、pGEX-4T-1-MhcⅡβ、pEGFP-N1-F2、pET-32a-F2和人肾细胞系293 T细胞由本实验室保存。

1.2 引物设计与合成

参照GenBank登录的鸡Ii基因(ID:AY593057)新城疫F基因(ID:AY508514)序列,设计6对引物,用于扩增目的基因片段和融合基因(表 1)。

表 1 试验用引物序列和重组质粒 Table 1 The sequences of primers used in this study
1.3 目的基因的克隆与鉴定

以实验室保存的鸡Ii基因cDNA[15]和pET-32a-Cyt/Tra/F2[14]为模板和自行设计的引物(表 1)用PCR分别扩增并构建IiIi(Cyt/Tra)Ii(Cyt/Tra)/F2。PCR反应体系:Plus Mixs(10 μL)、上下游引物(20 μmol·mL-1)各0.2 μL、模板(200 μg·mL-1)0.1 μL,加ddH2O至终体积20.0 μL;PCR反应程序:热变性94 ℃ 3 min、94 ℃ 30 s、60 ℃ 45 s、72 ℃ 1 min、30个循环,最后72 ℃延伸8 min。扩增后用琼脂糖凝胶电泳检测片段大小,并用凝胶DNA回收试剂盒回收备用。

1.4 重组质粒的构建与鉴定

应用双酶切将扩增的目的基因片段插入真核/原核表达载体pmCherry-C1/pET-32a,构建重组质粒(表 1),所有操作方法按照试剂盒说明书进行。重组质粒经过PCR(体系条件同上)、双酶切(同上)和经琼脂糖电泳鉴定后,送上海华大基因科技有限公司测序验证。

1.5 重组菌的构建和表达

经鉴定构建成功的重组质粒[pET-32a-Ii、pET-32a-Ii(Cyt/Tra)和pET-32a-Ii(Cyt/Tra)/F2]和实验室保存质粒(pET-32a-F2[14]和pGEX-4T-1-MhcⅡβ[16])分别转入工程菌Rosetta(DE3),构建5个重组菌——R(pET-32a-Ii)、R[pET-32a-Ii(Cyt/Tra)]、R[pET-32a-Ii(Cyt/Tra)/F2]、R(pET-32a-F2)和R(pGEX-4T-1-MhcⅡβ)用于鉴定检测。同时用pGEX-4T-1-MhcⅡβ分别根据以下组合共转染Rosetta(DE3),构建4个用于共表达的重组Rosetta(DE3):R(pET-32a-Ii+pGEX-4T-1-MhcⅡβ)、R[pET-32a-Ii(Cyt/Tra)+pGEX-4T-1-MhcⅡβ]、R[pET-32a-Ii(Cyt/Tra)/F2+pGEX-4T-1-MhcⅡβ]和R(pET-32a-F2+pGEX-4T-1-MhcⅡβ)。所有构建的重组菌再经PCR鉴定(同“1.4”)。用异丙基-β-D硫代半乳糖苷(isopropyl-β-dthiogalactoside, IPTG) 0.6 mmol·L-15 h在37 ℃条件下诱导重组菌表达。收集的菌体用200 W、5 s、间隔10 s超声波破碎菌体50次,13 000×g,离心3 min后收集沉淀(包涵体),用8 mol·L-1尿素变性溶解,加入到透析袋于复性液(含1 mmol·L-1 EDTA-Na2,10%甘油,1 mmol·L-1DTT)中4 ℃透析48 h,期间更换4~6次透析液,使蛋白复性,最后经SDS-PAGE(十二烷基硫酸钠聚丙烯酰胺凝胶电泳,Sodium dodecyl sulfate polyacrylamide gel electrophoresis)鉴定。操作参照Chen等[17]的方法进行。

1.6 亲和层析与拉下法(pull-down)

