畜牧兽医学报  2019, Vol. 50 Issue (2): 364-372. DOI: 10.11843/j.issn.0366-6964.2019.02.014    PDF    
山羊副流感病毒3型感染MDBK细胞的转录组分析
钟纯燕1,3, 李基棕1,2, 毛立1, 李文良1, 郝飞1, 孙敏1, 刘茂军1, 主性3, 嵇辛勤3, 肖芳1,3, 杨蕾蕾1, 张纹纹1     
1. 江苏省农业科学院兽医研究所, 农业部兽用生物制品工程技术重点实验室, 南京 210014;
2. 临沂大学药学院, 临沂 276000;
3. 贵州大学动物科学学院, 贵阳 550025
摘要:本研究旨在探究山羊副流感病毒3型(CPIV3)感染MDBK细胞后的转录组基因变化情况,丰富CPIV3转录组信息。取1 MOI CPIV3 JSHA2014-1病毒液感染MDBK细胞,设非感染正常细胞为对照,于24 h后收获细胞,提取总RNA,利用Illumina HiSeqTM 2500对感染组与对照组进行高通量测序,并用测序评估、基因注释等生物信息学方法进行分析。结果显示,差异表达基因共261个,其中表达上调140个,表达下调121个,经RT-qPCR方法验证8个差异表达的干扰素信号通路相关基因,结果与高通量测序一致。进一步GO分类结果显示,差异表达基因主要涉及细胞生物学进程、构成细胞的组分以及实现的分子功能三个方面,KEGG分析显示这些基因参与代谢、生物系统、细胞进程、基因信息进程和环境信息进程。本研究为深入探究CPIV3的致病机制奠定了基础。
关键词山羊副流感病毒3型    MDBK细胞    高通量测序    转录组    
Transcriptome Analysis of MDBK Cells Infected with the Caprine Parainfluenza Virus Type 3 JSHA2014-1 Strain
ZHONG Chunyan1,3, LI Jizong1,2, MAO Li1, LI Wenliang1, HAO Fei1, SUN Min1, LIU Maojun1, ZHU Xing3, JI Xinqin3, XIAO Fang1,3, YANG Leilei1, ZHANG Wenwen1     
1. Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
2. School of Pharmacy, Linyi University, Linyi 276000, China;
3. College of Animal Science of Guizhou University, Guiyang 550025, China
Abstract: To explore the cellular transcriptional gene differentially expressed in MDBK cells infected with caprine parainfluenza virus type 3 (CPIV3), we analyzed the mRNA expression profiles in MDBK cells infected with 1 MOI CPIV3 JSHA2014-1 strain at 24 hpi using high-throughput sequencing. The results indicated that a total of 261 genes were obviously differentially expressed in the infected MDBK cells including 140 up-regulated genes and 121 down-regulated genes. The eight of these genes were verified by RT-qPCR assay, and the results were consistent with those of high-throughput sequencing. GO analysis classification showed that differentially expressed genes were mainly involved in biological processes, cellular components and molecular functions. KEGG analysis shows that the signaling pathways involved in these genes included metabolism-related signaling pathways, biological systems, cellular processes, gene information processes and environmental information processes. This study laid the foundation for further exploring the pathogenesis of CPIV3.
Key words: caprine parainfluenza virus type 3     MDBK cells     high-throughput sequencing     transcriptome    

山羊副流感病毒3型(caprine parainfluenza virus type 3,CPIV3)属于副黏病毒科、呼吸道病毒属成员,与其同属的成员还包括人副流感病毒1型与3型(HPIV1、HPIV3)、牛副流感病毒3型(BPIV3)以及仙台病毒(SV),它们均是有囊膜的单股负链RNA病毒[1]。该病原于2013年在江苏省被检测出来,发病羊群主要表现出不同程度的呼吸道感染,通过RT-PCR扩增测序NMFHNL基因得出,这些基因与HPIV3、BPIV3的相似性仅为76.9%~ 83.5%,进化树上处于独立的分支[2]。随后进行致病性研究发现,CPIV3攻毒山羊表现出咳嗽、眼分泌物增多、流鼻涕、体温升高等临床症状。通过荧光定量RT-qPCR方法对采集的114份鼻拭子和血清进行检测,结果显示CPIV3病原核酸检出率达44.7%[3]。因此,CPIV3是威胁羊群健康的主要呼吸道疾病病原之一,探究其致病机制意义较大。

