2. 新疆农业大学动物科学学院, 乌鲁木齐 830052
2. College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
甲状腺激素(thyroid hormone, TH)及其受体(TRs)除了参与调控机体正常发育和代谢平衡外,还在动物繁殖活动中发挥重要的生物学作用。TRs主要通过参与GnRH脉冲释放、促性腺激素水平、促性腺激素受体和性激素受体的表达实现对性腺轴系统的繁殖调控。
另外,TH/TRs在动物季节性繁殖中也发挥着重要的作用。动物按发情的季节性特点可分为全年发情动物(如猪)和季节性发情动物(绵羊、马、鹿及仓鼠等)。季节性繁殖受动物品种、光照、温度以及营养等多方面的影响,其中受光照影响最大[1]。动物视网膜感受到外界光的季节波动,引起体内松果体分泌褪黑激素(melatonin, Mel),Mel作用于垂体结节部,通过保守的促甲状腺素/脱碘酶轴将光周期解码后作用于下丘脑内侧基底部(medial basal hythalamus, MBH)以诱导TH信号的局部和全身血液中水平变化[2],然后调控HPG轴激素分泌、生殖器官发育等生理功能。因此,TH成为季节性繁殖的关键激素之一,甲状腺激素通过其受体TRs对季节性发情性状有直接的调控作用[3]。
因此,本文就TRs对HPG轴的调节机制以及其在动物季节性繁殖中的作用进行了系统阐述,并针对目前尚待解决的一些问题进行了探讨。
1 TRs的基本特征 1.1 TRs介导TH发挥生物学作用甲状腺激素(thyrotrophin, TH)几乎存在于所有组织中,并对生长、代谢、繁殖和细胞分化起关键调节作用[4-5]。TH主要包括T3 (thyroxine)和T4(triiodothyronine),其在甲状腺中合成时主要为T4,然后通过甲状腺激素转运蛋白(如MCT8、MCT10和OATP1C1)运输至全身组织器官,参与功能调节[6]。部分组织细胞内和外周存在大量的2型脱碘酶(type 2 deiodinase, Dio2),可将T4转化为T3,后者一般以10倍以上的亲和力与TRs结合[7]。TH参与细胞活性的方式以基因组经典核受体途径为主,主要通过TRα和TRβ作用于细胞核转录过程实现其对靶基因转录的正负调节[4-5];除基因组途径之外,TH的非基因组途径(在细胞质或质膜中启动的非经典核受体途径)也成为研究热点[7]。
1.2 THRA和THRB基因研究进展简介TRα和TRβ属于核受体超家族成员,分别由THRA和THRB两个基因编码,由于两个基因的选择性剪接或转录起始位置不同,使其在不同组织中存在多种受体亚型(TRα1、TRα2、TRβ1和TRβ2等)[8],且不同亚型执行不同的生物学功能[9]。相对于其它转录因子,核受体TRs蛋白结构有两个经典的功能结构域(图 1),选择NCBI中大鼠TRs蛋白结构序列和本实验室转录组测序所得绵羊TRs蛋白结构序列信息(未发表)为代表,绘制甲状腺激素受体蛋白序列结构图,一个是位于C域的DNA结合结构域(DNA binding domain, DBD),另一个是位于E域的配体结合结构域(ligand binding domain, LBD)。两个结构域在物种间均高度保守,且长度很短(一般不超过100个氨基酸),其它结构域包括N末端A/B结构域、连接DBD和LBD区的D域铰链区以及N末端F结构域[10]。LBD除了与配体TH结合之外,还与A / B结构域共同募集辅助激活因子(CoA)和辅助抑制因子(CoR)[11]。
![]() |
图 1 大鼠和绵羊甲状腺激素受体蛋白序列结构 Figure 1 Structure of the TRs protein sequence in rat and sheep |
THRA编码的蛋白质可以激活或阻遏靶基因转录,Van等[12]描述了人中该基因的几种可变剪接体:TRα1分布广泛且组织间差异不明显,它以高亲和力结合T3,是甲状腺激素受体中的几种核激素受体之一[13];选择性剪接改变了TRα2的羧基末端,它在脑、骨骼肌和棕色脂肪中最为丰富[14],TRα2的表达会抑制T3与TRα1结合[9]。THRA基因在能量消耗调节、温度稳态和线粒体功能中也起关键作用[15],并且能够诱导血管紧张素、苯肾上腺素等调控血管舒张[16],在小鼠中发现,TRα突变导致骨骼发育严重延迟[17],表明,其对于维持机体正常发育有重要作用。