用镍柱纯化由R(pET-32a-Ii)、R[pET-32a-Ii(Cyt/Tra)]、R[pET-32a-Ii(Cyt/Tra)/F2]和R(pET-32a-F2)表达的产物His/Ii、His/Ii(Cyt/Tra)、His/Ii(Cyt/Tra)/F2和His/F2;用Gluttathione Sepharose 4B柱纯化由R(pGEX-4T-1-MhcⅡβ)表达产物GST/MHCⅡβ,操作按试剂盒说明书。拉下法检测分子间的结合, 将4个重组菌共表达的产物变性和复性后加入Gluttathione Sepharose 4B柱于4 ℃孵育1 h,用3倍体积的PBS洗涤,然后用10 mmol·L-1的还原型谷胱甘肽洗脱,解离结合于层析柱上的复合物。其他操作按试剂盒说明书。纯化的蛋白和被洗脱的蛋白用SDS-PAGE鉴定。

1.7 免疫印迹

将上述洗脱液收集后,经过SDS-PAGE凝胶电泳,使复合物解离,再用半干法转印到尼龙膜上,用小牛血清封闭1 h处理后按照1: 5 000加入小鼠抗His抗体孵育过夜,次日用山羊抗鼠IgG抗体孵育1 h后,用电化学发光(electrogenerated chemiluminescence, ECL)显色方法检测。

1.8 细胞培养、重组质粒转染和免疫荧光的观察

293 T细胞在含10% FBS的DMEM培养基、37 ℃、5% CO2中培养,重组质粒pmCherry-C1-Ii、pmCherry-N1-Ii(Cyt/Tra)、pmCherry-N1-Ii(Cyt/Tra)/F2、pmCherry-N1-F2分别与pEGFP-C1-MhcⅡβ共转染293 T细胞以观察两种关联分子在细胞的共定位,或者分别与内吞体定位质粒pEGFP-N1-endo共转染293 T细胞以观察表达的分子是否在内吞体的定位。按照Chen等[17]的方法进行共转染。培养36 h后,从细胞培养皿孔中取出细胞爬片,PBS清洗3次,用4%多聚甲醛溶液固定5 min,再用PBS洗涤3次后甘油封片,最后在激光共聚焦显微镜下观察。

2 结果 2.1 目的基因的克隆和融合蛋白的表达鉴定

首先,用自行设计的引物克隆含鸡Ii基因的2个片段[IiIi(Cyt/Tra)]、1个含NDV-F基因片段的F2和1个融合基因片段[Ii(Cyt/Tra)/F2],经琼脂糖电泳回收和DNA测序验证后,分别将其插入原核表达载体pET-32a,构建成4个重组质粒,分别为pET-32a-Ii、pET-32a-Ii(Cyt/Tra)、pET-32a-Ii(Cyt/Tra)/F2和pET-32a-F2。如图 1所示,经双酶切后,在相应泳道(2、5、8和11)出现与PCR扩增的4个片段(泳道3、6、9和12)大小一致,分别为预期的627、171、279和108 bp。

M. DNA相对分子质量标准; 1、4、7、10.重组质粒pET-32a-Ii、pET-32a-Ii(Cyt/Tra)、pET-32a-Ii(Cyt/Tra)/F2和pET-32a-F2; 2、5、8、11. pET-32a-Ii、pET-32a-Ii(Cyt/Tra)、pET-32a-Ii(Cyt/Tra)/F2和pET-32a-F2的双酶切产物; 3、6、9、12. PCR产物IiIi(Cyt/Tra)Ii(Cyt/Tra)/F2和F2 M. DNA marker; 1, 4, 7, 10. Recombinant plasmids pET-32a-Ii, pET-32a-Ii(Cyt/Tra), pET-32a-Ii(Cyt/Tra)/F2 and pET-32a-F2; 2, 5, 8, 11. Digested products of pET-32a-Ii, pET-32a-Ii(Cyt/Tra), pET-32a-Ii(Cyt/Tra)/F2 and pET-32a-F2; 3, 6, 9, 12. PCR products of Ii, Ii(Cyt/Tra), Ii(Cyt/Tra)/F2 and F2 图 1 重组质粒的鉴定 Figure 1 Identification of the recombinant plasmids