转录组包括特定组织或细胞在某一时期内表达的所有RNA的集合,包括small RNA、lncRNA及mRNA等[4]。转录组测序理论上可以研究各种长度范围的RNA序列,目前已广泛应用于动物、植物、细菌、病毒等领域[5-7]。在感染羊的细菌病原研究中,刘倩宏[8]利用高通量技术建立了布鲁菌感染小鼠巨噬细胞后的差异表达基因数据库,对小鼠巨噬细胞感染布鲁菌后的动态转录组学轮廓进行了描述。在感染羊的病毒病原研究中,陈达香等[9]通过mRNA测序技术研究人皮肤成纤维细胞在羊口疮病毒(ORFV)感染后细胞及病毒基因转录表达水平的特异性变化。因此,转录组学在羊病原致病机制研究中意义较大,本课题组前期利用Illumina平台,分析了CPIV3感染MDBK细胞中miRNA表达谱变化,并筛选出37个差异表达的miRNA,其中18个miRNA表达上调,19个miRNA表达下调,靶基因预测与功能分析发现这些miRNA调控CPIV3的复制以及宿主细胞的先天免疫应答[10]。为进一步丰富CPIV3的转录组信息,本研究通过Illumina HiSeqTM 2500对感染CPIV3的MDBK细胞进行测序分析,筛选出261个差异表达基因,通过GO与KEGG富集分析,利用RT-qPCR对参与干扰素信号通路相关的8个差异表达基因进行验证,为深入研究宿主细胞抵抗CPIV3感染提供了基础数据。

1 材料与方法 1.1 主要试验材料与样品采集

CPIV3 JSHA2014-1 MDBK细胞适应株分离鉴定并保存于本实验室;MDBK细胞购自中国兽医药品监察所。将MDBK细胞铺于60 mm的细胞培养皿中,待单层细胞长至90%左右汇合度后,接种1 MOI的CPIV3,孵育1 h后,换为含2% FBS的DMEM维持液,24 h后收获细胞并命名为CPIV3- infected,同时设MDBK正常细胞对照即Mock-infected,保存在液氮中待用,试验重复三次[10]

1.2 试验方法 1.2.1 总RNA提取

从组织样品中提取total RNA,利用Nanodrop2000对所提RNA的浓度和纯度进行检测,琼脂糖凝胶电泳检测RNA完整性,Agilent2100测定RIN值。单次建库要求RNA总量5 μg,质量浓度≥250 ng·μL-1,OD260 nm/OD280 nm介于1.8~2.2之间。

1.2.2 文库的构建与Illumina测序

总RNA样品通过去除rRNA、片段化RNA、反转合成cDNA、连接adaptor、UNG酶将cDNA第二链消化,建立仅包含cDNA第一链的基因文库[11]。再通过PCR扩增15个cycles进行文库富集,2%琼脂糖胶回收目的条带后,进行TBS380(Picogreen)定量,按数据比例混合上机,通过cBot进行桥式PCR扩增,生成clusters,最后通过Illumina测序平台,进行2×150 bp测序。

1.2.3 测序数据的处理与分析

由于原始测序数据中包含测序接头序列、低质量读段、N率较高序列及长度过短序列,这将严重影响后续分析的质量[12]。为保证后续的生物信息分析的准确性,使用SeqPrep(https://github.com/jstjohn/SeqPrep)与Sickle(https://github.com/najoshi/sickle)软件去除reads中的接头序列,将序列3′端质量小于20的碱基修剪掉,去除含N比率超过10%的reads,舍弃adapter及质量修剪后长度小于20 bp的序列,使用Hisat2(https://ccb.jhu.edu/software/hisat2/index.shtml)软件将测序Reads比对到参考基因组上,从而得到高质量的测序数据(clean data)[13]