THRB基因编码的蛋白质TRβ1和TRβ2都是T3的核激素受体,能介导T3的生物活性[18]。TRβ1在动物组织中广泛表达,高亲和力结合T3,对于维持成年期听力有关键作用[19-20];哺乳动物中TRβ2仅在垂体和下丘脑等极少数组织中表达,并且在垂体中受T3差异性调控[21]。研究发现,人和啮齿动物中该基因的突变是造成甲状腺激素抵抗综合征(the syndrome of resistance to thyroid hormone, RTH)的主要原因之一,该综合征的特征是甲状腺肿大和TH水平升高,并伴有正常或轻度的促甲状腺激素(thyroid stimulating hormone, TSH)浓度升高现象[22],表明,动物体内游离TH的水平受TRβ依赖性反式激活功能的负反馈调节[23]。THRB-PV小鼠(TRβ突变后失去与T3结合的能力)突变引起的信号传导及转录激活因子5(signal transducers and activators of transcription 5, STAT5)途径过度活化,诱导乳腺增生和肿瘤[24]。研究发现,THRB基因所在染色体位置的截短或缺失与恶性肿瘤(包括子宫颈癌、卵巢癌和睾丸肿瘤等)密切相关,证明THRB基因对性腺器官的正常维持和发育起关键作用[25]。
在啮齿动物的大脑中,甲状腺激素受体的表达随年龄、脑区和受体亚型变化[26],靶向敲除小鼠体内的THRA或THRB基因,发现TRs异构体行使的生理功能具有多效性[27],例如,两种异构体在代谢方面具有相反的生物活性,TRβPV小鼠的肝脂质积累显著增加,但在TRαPV小鼠中,肝质量和脂肪生成基因表达降低[28]。TRα和TRβ能作用于不同的基因发挥作用[29],其生理功能既有重叠又有特异性。
2 TRs在HPG轴相关组织中的研究概况 2.1 TRs在下丘脑中发挥的作用小鼠和人等动物中,THRs基因在下丘脑的研究多集中于介导T3调控细胞分化、能量代谢等方面。例如,选择性敲除成年小鼠下丘脑腹内侧(ventromedial hypothalamus, VMH)的TRβ会引起严重的肥胖症,表现为食欲旺盛和能量消耗减少[30]。
GnRH是下丘脑分泌产生的神经激素,对动物季节繁殖的调控起重要作用,TH可能通过TRs参与GnRH脉冲释放的神经内分泌过程来实现对性腺轴系统的繁殖调控[31],近年来,研究发现,TH主要通过以下3种方式调控GnRH的分泌。
2.1.1 TH/TRs-KISS-GnRH通路亲吻促动素(kisspeptin, KISS)是GnRH分泌最有效的刺激物之一[14],下丘脑中,T3通过KISS与RF氨酸相关肽(RF amide-related peptides, RFRP)作用于GnRH神经元从而影响季节性发情。KISS与RFRP参与哺乳动物性腺轴的调控。在繁殖季节,绵羊下丘脑中的KISS表达水平升高,KISS与G蛋白藕联受体54(G protein-coupled receptor 54, GPR54)结合后刺激GnRH神经元释放GnRH,从而激活HPGA[32]。TH调节季节性繁殖可能的作用位点之一是下丘脑弓状核(arcuate nucleus, ARC),在ARC的尾部含有Kisspeptin的神经元群体,已检测到TRs的表达,在ARC埋植T4能够终止发情状态,使性腺恢复静止[33]。TH的第2个作用位点在下丘脑视前区(preoptic area, POA)[33],绵羊等大多数物种的POA存在第2个Kiss神经元群,Kiss神经元中表达TRα,并且下丘脑局部随光周期同步变化的T3和TRs水平季节性调控Kiss表达[34]。同时Kisspeptin神经元表达大量的雌激素相关受体α(estrogen-related receptor α, ERRα)[35],并且TRs能诱导ERRα转录[14],从而接受来自性腺激素的反馈调节[35]。
2.1.2 TH/TRs-GnRH通路TH/TRs能直接作用GnRH神经元,调控其神经元数量和GnRH分泌[36]。在绵羊下丘脑中TH受体a(TRα)与47%的GnRH神经元共表达于MBH,暗示TH可能直接作用于MBH的GnRH系统[14]。在叙利亚仓鼠中,GnRH与TRα也存在共表达现象,研究发现,TH很可能通过其受体THRA直接作用于GnRH神经元[36],Jansen等[22]发现叙利亚黄金仓鼠TH合成被抑制后GnRH单极神经元数目显著增多,并且,在繁殖季节,绵羊下丘脑的GnRH神经元会急剧增加[37],TRα2在缺乏配体TH时有显著负调控作用,可能对GnRH神经元产生潜在的直接影响[38],说明TH水平的升高对长光照繁殖动物生殖轴内分泌有促进作用。