其次,进一步鉴定了重组质粒所表达的目的蛋白。在优化诱导条件下表达的目的蛋白经亲和层析柱纯化,结果如图 2所示,由上述4个构建的质粒与实验室保存的质粒表达并纯化的目的蛋白的分子大小:His/Ii为44.4 ku(泳道1),His/Ii(Cyt/Tra)为31.1 ku(泳道2),His/Ii(Cyt/Tra)/F2为33.5 ku(泳道3),His/F2为25.6 ku(泳道4),其中Ii、Ii(Cyt/Tra)和F2的预期大小分别为22.4、9.3和3.6 ku。GST/MHCⅡβ为52.1 ku(泳道5)。此外,标签蛋白GST为26 ku(泳道6),His为22 ku(泳道7)。图 2的结果表明重组菌所表达的目的蛋白大小与预期相符。

M.蛋白质相对分子质量标准; 1. His/Ii; 2. His/Ii(Cyt/Tra); 3.His/Ii(Cyt/Tra)/F2; 4. His/F2; 5.GST/MHCⅡβ; 6. GST; 7. His M.Protein marker; 1. His/Ii; 2. His/Ii(Cyt/Tra); 3. His/Ii(Cyt/Tra)/F2; 4. His/F2; 5. GST/MHCⅡβ; 6. GST; 7. His 图 2 纯化分子SDS-PAGE鉴定 Figure 2 Identification of purified molecules
2.2 Ii(Cyt/Tra)具有携带抗原肽结合MHCⅡ类分子的功能

为确定鸡Ii(Cyt/Tra)是否具有携带抗原肽结合MHCⅡβ的功能,应用拉下法进行检测。结果如图 3所示,His/Ii(Cyt/Tra)和His/Ii均能结合亲和层析柱上的GST/MHCⅡβ,这是因为在亲和层析柱上交联的谷胱甘肽(gluttathione)通过结合标签蛋白GST而使GST/MHCⅡβ滞留在柱内,由于共表达的His/Ii或His/Ii(Cyt/Tra)能够结合MHCⅡβ而形成复合物,也被滞留在柱内,不被洗涤液洗脱;在加入含谷胱甘肽的洗脱液后,由于谷胱甘肽的竞争使复合物从柱上被解离,复合物因SDS的作用在SDS-PAGE中进一步被解离成2个单分子,形成两条带(泳道1和2)。His/Ii(Cyt/Tra)/F2由于上述原因也能与GST/MHCⅡβ结合而出现两条带(泳道3),而在泳道4只出现被解离的GST/MHCⅡβ,而无与GST/MHCⅡβ共表达的His/F2,表明His/F2不能与GST/MHCⅡβ结合。对照中,标签蛋白GST和His分别存在于洗涤液和洗脱液中(泳道6和7)。

M.蛋白质相对分子质量标准; 1. His/Ii+GST/MHCⅡβ; 2. His/Ii(Cyt/Tra)+GST/MHCⅡβ; 3. His/Ii(Cyt/Tra)/F2+GST/MHCⅡβ; 4. His/F2+GST/MHCⅡβ; 5. His+GST/MHCⅡβ; 6. GST对照; 7. His对照 M. Protein marker; 1. His/Ii+GST/MHCⅡβ; 2. His/Ii(Cyt/Tra)+GST/MHCⅡβ; 3. His/Ii(Cyt/Tra)/F2+GST/MHCⅡβ; 4. His/F2+GST/MHCⅡβ; 5. His+GST/MHCⅡβ; 6.GST control; 7.His control 图 3 Ii(Cyt/Tra)载体在拉下法中结合MHCⅡβ Figure 3 Binding of Ii(Cyt/Tra)carrier to MHCⅡβ in pull-down