1.2.4 差异表达基因筛选

先使用RSEM软件(http://www.biomedsearch.com/nih/RSEM-accurate-Transcript-quantification-from/21816040.html)以FPKM为单位来计算基因或转录本的表达量[14]。再使用edgeR软件(http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html)筛选出FDR < 0.05或者|log2FC|≥1的显著差异表达基因[15]

1.2.5 差异表达基因的GO与KEGG富集分析

对差异基因进行GO (Gene Ontology, http://www.geneontology.org/)功能显著性富集分析,可以说明差异基因的功能富集情况,在基因功能水平阐明样本间的差异。本次分析使用软件Goatools (https://github.com/tanghaibao/GOatools)从参与的生物学过程(biological process, BP)、构成细胞的组分(cellular component, CC)以及实现的分子功能(molecular function, MF)三个方面来进行富集分析,使用Fisher精确检验对P值(corrected P-value)进行校正,当经过校正的P值≤0.05时,认为此GO功能存在显著富集情况[16]。在京都基因和基因组百科全书(http://www.genome.jp/kegg/)的基础上,使用KOBAS(http://ko-bas.cbi.pku.edu.cn/home.do)进行KEGG PATHWAY富集分析, 并使用Fisher精确检验进行计算,校正的P值以0.05为阈值,满足此条件的KEGG通路定义为在差异表达基因中显著富集的KEGG通路。

1.2.6 RT-qPCR验证分析

根据高通量测序结果,选择与干扰素通路相关的8个差异表达基因,利用RT-qPCR方法进行验证分析。使用Primer5.0进行引物设计,引物序列见表 1。RT-qPCR结果通过2-△△Ct计算各基因的相对表达量,通过内参基因GAPDH校正,GraphPad Prism 5统计软件进行显著分析。

表 1 扩增干扰素通路相关基因的RT-qPCR特异性引物 Table 1 Primers used to detect mRNA expression levels by RT-qPCR
2 结果 2.1 总RNA的提取与检测

Nanodrop2000检测结果显示,CPIV3-infected组RNA总量32.5 μg,质量浓度为1 626.6 ng·μL-1,OD260 nm/ OD280 nm为2.13,Mock-infected组RNA总量29.1 μg,质量浓度为1 452.9 ng·μL-1,OD260 nm/ OD280 nm为2.12,Agilent2100测定RIN值两组均为10,说明两组样品在浓度、纯度及完整性上都满足建库需求,可以进行后续试验。

2.2 测序数据的处理与分析

CPIV3-infected组与Mock-infected组原始产出数据结果显示,得到的序列数分别为142 922 284条与148 007 182条,Phred数值大于20的碱基占总体碱基的百分比分别是97.39%与97.49%,对数量修剪后的序列进行数据统计显示,得到的序列数分别是140 260 054条与145 378 894条,Phred数值大于20的碱基占总体碱基的百分比分别是98.48%与98.54%(表 2),表明质控后得到了高质量的测序数据来保证后续试验的顺利进行。将两组样品进行mapping比率统计(比对序列数/总序列数),结果CPIV3-infected组为85.65%(120 130 486/ 140 260 054),Mock-infected组为90.43%(131 469 896/145 378 894),实现了RNA-Seq跨越多个外显子读取的高效比对。

表 2 数据统计结果 Table 2 The results of statistical analysis
2.3 差异表达基因筛选

使用RSEM软件以FPKM为单位计算出CPIV3-infected与Mock-infected转录本的表达量,结果如表 3所示,CPIV3-infected组FPKM小于100占67%,大于500占19%;Mock-infected组FPKM小于100占68%,大于500占18%。在这13 240个基因中,使用edgeR软件筛选出FDR < 0.05或者|log2FC| ≥1的显著差异表达基因,结果表明显著差异表达基因共261个,其中表达上调140个,表达下调121个,如表 4所示,列举出其中与干扰素通路相关的8个显著差异表达基因,1个基因(STAT1)表达下调,7个ISGs基因表达上调。