2.1.3 室管膜细胞的可塑性改变TH/TRs可通过调节中枢结构的可塑性引发GnRH季节性内分泌变化。GnRH由位于下丘脑正中隆起(median eminence, ME)的GnRH神经元合成,在下丘脑MBH中,其神经末梢被室管膜神经胶质细胞突起形成的胶质囊包裹,两者相互作用形成包绕结构[13, 31]。在短光照条件下,啮齿类GnRH神经元末梢被室管膜细胞的终足包裹;在长光照下,GnRH神经元末梢逃离终足的束缚,直接与基底部发生联系,从而释放神经递质[39]。TH正是通过影响这一包绕结构来介导光周期对GnRH释放的调节[40]。在啮齿动物第三脑室中注射T3能引发GnRH神经元末梢与胶质细胞终足之间形态的变化[41],表明,啮齿动物下丘脑接受季节性信号波动后,T3水平同步变化,随后作用并改变胶质细胞形态来调控GnRH的释放。绵羊则相反,长光照条件下,GnRH神经元末梢被胶质细胞的终足包裹,短光照条件下,GnRH神经元末梢逃离终足的束缚,直接与基底部发生联系,从而释放GnRH[42],由此推测,TH可能通过调节中枢结构的可塑性引发生殖轴活性的季节性变化[37]。
2.2 TRs在垂体中的作用黄金仓鼠HPGA发育的整个过程中其下丘脑、垂体和睾丸都有THRA和THRB的表达,证明在此期间甲状腺激素通过这些受体发挥作用,以促进黄金仓鼠性腺轴的正常发育和成熟[22]。Jansen等[22]在成年雄性叙利亚黄金仓鼠暂时性低甲模型中,发现垂体分泌促性腺激素LH和FSH水平降低,暗示啮齿动物中TH/TRs能够促进腺垂体促性腺激素的分泌。Hodin等[21]发现,TRβ2作为功能性T3受体,其mRNA仅在大鼠垂体中表达并受T3差异性调节。同样,垂体甲状腺激素抵抗症(the pituitary RTH, PRTH)是由THRB2基因非编码区增强子和C端配体结合区突变引起的,其突变导致不能与配体结合,引发中枢TH抵抗并引起垂体对TH的敏感性降低,致使促性腺激素分泌紊乱[43]。
2.3 TRs在性腺中的作用根据哺乳动物甲减或甲亢状态下卵巢功能下降、新生儿暂时性甲状腺功能减退症等临床现象,科学家首先构建了用于研究TH/TRs对性器官发育和性腺激素分泌影响的两种应用最广的动物模型:1)新生儿暂时性甲状腺功能减低症动物模型(又称新生儿暂时性甲低模型),例如Jansen等[22]研究雄性叙利亚黄金仓鼠,出生后至25 d(断奶)期间饲喂丙硫氧嘧啶(propylthiouracil, PTU),诱导TH水平下降,形成短暂可逆性甲状腺功能减退动物模型,出生26 d后,停止饲喂PTU,40日龄TH恢复正常水平,150日龄长日照条件饲养下测量睾丸重、塞尔托利氏细胞(sertoli-cells)、精子产量和精子质量等生理数据[22];2)2014年美国甲状腺协会(American Thyroid Association,ATA) Bianco等[44]提出的甲状腺功能减退症和甲状腺功能亢进症啮齿类动物模型。
新生儿暂时性甲低雄性叙利亚黄金仓鼠成年后,其睾丸正常尺寸的上限增加30%,同时射精量也增加[22]。诱导暂时性甲低可导致大鼠成年后,睾丸重量增加80%,每日精子生成量(daily sperm production, DSP)增加140%,小鼠中也存在同样的结果[45-46]。暂时性降低模型大鼠成年后,其Sertoli细胞和生殖细胞数量增加,睾丸中雄激素受体的数量也随之增加[47],但是Sertoli细胞数量在雄激素受体缺陷小鼠中未发生变化[48],并且TRα1是睾丸中Sertoli细胞增殖所必需的[49]。在第2种模型中也有同样发现,甲状腺功能减退期间,TRα1表达量增加,总精子和每日精子产量降低,甲亢对此无影响[50]。Sertoli细胞能分泌雄激素结合蛋白,并促进精子成熟[51],这暗示TRα1可直接作用于Sertoli细胞中的雄激素受体的转录进而改变精子质量和数量[52]。另有研究表明,TH能通过其受体诱导ERRα的转录[14],雌二醇对Sertoli细胞活性至关重要[53],证明TRs可通过对性腺激素受体的转录调控来影响性腺的繁殖活动。除了性腺激素及其受体,FSH和促卵泡素受体(follicle-stimulating hormone, FSHR)也是驱动Sertoli细胞发挥作用的关键因素之一[51]。
在性腺组织中促性腺激素能通过其受体诱导发情、配子产生等繁殖活动,TRs除了能调控性腺激素受体转录外,也作用于性腺组织中的促性腺激素受体[50]。在未成年甲状腺功能低下的大鼠中,睾丸间质细胞中不存在LH受体[54];在成年甲状腺切除的雌性大鼠中,卵巢中LH受体显著增加[55]。暂时可逆性甲状腺功能减退模型中,垂体分泌促性腺激素(LH/FSH)水平降低,但在仓鼠睾丸性成熟过程中的FSHR的表达量随TRα1升高代偿性增加,最终观察到睾丸尺寸的增大[22]。体外培养猪颗粒细胞研究T4或T3对性腺组织的直接作用中,使用一定级别剂量T4或T3联合FSH处理时,能够增加FSH对性腺的刺激,可显著增加孕激素和雌激素分泌;然而,单独使用不含FSH的T4或T3时,未表现出这些刺激作用。证明甲减或甲亢时,甲状腺激素异常可能是造成颗粒细胞对FSH反应性降低及卵巢功能下降的原因[56]。