由于在拉下法中利用吸附于柱上的GST/MHCⅡβ结合His/Ii、His/Ii(Cyt/Tra)和His/Ii(Cyt/Tra)/F2,为了确定从MHCⅡβ解离的分子的性质,进一步做了免疫印迹。结果如图 4所示,与GST/MHCⅡβ结合并被解离(在SDS-PAGE中)的分子是His/Ii、His/Ii(Cyt/Tra)、His/Ii(Cyt/Tra)/F2(泳道1、2、3), 它们均同对照His(泳道5)一样能被特异性抗体所识别。由于His/F2不能结合GST/MHCⅡβ,故在洗涤时就被从层析柱中去除,在随后被洗脱液解离的是单一的GST/MHCⅡβ分子,在洗脱液中不存在His/F2(方法结合液中无His/F2),故在泳道4中没有蛋白质条带。这些结果进一步表明,无论是His/Ii和His/Ii(Cyt/Tra),还是His/Ii(Cyt/Tra)/F2,在与GST/MHCⅡβ结合时,具有极高的稳定性。

M.蛋白质相对分子质量标准; 1. His/Ii+GST/MHCⅡβ; 2. His/Ii(Cyt/Tra)+GST/MHCⅡβ; 3. His/Ii(Cyt/Tra)/F2; 4. His/F2+GST/MHCⅡβ; 5. His对照 M. Protein marker; 1. His/Ii+GST/MHCⅡβ; 2. His/Ii(Cyt/Tra)+GST/MHCⅡβ; 3. His/Ii(Cyt/Tra)/F2; 4. His/F2+GST/MHCⅡβ; 5. His control 图 4 免疫印迹鉴定pull-down中关联MHCⅡβ的结合物 Figure 4 Identification of the molecules associating with MHCⅡβ in pull-down by Western blot
2.3 Ii(Cyt/Tra)携带抗原肽F2与MHCⅡβ在真核细胞的共定位

尽管Ii(Cyt/Tra)/F2结合MHCⅡβ,但是它们在真核细胞内,只有在相同部位表达和定位,才可能实现这种结合。为此,进一步检测了Ii(Cyt/Tra)与MHCⅡβ在真核细胞内的共定位。将相应重组质粒共转染293 T细胞,在激光共聚焦显微镜下观察其表达状态。如图 5所示,不仅GFP/Ii和GFP/Ii(Cyt/Tra)(图 5ab),而且GFP/Ii(Cyt/Tra)/F2(图 5c)均能与带有绿色荧光标签的RFP/MHCⅡβ共定位,而表达的GFP/F2不仅在细胞内的分布不同,而且与RFP/MHCⅡβ不能共定位(图 5d)。因为,标记绿色荧光蛋白分子的MHCⅡβ和标记红色荧光蛋白的Ii、Ii(Cyt/Tra)和Ii(Cyt/Tra)/F2在共定位状态下,在融合(merged)图中,形成绿红相交的黄色;如无共定位状态,则只在细胞内显示标记的绿色或红色荧光。图 5的结果表明Ii(Cyt/Tra)可以携带F2在真核细胞内与MHCⅡβ共定位。

图 5 Ii(Cyt/Tra)载体与MHCⅡβ在真核细胞的共定位(1 000×) Figure 5 Co-localization of Ii(Cyt/Tra)carrier with MHCⅡβ in eukaryotic cells(1 000×)
2.4 Ii(Cyt/Tra)改变抗原肽在真核细胞的定位进入内吞体