表 3 CPIV3感染前后FPKM值 Table 3 FPKM value before and after CPIV3 infected
表 4 显著差异表达基因列表 Table 4 List of differentially expressed genes
2.4 GO富集分析

以Mock-infected组为对照,利用GO数据库对CPIV3-infected组差异表达基因进行GO注释统计,结果表明有2 507个基因与数据库的基因功能聚类数据相匹配,其中上调差异基因1 357个,下调差异基因1 149个,以它们参与的BP、CC及MF分为52亚类,上调基因注释到细胞成分组织或生物发生,免疫系统过程及趋化细胞因子活性等48亚类,下调基因注释到细胞外基质,电子转运活动与代谢过程等49亚类(图 1)。

图 1 差异表达基因GO分析 Figure 1 GO analysis of differentially expressed genes

利用Goatools数据库对720个基因进行GO富集分析,显示在病毒基因组复制的负调控、病毒基因组复制调控及构成细胞的泛素连接酶复合体三个亚类富集率最高,通过FDR筛选后,显著富集的GO term(FDR < 0.05)主要体现在BP的高分子变化、生物过程及细胞蛋白修饰过程等11个亚类,CC的胞内细胞器、细胞膜有界细胞器及细胞成分等10个亚类以及MF的腺苷基核苷酸结合、嘌呤核苷三磷酸结合及杂环化合物结合等21个亚类(图 2),说明感染CPIV3的MDBK细胞发生了复杂的生物学变化。

Biological process: 1.macromolecule modification; 2.biological process; 3.cellular protein modification process; 4.protein modification process; 5.regulation of cellular metabolic process; 6.regulation of nitrogen compound metabolic process; 7.regulation of primary metabolic process; 8.regulation of metabolic process; 9.regulation of macromolecule metabolic process; 10.cellular protein metabolic process; 11.cellular macromolecule metabolic process; 12.regulation of nucleobase-containing compound metabolic process; 13.regulation of cellular biosynthetic process; 14.cellular process; 15. regulation of cellular process; 16.organonitrogen compound metabolic process; 17.phosphate-containing compound metabolic process; 18.cellular metabolic process; 19.negative regulation of viral genome replication; 20.biological regulation; 21.regulation of biosynthetic process; 22.metabolic process; 23.regulation of RNA metabolic process; 24.regulation of viral genome replication; 25.cellular amino acid metabolic process; 26.regulation of cellular macromolecule biosynthetic process Cellular component: 1.intracellular part; 2.intracellular organelle; 3.organelle; 4.cell part; 5.intracellular membrane-bounded organelle; 6.membrane-bounded organelle; 7.cellular component; 8.nucleus; 9.cytoplasm; 10.periuclear region of cytoplasm; 11.ubiquitin ligase complex; 12.cytoplasmic part Molecular function: 1.binding; 2.adenyl ribonucleotide binding; 3.adenyl nucleotide binding; 4.ribonucleotide binding; 5.purine ribonucleotide binding; 6.carbohydrate derivative binding; 7.purine nucleotide binding; 8.ATP binding; 9.purine ribonucleotide triphosphate binding; 10.anion binding; 11.nucleotide binding; 12.nucleotide phosphate binding; 13.ion binding; 14.kinase activity; 15.transferase activity; 16.molecular function; 17.heterocyclic compound binding; 18.catalytic activity; 19.organic cyclic compound binding; 20.small molecule binding; 21.ligase activity; 22.transferase activity, transferring phosphorus-containing groups 图 2 差异表达基因GO富集柱状图 Figure 2 GO enriched histogram of differentially expressed gene
2.5 KEGG富集分析