TRα是性腺中最主要的变异体,普遍存在于配子和生殖细胞中,这表明睾丸发育的各个阶段都可能成为T3作用的靶点[57]。Romano等[50]利用甲减和甲亢动物模型,研究正常、甲减和甲亢3种雄性Wistar大鼠(褐家鼠),发现它们睾丸中表达TRs基因所有的亚型,但只有甲减调节TRs,增加TRα1的表达,在大鼠睾丸中,THRA2被翻译成缺乏结合甲状腺激素能力的截短蛋白,这种亚型能够与全长TRs形成同源二聚体,有拮抗激素作用,但具体功能未知,除了同源二聚体,TRs与RXR、RAR等形成的异源二聚体也是调控性腺发育或静止的重要因素之一[58]。
3 TRs在动物季节性繁殖调控中的作用 3.1 季节性繁殖相关的重要通路:TH-GnRH通路影响动物季节性繁殖的因素很多,包括品种、光照和营养等多个因素都会对动物的季节性繁殖活动产生影响,上述因素最终都会通过影响HPGA激素及其受体水平来调控动物繁殖活动[40]。
光照对动物季节性繁殖活动的调控同样是通过HPGA实现的,该调控涉及动物眼睛、松果体、下丘脑、垂体和性腺等组织,它们形成了一个完整的神经内分泌调节系统(图 2)。季节性繁殖动物通过视网膜、视神经和视交叉上核接收外界光周期信号,并传送至松果体,松果体敏感感知光信号后分泌Mel[14]。褪黑激素是一种吲哚杂环类化合物激素,具有昼夜规律性分泌的特点和传递黑暗信号的作用,其分泌量与夜长呈正比,因此,松果体通过夜间分泌褪黑激素的方式将光信号转换为生理信号[2]。长光照时,Mel分泌减少促进垂体结节部促甲状腺激素β(thyroid-stimulating hormone receptor β,TSHβ)分泌,并与下丘脑第三脑室脑室膜细胞上的促甲状腺激素受体(thyroid-stimulating hormone receptor,TSHR)结合,进而促进2型脱碘酶(Dio2)分泌表达升高,使3型脱碘酶(type 3 deiodinase,Dio3)表达下降[59]。Dio2可以将T4转化为活性更强的T3,啮齿类动物(长光照繁殖)下丘脑局部T3/TRα1升高促进HPGA激活,但绵羊等短光照繁殖动物却有相反的作用(T3/TRα1升高抑制HPGA)[60]。哺乳动物是以Mel的夜间分泌持续时间长短变化为信号中心,促使TH/TRs发生季节性波动进而调控下丘脑、垂体激素分泌,最后导致性腺繁殖活动的季节性变化[2]。
![]() |
A.短光照下松果体Mel平台期时间延长,负调控垂体结节部(pars tuberalis, PT)TSH,诱导脑室膜细胞中的Dio3产生。Dio3将T3转换为T4,此时T4/TRs正向调控KISS神经元分泌Kiss1;GnRH单极神经元(GnRH neurons)数量增多,GnRH分泌增加;脑室膜中GnRH神经末梢和室管膜细胞胶质末梢之间的结构没有发生形态变化,使GnRH神经元末梢能与下丘脑基底部接触,将GnRH传导至垂体,诱导LH/FSH分泌增加刺激性腺发育。B.长光照下Mel平台期变短,促进PT部位TSHβ分泌,诱导脑室膜细胞Dio2上升,增加T3水平,与短光照相反,T3/TRs抑制HPGA激素分泌,GnRH神经末梢被室管膜细胞胶质末梢包绕,传导至垂体的GnRH减少,LH/FSH分泌降低,无法刺激性腺发育,绵羊进入休情期 A.In the short day, the Mel plateau phase prolonged, which negatively regulates the TSH in the Pars tuberalis and induces the production of Dio3 in the ventricular membrane cells. Dio3 converts T3 to T4. At this time, T4/TRs positively controls KISS neurons to secrete Kiss1. GnRH unipolar neurons increase in number, so GnRH secretion increases. The GnRH neuronal endings could be in contact with the hypothalamic basal part to conduct GnRH to the pituitary