为确定鸡Ii(Cyt/Tra)是否与Ii以及MHCⅡβ一样,能够进入抗原递呈途径中的关键细胞器——内吞体,将构建的重组质粒分别与内吞体定位质粒共转染293 T细胞,在激光共聚焦显微镜下观察Ii、Ii(Cyt/Tra)、Ii(Cyt/Tra)/F2和F2在细胞内的定位。结果如图 6所示,除了F2(图 6d),其他分子均能在细胞内吞体定位(图 6abc)。因为内吞体定位质粒在细胞内表达携带绿色荧光蛋白,而其他分子则标记了红色荧光蛋白,只有Ii、Ii(Cyt/Tra)、Ii(Cyt/Tra)/F2出现融合的黄色,而F2则没有。

图 6 Ii(Cyt/Tra)载体在真核细胞内吞体的定位(1 000×) Figure 6 Localization of Ii(Cyt/Tra) carrier in endosomes (endo) of eukaryotic cells (1 000×)
3 讨论

首先,本研究的结果表明Ii载体能够携带抗原肽结合MHCⅡ类分子,而结合MHC分子是抗原肽被递呈的关键。在抗原递呈细胞(APC)内,抗原肽与MHC分子结合形成抗原肽/MHC复合物[5],其结合的部位是MHC分子的PBR[18]。研究表明,MHC分子的高度多态性主要发生在PBR[19],尽管MHC分子对抗原肽的选取及结合是个复杂的过程,但是已经明确的是只有抗原肽与MHC分子结合并形成复合物才能进入递呈途径[20-21]。在体外,已经证明人[5]、小鼠[12]、鸡[15, 22]、鱼[17]等动物的Ii能与MHCⅡ类分子结合,而结合的部位是Ii的CLIP和MHCⅡ类分子PBR[18]。本研究应用原核表达和pull-down检测了Ii载体与MHCⅡ分子的结合关系。在研究蛋白互相结合的方法中,一是原核表达,其优点是操作简便,并可大量获得产物,而缺点是必须保证表达蛋白的活性结构;二是真核表达,其优点是表达产物结构稳定,容易保持活性,而缺点是操作复杂、获得产物量少,并要用免疫共沉淀等。作者在过去的研究中,发现Ii(包括其片段)和MHCⅠ、Ⅱ类分子均能在原核表达,在复性后均保持了结合活性[23]。本研究的结果表明,Ii的胞质区/跨膜区(Cyt/Tra)也能结合MHCⅡ类分子(图 3),尽管F2本身不具有结合MHCⅡβ的能力,但是Ii(Cyt/Tra)结构作为载体却能携带F2结合MHCⅡβ,与之形成MHCⅡβ-Ii(Cyt/Tra)/F2聚合物(图 3)。

其次,本研究的结果还表明Ii载体还能够携带抗原肽与MHCⅡβ在真核细胞内共定位,并进入内吞体。MHCⅡ类分子首先在免疫细胞的内质网装配成熟,与Ii形成多聚体[5, 24];然后经高尔基体转入内吞体[25],并在一系列因素作用下,Ii被解离而由抗原肽取代CLIP进入PBR[7];最后MHCⅡ/抗原肽复合物被转运到细胞表面,被淋巴细胞表面的BCR或TCR识别,启动特异性免疫[20]。所以内吞体是抗原肽/MHC复合物在APC细胞内转运途径中最重要的细胞器。本研究应用不同颜色荧光蛋白作为标签的真核表达质粒共转染293 T细胞,观察关联蛋白在细胞内的定位,这是已被广泛应用的方法。在本研究中,分别用红色和绿色荧光蛋白标记的Ii(包括载体和抗原肽F2)和MHCⅡβ,观察两种相关分子在细胞内的共定位。如果相关分子在体外结合,而在细胞内不能共定位,这种结合就缺乏生物学意义,因为在细胞内两者没有结合的机会。此外,用近年来应用细胞器(内吞体)定位的真核表达质粒[26]与含目的基因的质粒共转染,指示目的蛋白所定位的细胞器。由于MHC/抗原肽复合物的形成并被转移到细胞膜前是在内吞体发生的,所以内吞体的定位是关键性的。基于上述方法所获得结果表明,Ii(Cyt/Tra)不仅自身能够与MHCⅡβ在真核细胞内共定位(图 5b),而且还能携带抗原肽[Ii(Cyt/Tra)/F2]与MHCⅡβ共定位(图 5c);尽管F2不能进入内吞体(图 6d),但是Ii、Ii(Cyt/Tra)和Ii(Cyt/Tra)/F2均能进入内吞体(图 6abc)。