图 3可知,使用KOBAS对156个差异表达基因进行KEGG pathway富集分析,结果显示参与56条通路,其中5条通路显示显著性富集(P < 0.05),这些差异表达基因参与环境信息过程(environmental information processing, EIP)、基因信息过程(genetic information processing, GIP)、细胞过程(cellular processes, CP)、生物体系统(organismal systems, OS)以及代谢(metabolism, M)相关的信号通路,显著富集的5条通路主要包括CP中的细胞循环通路;EIP中的Hippo信号通路;GIP中的泛素介导的蛋白质水解通路以及OS中的甲状腺激素信号通路,进一步说明了感染CPIV3的MDBK细胞发生了一系列的信号通路改变。

Cellular processes: 1.cell cycle; 2.meiosis-yeast; 3.oocyte meiosis; 4.cell cycle-yeast; 5.signaling pathways regulatingpluripotency of stem cells; 6.endocytosis; 7. peroxisome Environmental information processing: 1.hippo signaling pathway; 2.hippo signaling pathway-fly; 3.ErbB signaling pathway; 4.hedgehog signaling pathway; 5.HIF-1 signaling pathway; 6.MAPK signaling pathway-yeast; 7.MAPK signaling pathway; 8.Wnt signaling pathway; 9.PI3K-Akt signaling pathway; 10.phosphatidylinositol signaling pathway; 11.TNF signaling pathway Genetic information processing: 1.Ubiquitin mediated proteolysis; 2.protein processing in endoplasmic reticulum; 3.protein export; 4.fanconi anemia pathway; 5.aminoacyl-tRNA biosynthesis; 6.mRNA survellance pathway; 7.RNA transport Metabolism: 1.alanine, aspartate and glutamate metabolism; 2.propanoate metabolism; 3.fructose and mannose metabolism; 4.glyoxytate anddicarboxylate metabolism; 5.carbon fixation pathways in prokaryotes; 6.methane metabolism; 7.fatty acid metabolism; 8.carbon metabolism; 9.biosynthesis of amino acids; 10.glycosphingolipid biosynthesis-lacto and neolacto series; 11.other types of O-glycan biosynthesis; 12.various types of N-glycan biosynthesis; 13.fatty acid biosynthesis; 14.biosynthesis of unsaturated fatty acids; 15.fatty acid elongation; 16.vitamin B6 metabolism; 17.one carbon pool by folate; 18.pyrimidine metabolism; 19.drug metabolism-other enzymes Organismal systems: 1.thyroid hormone signaling pathway; 2.prolactin signaling pathway; 3.adipocytokine signaling pathway; 4.glucagon signaling pathway; 5.circadian rhythm-fly; 6.circadian rhythm; 7.endocrine and other factor-regulated caicium reabsorption; 8.toll-like receptor signaling pathway; 9.NOD-like receptor signaling pathway; 10.RIG-1-like receptor signaling pathway; 11.chemokine signaling pathway; 12.synaptic vesicle cycle 图 3 差异表达基因KEGG富集柱状图 Figure 3 KEGG enriched histogram of differentially expressed genes
2.6 RT-qPCR验证分析

选择8个干扰素通路相关基因进行RT-qPCR验证分析,试验进行3次重复。结果如图 4所示,RSAD2、MX2、OAS1Y、ISG15、MX1、IFI6、OAS1Z基因表达上调;STAT1基因表达下调。表明RT-qPCR与高通量测序结果一致,说明此次测序结果可信。

图 4 差异表达基因干扰素相关基因的RT-qPCR验证 Figure 4 Validation of differentially expressed host mRNAs using RT-qPCR
3 讨论