and induce LH/FSH secretion to stimulate gonad development. B.Mel plateau phase decreases under long day, and promotes secretion of TSHβ in the PT. Dio2 was induced in ventricular membrane cells, which increases T3 levels. In contrast to short day, T3/TRs inhibit the secretion of HPGA hormones. GnRH nerve endings are surrounded by ependymal cells of ependymal cells, so GnRH transmitted to the pituitary gland is reduced and LH/FSH secretion is decreased. Finally gonad development is not stimulated and the sheep enters the anestrus stage 图 2 绵羊在短光照(A)和长光照(B)下季节性繁殖机制 Figure 2 Mechanism of seasonal breeding in sheep under short day (A) and long day (B) |
有研究表明,啮齿动物和绵羊的GnRH神经元中表达TRs[31]。绵羊切除甲状腺后,可阻断光周期对性腺系统的影响,使其一直保持繁殖状态,对其脑室内注射T4后,绵羊恢复了对光周期信号的反应,继而进入休情状态[3]。对萨福克母羊的研究发现,在切除甲状腺后,能改变类固醇激素的周期性负反馈调节[36],TRs参与ERRα转录,进而负反馈调节调控GnRH的表达水平[14]。在短光照条件下西伯利亚仓鼠的睾丸、附睾等性腺有退化现象,但通过下丘脑背中核埋植T3后抑制了这种退化,使西伯利亚仓鼠继续保持繁殖状态,T3具有启动动物季节性繁殖的作用[60]。综上表明,TH和TRs可直接调控绵羊的季节性发情,也证明T3和T4与TRs不同亚型结合产生不同的作用[61],在季节的转换中T4:T3随之发生改变,TH水平和T4:T3比值的变化以及TRs不同亚型的表达模式均可影响季节发情,导致最终表现出具有启动和终止发情状态的效用[62]。
3.3 TH/TRs在鸟类季节性繁殖中的作用尽管鸟类大脑深层感光系统与哺乳动物不同,但是,在鸟类物种上也得出了同样的结论:椋鸟甲状腺切除试验证明,甲状腺激素在季节性调控中起关键作用[63]。鸟类甲状腺切除后,其光耐受性周期未发生变化,但是用T4处理大脑中枢后,可诱导形成光耐受性周期,表明中枢系统中的T4可调控鸟类繁殖周期[64]。在日本鹌鹑(长日照繁殖物种) MBH局部检测到除TRβ2外的TRs表达,长日照下,日本鹌鹑脑中T4和T3水平均极显著高于短光照,MBH注射T3后,可刺激其性腺生长,注射T4对性腺影响较小,与T4的生理功能相反,T3则为鸟类启动和保持繁殖状态所必需,对短光照条件下的日本鹌鹑注射T3与长光照条件下(下丘脑MBH局部T3增加)观察到的繁殖活动一致[61]。外周注射一定比例剂量的甲状腺激素(T4和T3)可以模拟光周期诱导日本鹌鹑促性腺激素分泌和性腺生长[65]。
4 小结和展望TH/TRs在动物繁殖调控中具有重要作用,在HPG轴涉及的3个组织中存在不同作用机制。针对绵羊季节性繁殖性状,下丘脑组织中TH/TRs主要通过TH-Kiss-GnRH通路、TH-GnRH通路以及室管膜细胞可塑性改变共同调控GnRH神经脉冲释放,然后,由促性腺激素差异导致动物休情或发情。
研究TH/TRs所参与的HPGA调控机制有助于深入揭示动物季节性繁殖的分子机制和调控通路。目前,对于TRs的研究处于瓶颈期,主要原因在于TRs不同的同工体、转录本或亚型在不同组织中可能发挥着相同、不同或者相反的作用。TRs在季节性繁殖方面的功能研究有许多问题亟待解决,例如:不同类型的TRs在不同繁殖状态不同组织中的表达特征如何?TRs不同亚型影响动物季节性繁殖的具体分子机制是怎样的?相信随着这些问题的解答和未来国内外学者对季节性繁殖分子机制的深入解析,这一性状的机理终将变得具体、清晰,人们也可以从中发现更加有效的调控动物季节性发情的方法或技术。
[1] |
周梅, 狄冉, 胡文萍, 等. 小尾寒羊和苏尼特羊CRH和POMC基因在繁殖相关组织中的差异性表达[J]. 中国草食动物科学, 2017, 37(4): 1–4.