4 结论

Ii的Cyt/Tra具有携带抗原肽结合MHCⅡβ以及进入免疫细胞内吞体并与MHCⅡβ共定位的功能。这为其作为免疫载体提供了理论依据,也为进一步探索其增强免疫效果机制奠定了基础。

参考文献
[1] LIPP J, DOBBERSTEIN B. Signal recognition particle-dependent membrane insertion of mouse invariantchain:a membrane-spanning protein with a cytoplasmically exposed amino terminus[J]. J Cell Biol, 1986, 102(6): 2169–2175. DOI: 10.1083/jcb.102.6.2169
[2] CHEN F, PAN L, DAI Y, et al. Characteristics of expression of goose invariant chain gene and comparison of its structure among different species[J]. Poultry Sci, 2011, 90(8): 1664–1670. DOI: 10.3382/ps.2010-01336
[3] ZHONG D L, YU W Y, BAO M, et al. Molecular cloning and mRNA expression of duck invariant chain[J]. Vet Immunol Immunopathol, 2006, 110(3-4): 293–302. DOI: 10.1016/j.vetimm.2005.10.004
[4] STOCKINGER B, PESSARA U, LIN R H, et al. A role of la-associated invariant chains in antigen processing and pressentation[J]. Cell, 1989, 56(4): 683–689. DOI: 10.1016/0092-8674(89)90590-4
[5] BIJLMAKERS M J, BENAROCH P, PLOEGH H L. Mapping functional regions in the lumenal domain of the class Ⅱ-associated invariant chain[J]. J Exp Med, 1994, 180(2): 623–629. DOI: 10.1084/jem.180.2.623
[6] GENÉVE L, CHEMALI M, DESJARDINS M, et al. Human invariant chain isoform p35 restores thymic selection and antigen presentation in CD74-deficient mice[J]. Immunol Cell Biol, 2012, 90(9): 896–902. DOI: 10.1038/icb.2012.27
[7] BREMNES B, MADSEN T, GEDDE-DAHL M, et al. An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization[J]. J Cell Sci, 1994, 107(Pt 7): 2021–2032.
[8] STARODUBOVA E S, ISAGULIANTS M G, KUZMENKO Y V, et al. Fusion to the lysosome targeting signal of the invariant chain alters the processing and enhances the immunogenicity of HIV-1 reverse transcriptase[J]. Acta Nat, 2014, 6(1): 61–68.
[9] JENSEN B A H, STEFFENSEN M A, NIELSEN K N, et al. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination[J]. Mol Ther, 2014, 22(12): 2107–2117.
[10] MIKKELSEN M, HOLST P J, BUKH J, et al. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class Ⅱ chaperone protein invariant chain[J]. J Immunol, 2011, 186(4): 2355–2364.
[11] XIONG R, DAI W, YU W Y, et al. Influence of the Series Multiepitopes of DNV-HN and IBDV-VP2 on an immune enhancement mediated by invariant chain segments as carrier[J]. J Anim Vet Adv, 2014, 13(4): 236–240.
[12] CHEN F F, MENG F T, PAN L, et al. Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class Ⅱ molecules[J]. BMC Immunol, 2012, 13: 55. DOI: 10.1186/1471-2172-13-55
[13] TOYODA T, GOTOH B, SAKAGUCHI T, et al. Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization[J]. J Virol, 1988, 62(11): 4427–4430.
[14] 王琛, 刘雪兰, 陈芳芳, 等. 鸡恒定链功能片段跨物种增强小鼠对新城疫F2抗原免疫作用的研究[J]. 西北农林科技大学学报:自然科学版, 2014, 42(5): 33–38.