CPIV3属于副黏病毒科呼吸道病毒属中的一员,相对于其他呼吸道病毒而言,其研究水平还处于初步阶段。在前期研究中,课题组发现CPIV3不能在山羊原代肺泡巨噬细胞和外周血单核细胞上进行增殖。虽然CPIV3的靶器官是呼吸器官,使用MDBK细胞进行研究具有一定局限性,但CPIV3在MDBK细胞上增殖效果较好,目前还未找到更好的细胞系来替代MDBK细胞,因此本研究使用MDBK细胞对CPIV3进行相关研究。研究人员发现,使用1 MOI病毒接种MDBK细胞24 h,RT-qPCR检测发现,相比6与12 h收获病毒而言,此时CPIV3的RNA水平较高,更有利于研究病毒与宿主细胞之间的相互作用,同时亦避免RNA降解及保障文库质量[17]。因此,本研究选择该接种剂量及时间点进行转录组分析。

在动植物研究领域,高通量测序引领了一次具有里程碑意义的科学研究模式革新[18],通过全基因转录组分析,参与天然免疫途径相关的基因TLR9、MDA5、IRF3、STAT1、ISGs等被报道[19-25]。IRF2是IFN途径中发挥抗病毒作用的重要节点蛋白,其作用是负向调节IFN产生和信号传导[26],IFN能诱导细胞产生多种抗病毒蛋白的细胞因子,具有抑制病毒增殖和调节机体免疫反应的生物学功能,通过检测细胞内IFN mRNA转录水平,可以用来评估机体免疫系统活化程度[27]。课题组前期研究发现,miR-222通过靶向降解IRF2 mRNA提高IFN表达水平来抑制CPIV3复制[28]。为进一步筛选出MDBK细胞感染CPIV3后与抗病毒作用相关的调控基因,完善CPIV3转录本信息,本研究将1 MOI的CPIV3感染MDBK细胞,24 h后通过高通量测序获得了261个显著差异表达基因,其中表达上调140个,表达下调121个。这些结果提示细胞通过自身改变来与病毒做斗争,而这些差异表达基因在CPIV3感染MDBK细胞中,扮演了重要角色。

在本研究中,显著富集的GO term主要体现在高分子变化、细胞蛋白修饰、细胞膜有界细胞器、细胞成分、腺苷基核苷酸结合、嘌呤核苷三磷酸结合及杂环化合物结合等生物过程,这表明在CPIV3感染MDBK细胞的过程中,病毒入胞需要宿主细胞膜的去稳定性改变,病毒与细胞受体结合后的入胞、胞内传输过程均与细胞的信号传导机制密切相关[29]。这与病毒感染细胞引起细胞发生的组分变化及功能作用相一致。进一步分析发现,显著差异表达的261个基因中,SIAH1、EDD1、UBR5、GSK3B、SMAD1、YWHAB-Q-Z、LLGLGSK3B、STAG1-2、SCC3、IRR1、GSK3B与MED13等分别参与KEGG pathway第二大分类中的基因折叠、分类、降解、信号转导、细胞生长和死亡以及内分泌系统,表明CPIV3感染MDBK细胞24 h后,细胞发生了生长特性、信号传导及生理状态的改变,提示细胞对病毒感染产生防御体系是一个复杂的生物学过程[30]

通过分析发现,CPIV3感染MDBK细胞24 h后,在转录组水平上,干扰素信号通路上游基因均无显著差异,干扰素信号通路下游有8个基因表达出现差异,其中7个干扰素刺激基因(ISGs):RSAD2、MX2、OAS1Y、ISG15、MX1、IFI6、OAS1Z表达上调;STAT1基因表达下调。对这8个基因进行了RT-qPCR验证,结果与高通量测序结果一致,说明此次结果可信。从转录水平可以推断得出,虽然CPIV3感染MDBK细胞后,抑制了干扰素信号通路上游基因表达,使IFN-α和IFN-β表达量无显著差异;但宿主细胞通过其他途径诱导产生大量的ISGs来干扰病毒增殖[31-32]。这种现象是机体和病毒长期进化互相适应生存产生的结果,具体作用机制有待进一步探究。

4 结论

利用Illumina HiSeqTM 2500测序平台,获得261个显著差异表达基因,差异表达基因主要参与细胞生长特性、信号传导及生理状态等生物学过程和天然免疫信号通路。这不仅丰富了CPIV3的转录组信息,而且为CPIV3的致病机制及MDBK细胞的抗病毒研究提供了基础数据。