ZHOU M, DI R, HU W P, et al. Different expression of CRH and POMC genes in reproductive related tissues in Small-tail Han sheep and Sunite sheep[J]. China Herbivore Science, 2017, 37(4): 1–4. DOI: 10.3969/j.issn.2095-3887.2017.04.001 (in Chinese) |
[2] | DARDENTE H, HAZLERIGG D G, EBLING F J P. Thyroid hormone and seasonal rhythmicity[J]. Front Endocrinol, 2014, 5: 19. |
[3] | VIGUIÉ C, BATTAGLIA D F, KRASA H B, et al. Thyroid hormones act primarily within the brain to promote the seasonal inhibition of luteinizing hormone secretion in the ewe[J]. Endocrinology, 1999, 140(3): 1111–1117. DOI: 10.1210/endo.140.3.6543 |
[4] | DE VITO P, BALDUCCI V, LEONE S, et al. Nongenomic effects of thyroid hormones on the immune system cells:new targets, old players[J]. Steroids, 2012, 77(10): 988–995. DOI: 10.1016/j.steroids.2012.02.018 |
[5] | DE VITO P, INCERPI S, PEDERSEN J Z, et al. Thyroid hormones as modulators of immune activities at the cellular level[J]. Thyroid, 2011, 21(8): 879–890. DOI: 10.1089/thy.2010.0429 |
[6] | BERNAL J, GUADAÑO-FERRAZ A, MORTE B. Thyroid hormone transporters-functions and clinical implications[J]. Nat Rev Endocrinol, 2015, 11(7): 406–417. DOI: 10.1038/nrendo.2015.66 |
[7] | BASSETT J H D, HARVEY C B, WILLIAMS G R. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions[J]. Mol Cell Endocrinol, 2003, 213(1): 1–11. DOI: 10.1016/j.mce.2003.10.033 |
[8] | PARK J W, ZHAO L, WEBB P, et al. Src-dependent phosphorylation at Y406 on the thyroid hormone receptor β confers the tumor suppressor activity[J]. Oncotarget, 2014, 5(20): 10002–10016. |
[9] | KOENIG R J, LAZAR M A, HODIN R A, et al. Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing[J]. Nature, 1989, 337(6208): 659–661. DOI: 10.1038/337659a0 |
[10] | LAZAR M A. Thyroid hormone receptors:multiple forms, multiple possibilities[J]. Endocr Rev, 1993, 14(2): 184–193. |
[11] | CHENG S Y, LEONARD J L, DAVIS P J. Molecular aspects of thyroid hormone actions[J]. Endocr Rev, 2010, 31(2): 139–170. |
[12] | VAN MULLEM A A, CHRYSIS D, EYTHIMIADOU A, et al. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRα1 receptor:consequences of LT4 treatment[J]. J Clin Endocrinol Metab, 2013, 98(7): 3029–3038. DOI: 10.1210/jc.2013-1050 |
[13] | RODRÍGUEZ E M, BLÁZQUEZ J L, PASTOR F E, et al. Hypothalamic tanycytes:a key component of brain-endocrine interaction[J]. Int Rev Cytol, 2005, 247: 89–164. DOI: 10.1016/S0074-7696(05)47003-5 |
[14] | SINGH B K, SINHA R A, OHBA K, et al. Role of thyroid hormone in hepatic gene regulation, chromatin remodeling, and autophagy[J]. Mol Cell Endocrinol, 2017, 458: 160–168. DOI: 10.1016/j.mce.2017.02.018 |
[15] | BERTRAND-GADAY C, PESSEMESSE L, CABELLO G, et al. Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor[J]. FEBS Lett, 2016, 590(7): 982–991. DOI: 10.1002/1873-3468.12129 |
[16] | LIU K L, LO M, CANAPLE L, et al. Vascular function of the mesenteric artery isolated from thyroid hormone receptor-E knockout mice[J]. J Vasc Res, 2014, 51(5): 350–359. DOI: 10.1159/000368195 |
[17] | BAXTER J D, DILLMANN W H, WEST B L, et al. Selective modulation of thyroid hormone receptor action[J]. J Steroid Biochem Mol Biol, 2001, 76(1-5): 31–42. DOI: 10.1016/S0960-0760(01)00052-8 |
[18] | PARK J W, ZHAO L, WILLINGHAM M, et al. Oncogenic mutations of thyroid hormone receptor β[J]. Oncotarget, 2015, 6(10): 8115–8131. |
[19] | NG L, CORDAS E, WU X F, et al. Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor β1[J]. Endocrinology, 2015, 156(10): 3853–3865. DOI: 10.1210/en.2015-1468 |
[20] | PEETERS R P, NG L, MA M, et al. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3)[J]. Mol Cell Endocrinol, 2015, 407: 1–8. DOI: 10.1016/j.mce.2015.02.025 |
[21] | HODIN R A, LAZAR M A, WINTMAN B I, et al. Identification of a thyroid hormone receptor that is pituitary-specific[J]. Science, 1989, 244(4900): 76–79. DOI: 10.1126/science.2539642 |
[22] | JANSEN H T, KIRBY J D, COOKE P S, et al. Impact of neonatal hypothyroidism on reproduction in the male hamster, Mesocricetus auratus[J]. Physiol Behav, 2007, 90(5): 771–781. DOI: 10.1016/j.physbeh.2006.12.017 |
[23] | KAŠŠÁK F, HÁNA V, SAUDEK V, et al. Novel mutation (T273R) in thyroid hormone receptor β gene provides further insight into cryptic negative regulation by thyroid hormone[J]. Folia Biol, 2017, 63(2): 60–66. |