WANG C, LIU X L, CHEN F F, et al. Cross species enhancement of mice antigen immune function against NDV-F2 by invariant chain functional fragments of chicken[J]. Journal of Northwest A&F University:Natural Science Edition, 2014, 42(5): 33–38. (in Chinese)
[15] CHEN F F, PAN L, ZHANG J G, et al. Allele-dependent association of chicken MHC class Ⅰ molecules with the invariant chain[J]. Vet Immunol Immunopathol, 2014, 160(3-4): 273–280. DOI: 10.1016/j.vetimm.2014.05.013
[16] CHEN F F, WU C, PAN L, et al. Cross-species association of quail invariant chain with chicken and mouse MHC Ⅱmolecules[J]. Dev Comp Immunol, 2013, 40(1): 20–27.
[17] CHEN F F, LIN H B, LI J C, et al. Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class Ⅱ chaperone protein associates with the class Ⅰ molecule[J]. Fish Shellfish Immunol, 2017, 63: 1–8. DOI: 10.1016/j.fsi.2017.01.030
[18] ROMAGNOLI P, GERMAIN R N. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class Ⅱ folding, transport, and peptide occupancy[J]. J Exp Med, 1994, 180(3): 1107–1113. DOI: 10.1084/jem.180.3.1107
[19] CHEN F, PAN L, CHAO W, et al. Character of chicken polymorphic major histocompatibility complex class Ⅱ alleles of 3 Chinese local breeds[J]. Poultry Sci, 2012, 91(5): 1097–1104. DOI: 10.3382/ps.2011-02007
[20] BIDDISON W E, RAO P E, TALLE M A, et al. Possible involvement of the T4 molecule in T cell recognition of class Ⅱ HLA antigens:evidence from studies of proliferative responses to SB antigens[J]. J Immunol, 1983, 131(1): 152–157.
[21] O'SULLIVAN D M, NOONAN D, QUARANTA V. Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation[J]. J Exp Med, 1987, 166(2): 444–460.
[22] 许发芝, 吴胜国, 刘雪兰, 等. 鸡恒定链分子跨膜区2个氨基酸残基在形成MHCⅡ-Ii复合物中的作用[J]. 畜牧兽医学报, 2011, 42(5): 721–728.
XU F Z, WU S G, LIU X L, et al. The function of two amino acid residues located in chicken invariant chain transmembrane domain in assembly of MHCⅡ-Ii complex[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(5): 721–728. (in Chinese)
[23] 罗兰芳, 余为一, 陈芳芳. 鸡IiB-L基因表达产物的细胞定位与结合活性特征[J]. 中国免疫学杂志, 2015, 31(7): 879–883, 889.
LUO L F, YU W Y, CHEN F F. Characters of location in cells and binding activity of chicken Ii and B-L gene ex-pressed products[J]. Chinese Journal of Immunology, 2015, 31(7): 879–883, 889. DOI: 10.3969/j.issn.1000-484X.2015.07.003 (in Chinese)
[24] LANDSVERK O J, BAKKE O, GREGERS T F. MHC Ⅱ and the endocytic pathway:regulation by invariant chain[J]. Scand J Immunol, 2009, 70(3): 184–193. DOI: 10.1111/sji.2009.70.issue-3
[25] PIETERS J, HORSTMANN H, BAKKE O, et al. Intracellular transport and localization of major histocompatibility complex class Ⅱ molecules and associated invariant chain[J]. J Cell Biol, 1991, 115(5): 1213–1223. DOI: 10.1083/jcb.115.5.1213
[26] KOLESNIKOVA L, BERGHVFER B, BAMBERG S, et al. Multivesicular bodies as a platform for formation of the marburg virus envelope[J]. J Viol, 2004, 78(22): 12277–12287.