参考文献
[1] LI W L, MAO L, CHENG S P, et al. A novel parainfluenza virus type 3(PIV3) identified from goat herds with respiratory diseases in eastern China[J]. Veterin Microbiol, 2014, 174(1-2): 100–106. DOI: 10.1016/j.vetmic.2014.08.027
[2] YANG L L, LI W L, MAO L, et al. Analysis on the complete genome of a novel caprine parainfluenza virus 3[J]. Infect Genet Evolut, 2016, 38: 29–34. DOI: 10.1016/j.meegid.2015.11.027
[3] LI J Z, LI W L, MAO L, et al. Rapid detection of novel caprine parainfluenza virus type 3(CPIV3) using a TaqMan-based RT-qPCR[J]. J Virol Methods, 2016, 236: 126–131. DOI: 10.1016/j.jviromet.2016.07.016
[4] COSTA V, ANGELINI C, DE FEIS I, et al. Uncovering the complexity of transcriptomes with RNA-Seq[J]. J Biomed Biotechnol, 2010, 2010: 853916.
[5] CONG F, LIU X L, HAN Z X, et al. Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection[J]. BMC Genomics, 2013, 14(1): 743. DOI: 10.1186/1471-2164-14-743
[6] LI M Y, TAN H W, WANG F, et al. De Novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum)[J]. PLoS One, 2014, 9(9): e108977. DOI: 10.1371/journal.pone.0108977
[7] ZHU S Y, TANG S W, TANG Q M, et al. Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection[J]. Gene, 2014, 552(1): 67–74. DOI: 10.1016/j.gene.2014.09.014
[8] 刘倩宏.深度测序技术对羊布鲁菌16M株感染小鼠巨噬细胞转录组学的研究[D].长春: 吉林大学, 2012.
LIU Q H. Deep sequencing-based expresssion transcriptional profiling changes of mouse macrophages during Brucella melitensis 16M infection[D]. Changchun: Jilin University, 2012. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10183-1012365804.htm
[9] 陈达香, 陈瑜, 郝文波, 等. 羊口疮病毒作为免疫调节剂在疾病治疗中的研究进展[J]. 生物技术通讯, 2017, 28(2): 182–187.
CHEN D X, CHEN Y, HAO W B, et al. Progress in Orf virus as an immunomodulator in diseases treatment[J]. Letters in Biotechnology, 2017, 28(2): 182–187. DOI: 10.3969/j.issn.1009-0002.2017.02.024 (in Chinese)
[10] 李基棕, 李文良, 毛立, 等. 山羊副流感病毒3型感染MDBK细胞的miRNA表达谱变化分析[J]. 畜牧兽医学报, 2017, 48(5): 896–906.
LI J Z, LI W L, MAO L, et al. Identification and analysis of the miRNA expression profiles in MDBK cells in response to the infection of caprine parainfluenza virus type 3(CPIV3)[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(5): 896–906. (in Chinese)
[11] COCK P J A, FIELDS C J, GOTO N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Res, 2010, 38(6): 1767–1771. DOI: 10.1093/nar/gkp1137
[12] KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357–360. DOI: 10.1038/nmeth.3317
[13] ERLICH Y, MITRA P P, DELABASTIDE M, et al. Alta-Cyclic:a self-optimizing base caller for next-generation sequencing[J]. Nat Methods, 2008, 5(8): 679–682. DOI: 10.1038/nmeth.1230
[14] MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5(7): 621–628. DOI: 10.1038/nmeth.1226
[15] ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10): R106. DOI: 10.1186/gb-2010-11-10-r106
[16] WESTFALL P H, YOUNG S S. P value adjustments for multiple tests in multivariate binomial models[J]. J Amer Statist Assoc, 1989, 84(407): 780–786.