[24] | GUIGON C J, KIM D W, WILLINGHAM M C, et al. Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors[J]. Oncogene, 2011, 30(30): 3381–3390. DOI: 10.1038/onc.2011.50 |
[25] | GONZÁLEZ-SANCHO J M, GARCíA V, BONILLA F, et al. Thyroid hormone receptors/THR genes in human cancer[J]. Cancer Lett, 2003, 192(2): 121–132. DOI: 10.1016/S0304-3835(02)00614-6 |
[26] | BRADLEY D J, TOWLE H C, YOUNG W S. Spatial and temporal expression of alpha-and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system[J]. J Neurosci, 1992, 12(6): 2288–2302. DOI: 10.1523/JNEUROSCI.12-06-02288.1992 |
[27] | FORREST D, VENNSTRÖM B. Functions of thyroid hormone receptors in mice[J]. Thyroid, 2000, 10(1): 41–52. DOI: 10.1089/thy.2000.10.41 |
[28] | SINHA R A, SINGH B K, YEN P M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism[J]. Trends Endocrinol Metab, 2014, 25(10): 538–545. DOI: 10.1016/j.tem.2014.07.001 |
[29] | FOZZATTI L, LU C X, KIM D W, et al. Differential recruitment of nuclear coregulators directs the isoform-dependent action of mutant thyroid hormone receptors[J]. Mol Endocrinol, 2011, 25(6): 908–921. DOI: 10.1210/me.2010-0474 |
[30] | HAMEED S, PATTERSON M, DHILLO W S, et al. Thyroid hormone receptor beta in the ventromedial hypothalamus is essential for the physiological regulation of food intake and body weight[J]. Cell Rep, 2017, 19(11): 2202–2209. DOI: 10.1016/j.celrep.2017.05.066 |
[31] | DUFOURNY L, SKINNER D C. Colocalization of progesterone receptors and thyroid hormone receptors alpha in the ovine diencephalon:no effect of estradiol[J]. Neuroendocrinology, 2003, 77(1): 51–58. DOI: 10.1159/000068333 |
[32] | ABDOLI R, ZAMANI P, MIRHOSEINI S Z, et al. A review on prolificacy genes in sheep[J]. Reprod Domest Anim, 2016, 51(5): 631–637. DOI: 10.1111/rda.12733 |
[33] | ANDERSON G M, HARDY S L, VALENT M, et al. Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe[J]. Endocrinology, 2003, 144(7): 2892–2901. DOI: 10.1210/en.2003-0322 |
[34] | DUFOURNY L, GENNETAY D, MARTINET S, et al. The content of thyroid hormone receptor α in ewe kisspeptin neurones is not season-dependent[J]. J Neuroendocrinol, 2016, 28(2): 12344. |
[35] | FRANCESCHINI I, LOMET D, CATEAU M, et al. Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha[J]. Neurosci Lett, 2006, 401(3): 225–230. DOI: 10.1016/j.neulet.2006.03.039 |
[36] | ANDERSON G M, CONNORS J M, HARDY S L, et al. Thyroid hormones mediate steroid-independent seasonal changes in luteinizing hormone pulsatility in the ewe[J]. Biol Reprod, 2002, 66(3): 701–706. DOI: 10.1095/biolreprod66.3.701 |
[37] | XIONG J J, KARSCH F J, LEHMAN M N. Evidence for seasonal plasticity in the gonadotropin-releasing hormone (GnRH) system of the ewe:changes in synaptic inputs onto GnRH neurons[J]. Endocrinology, 1997, 138(3): 1240–1250. DOI: 10.1210/endo.138.3.5000 |
[38] | BURGOS-TRINIDAD M, KOENIG R J. Dominant negative activity of thyroid hormone receptor variant α2 and interaction with nuclear corepressors[J]. Mol Cell Endocrinol, 1999, 149(1-2): 107–114. DOI: 10.1016/S0303-7207(98)00253-6 |
[39] | YAMAMURA T, HIRUNAGI K, EBIHARA S, et al. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail[J]. Endocrinology, 2004, 145(9): 4264–4267. DOI: 10.1210/en.2004-0366 |
[40] | LAZAR M A, HODIN R A, DARLING D S, et al. Identification of a rat c-erbA α-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone[J]. Mol Endocrinol, 1988, 2(10): 893–901. DOI: 10.1210/mend-2-10-893 |
[41] | YOSHIMURA T. Molecular bases for seasonal reproduction in birds[J]. J Poult Sci, 2004, 41(4): 251–258. DOI: 10.2141/jpsa.41.251 |
[42] | WOOD S H, CHRISTIAN H C, MIEDZINSKA K, et al. Binary switching of calendar cells in the pituitary defines the phase of the circannual cycle in mammals[J]. Curr Biol, 2015, 25(20): 2651–2662. DOI: 10.1016/j.cub.2015.09.014 |
[43] | WANG Y Q, FISAHN A, SINHA I, et al. Hippocampal transcriptome profile of persistent memory rescue in a mouse model of THRA1 mutation-mediated resistance to thyroid hormone[J]. Sci Rep, 2016, 6: 18617. DOI: 10.1038/srep18617 |
[44] | BIANCO A C, ANDERSON G, FORREST D, et al. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models[J]. Thyroid, 2014, 24(1): 88–168. DOI: 10.1089/thy.2013.0109 |
[45] | MATTA S L P, VILELA D A R, GODINHO H P, et al. The goitrogen 6-n-propyl-2-thiouracil (PTU) given during testis development increases Sertoli and germ cell numbers per cyst in fish:the tilapia (Oreochromis niloticus) model[J]. Endocrinology, 2002, 143(3): 970–978. DOI: 10.1210/endo.143.3.8666 |