[17] XING S S, DU J Z, GAO S D, et al. Analysis of the miRNA expression profile in an Aedes albopictus cell line in response to bluetongue virus infection[J]. Infect Genet Evolut, 2016, 39: 74–84. DOI: 10.1016/j.meegid.2016.01.012
[18] 岳桂东, 高强, 罗龙海, 等. 高通量测序技术在动植物研究领域中的应用[J]. 中国科学:生命科学, 2012, 42(2): 107–124.
YUE G D, GAO Q, LUO L H, et al. The application of high-throughput sequencing technology in plant and animal research[J]. Scientia Sinica (Vitae), 2012, 42(2): 107–124. (in Chinese)
[19] SUN Y, HAN M Y, KIM C, et al. Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus[J]. Viruses, 2012, 4(4): 424–446. DOI: 10.3390/v4040424
[20] UEMATSU S, SATO S, YAMAMOTO M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-α induction[J]. J Exp Med, 2005, 201(6): 915–923. DOI: 10.1084/jem.20042372
[21] MEYERS J A, MANGINI A J, NAGAI T, et al. Blockade of TLR9 agonist-induced type Ⅰ interferons promotes inflammatory cytokine IFN-γ and IL-17 secretion by activated human PBMC[J]. Cytokine, 2006, 35(5-6): 235–246. DOI: 10.1016/j.cyto.2006.09.001
[22] KAWAI T, TAKAHASHI K, SATO S, et al. IPS-1, an adaptor triggering RIG-ⅠⅠ-and Mda5-mediated type Ⅰ interferon induction[J]. Nat Immunol, 2005, 6(10): 981–988. DOI: 10.1038/ni1243
[23] AU W C, YEOW W S, PITHA P M. Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3[J]. Virology, 2001, 280(2): 273–282.
[24] RUVOLO V, NAVARRO L, SAMPLE C E, et al. The epstein-barr virus SM protein induces STAT1 and interferon-stimulated gene expression[J]. J Virol, 2003, 77(6): 3690–3701. DOI: 10.1128/JVI.77.6.3690-3701.2003
[25] LEAMAN D W, CHAWLA-SARKAR M, JACOBS B, et al. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma:greater potency of IFN-β compared with IFN-α2[J]. J Interf Cytok Res, 2003, 23(12): 745–746. DOI: 10.1089/107999003772084860
[26] HARADA H, FUJITA T, MIYAMOTO M, et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes[J]. Cell, 1989, 58(4): 729–739. DOI: 10.1016/0092-8674(89)90107-4
[27] SUN K, METZGER D W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection[J]. Nat Med, 2008, 14(5): 558–564. DOI: 10.1038/nm1765
[28] 钟纯燕, 李基棕, 毛立, 等. MiR-222对山羊副流感病毒3型复制的影响[J]. 畜牧兽医学报, 2018, 49(12): 2664–2671.
ZHONG C Y, LI J Z, MAO L, et al. The molecular mechanism study of miR-222 inhibit caprine parainfluenza virus type 3 replication[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(12): 2664–2671. (in Chinese)
[29] MCSHARRY J J. Analysis of virus-infected cells by flow cytometry[J]. Methods, 2000, 21(3): 249–257. DOI: 10.1006/meth.2000.1005
[30] FREDERICKSEN F, DELGADO F, CABRERA C, et al. The effects of reference genes in qRT-PCR assays for determining the immune response of bovine cells (MDBK) infected with the Bovine Viral Diarrhea Virus 1(BVDV-1)[J]. Gene, 2015, 569(1): 95–103. DOI: 10.1016/j.gene.2015.05.050
[31] ZHANG Q Z, SHI K C, YOO D. Suppression of type Ⅰ interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016, 489: 252–268. DOI: 10.1016/j.virol.2015.12.010
[32] CHEN J, YANG Y F, YANG Y, et al. AXL promotes Zika virus infection in astrocytes by antagonizing type Ⅰ interferon signalling[J]. Nat Microbiol, 2018, 3(3): 302–309. DOI: 10.1038/s41564-017-0092-4