[46] | JOYCE K L, PORCELLI J, COOKE P S. Neonatal goitrogen treatment increases adult testis size and sperm production in the mouse[J]. J Androl, 1993, 14(6): 448–455. |
[47] | GASTON S, MENAKER M. Photoperiodic control of hamster testis[J]. Science, 1967, 158(3803): 925–928. DOI: 10.1126/science.158.3803.925 |
[48] | TAN K A L, DE GENDT K, ATANASSOVA N, et al. The role of androgens in Sertoli cell proliferation and functional maturation:studies in mice with total or Sertoli cell-selective ablation of the androgen receptor[J]. Endocrinology, 2005, 146(6): 2674–2683. DOI: 10.1210/en.2004-1630 |
[49] | HOLSBERGER D R, KIESEWETTER S E, COOKE P S. Regulation of neonatal Sertoli cell development by thyroid hormone receptor α1[J]. Biol Reprod, 2005, 73(3): 396–403. DOI: 10.1095/biolreprod.105.041426 |
[50] | ROMANO R M, GOMES S N, CARDOSO N C S, et al. New insights for male infertility revealed by alterations in spermatic function and differential testicular expression of thyroid-related genes[J]. Endocrine, 2017, 55(2): 607–617. DOI: 10.1007/s12020-016-0952-3 |
[51] | O'SHAUGHNESSY P J. Hormonal control of germ cell development and spermatogenesis[J]. Semin Cell Dev Biol, 2014, 29: 55–65. DOI: 10.1016/j.semcdb.2014.02.010 |
[52] | FUMEL B, FROMENT P, HOLZENBERGER M, et al. Expression of dominant-negative thyroid hormone receptor alpha1 in Leydig and Sertoli cells demonstrates no additional defect compared with expression in Sertoli cells only[J]. PLoS One, 2015, 10(3): e0119392. DOI: 10.1371/journal.pone.0119392 |
[53] | CHIMENTO A, SIRIANNI R, CASABURI I, et al. Role of estrogen receptors and g protein-coupled estrogen receptor in regulation of hypothalamus-pituitary-testis axis and spermatogenesis[J]. Front Endocrinol, 2014, 5: 1. |
[54] | SIRIL ARIYARATNE H B, IAN MASON J, MENDIS-HANDAGAMA S M L C. Effects of thyroid and luteinizing hormones on the onset of precursor cell differentiation into leydig progenitor cells in the prepubertal rat testis[J]. Biol Reprod, 2000, 63(3): 898–904. DOI: 10.1095/biolreprod63.3.898 |
[55] | FITKO R, SZLEZYNGIER B. Role of thyroid hormone in controlling the concentration of luteinizing hormone/human chorionic gonadotropin receptors in rat ovaries[J]. Eur J Endocrinol, 1994, 130(4): 378–380. DOI: 10.1530/eje.0.1300378 |
[56] | MARUO T, HAYASHI M, MATSUO H, et al. The role of thyroid hormone as a biological amplifier of the actions of follicle-stimulating hormone in the functional differentiation of cultured porcine granulosa cells[J]. Endocrinology, 1987, 121(4): 1233–1241. DOI: 10.1210/endo-121-4-1233 |
[57] | SAITA E, TOHEI A, JIN W Z, et al. Effects of hypothyroidism on gonadal function after transition of short day photoperiod in male golden hamsters (Mesocricetus auratus)[J]. J Reprod Dev, 2005, 51(2): 221–228. DOI: 10.1262/jrd.16057 |
[58] | ORTIGA-CARVALHO T M, SIDHAYE A R, WONDISFORD F E. Thyroid hormone receptors and resistance to thyroid hormone disorders[J]. Nat Rev Endocrinol, 2014, 10(10): 582–591. DOI: 10.1038/nrendo.2014.143 |
[59] | REVEL F G, SABOUREAU M, PÉVET P, et al. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster[J]. Endocrinology, 2006, 147(10): 4680–4687. DOI: 10.1210/en.2006-0606 |
[60] | BARRETT P, EBLING F J P, SCHUHLER S, et al. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction[J]. Endocrinology, 2007, 148(8): 3608–3617. DOI: 10.1210/en.2007-0316 |
[61] | YOSHIMURA T, YASUO S, WATANABE M, et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds[J]. Nature, 2003, 426(6963): 178–181. DOI: 10.1038/nature02117 |
[62] | TYLKI-SZYMAN'SKA A, ACUNA-HIDALGO R, KRAJEWSKA-WALASEK M, et al. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor α gene (THRA)[J]. J Med Genet, 2015, 52(5): 312–316. DOI: 10.1136/jmedgenet-2014-102936 |
[63] | GOLDSMITH A R, NICHOLLS T J. Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings[J]. Gen Comp Endocrinol, 1984, 54(2): 256–263. |
[64] | GOLDSMITH A R, NICHOLLS T J, PLOWMAN G. Thyroxine treatment facilitates prolactin secretion and induces a state of photorefractoriness in thyroidectomized starlings[J]. J Endocrinol, 1985, 104(1): 99–103. |
[65] | FOLLETT B K, NICHOLLS T J. Acute effect of thyroid hormones in mimicking photoperiodically induced release of gonadotropins in Japanese quail[J]. J Comp Physiol B, 1988, 157(6): 837–843. DOI: 10.1007/BF00691016 |