畜牧兽医学报  2019, Vol. 50 Issue (11): 2326-2332. DOI: 10.11843/j.issn.0366-6964.2019.11.017    PDF    
牛源耐甲氧西林金黄色葡萄球菌耐药性与外排泵相关基因的检测及相关性研究
张行, 杨峰, 李新圃, 王旭荣, 罗金印, 李宏胜     
中国农业科学院兰州畜牧与兽药研究所, 农业部兽用药物创制重点实验室, 甘肃省新兽药工程重点实验室, 兰州 730050
摘要:本文旨在研究牛源耐甲氧西林金黄色葡萄球菌(MRSA)的耐药性和外排泵相关基因的分布,进而分析耐药性和外排泵基因的相关性。分别采用药敏纸片法和PCR检测牛源MRSA耐药性和外排泵基因。结果表明,79株MRSA对青霉素、庆大霉素和卡那霉素耐药率均为100.0%,对环丙沙星和左氧氟沙星耐药率为94.9%,对克林霉素的耐药率为87.3%,对四环素的耐药率为79.7%,而对呋喃妥因、喹奴普丁/达福普丁、新诺明/甲氧苄啶和利奈唑胺均表现为敏感。PCR检测结果显示,外排泵基因norAnorBnorCsepAmepAmdeA在79株MRSA中检出率均为100.0%,qacA/B的检出率为24.1%,未检测到smr基因。统计学分析结果表明,MRSA对青霉素、庆大霉素、卡那霉素、环丙沙星、左氧氟沙星、克林霉素、利福平和四环素的耐药表型与外排泵基因norAnorBnorCsepAmepAmdeA均存在极显著的相关性(P < 0.01),与qacA/B相关性较强(P < 0.05),未发现MRSA耐药表型与smr基因存在相关性。结果表明,MRSA对常见的抗菌药物具有较高耐药率,临床上给药前应先进行药物敏感性测试,以便选用合适的抗菌药物;MRSA菌株外排泵基因携带率较高,其潜在威胁应引起重视。
关键词奶牛乳腺炎    耐甲氧西林金黄色葡萄球菌    耐药性    外排泵    
Study on Relationship between Antimicrobial Resistance and Efflux Pump Related Genes of Methicillin-Resistant Staphylococcus aureus in Dairy Cow
ZHANG Hang, YANG Feng, LI Xinpu, WANG Xurong, LUO Jinyin, LI Hongsheng     
Key Laboratory of Veterinary Pharmaceutical Discovery of Ministry of Agriculture, Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
Abstract: The present study aims to investigate the antimicrobial resistance, the distribution of efflux pump genes, and the relationship between the distribution of efflux pump genes and the antimicrobial resistance of bovine methicillin-resistant Staphylococcus aureus (MRSA). The antimicrobial resistance and frequency of efflux pump genes of MRSA were detected by the disk diffusion method and PCR, respectively. The results showed that all 79 MRSA isolates were resistant to penicillin, gentamicin and kanamycin, followed by ciprofloxacin (94.9%), levofloxacin (94.9%), clindamycin (87.3%) and tetracycline (79.7%). Moreover, all isolates were sensitive to nitrofurantoin, quinatudine/dafopretin, neostigmine/trimethoprim and linezolid. PCR results showed that all MRSA isolates carried the efflux pump genes norA, norB, norC, sepA, mepA and mdeA, follwed by qacA/B (24.1%). smr was not found in these isolates. Statistical analysis showed that there were significant correlations between the frequency of norA, norB, norC, sepA, mepA, mdeA and qacA/B and resistance phenotype of penicillin, gentamicin, kanamycin, ciprofloxacin, levofloxacin, clindamycin, rifampin and tetracycline (P < 0.01), respectively. These results revealed high antimicrobial resistance to common antibiotics, which indicating that antimicrobial susceptibility testing should be performed prior to clinical administration for selecting suitable antimicrobial agents. Finally, the potential threat of high prevalence of efflux pump genes in MRSA should be of concern.
Key words: bovine mastitis     methicillin-resistant Staphylococcus aureus     antimicrobial resistance     efflux pump    

乳腺炎是奶牛养殖业最常见的传染性疾病之一,给奶牛养殖业造成巨大的经济损失[1]。根据来源和传播途径的不同,通常将引起牛乳腺炎的病原微生物分为传染性和环境型两种[2]。金黄色葡萄球菌是引起牛乳腺炎的一种重要传染性致病菌,约占病原菌总数的50%以上[3]

目前,抗生素仍然是治疗葡萄球菌性奶牛乳腺炎的主要药物[4]。然而,由于抗生素的不合理使用,造成金黄色葡萄球菌对临床上常用抗生素的耐药性日益严重,导致多重耐药菌株甚至耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)出现,这给牛乳腺炎的防治带来了极大困难,引起了世界各国的高度关注。MRSA菌株对几乎所有用于治疗奶牛乳腺炎的β-内酰胺类抗生素产生了不同程度的耐药,该耐药性与mecA基因编码的青霉素结合蛋白PBP2a相关,该蛋白降低了MRSA菌株与β-内酰胺类抗生素的亲和力[5-6]。喹诺酮类药物因其抗菌谱广、抗菌作用强而被用于多种感染的治疗,但随着氟喹诺酮类耐药性的出现,使得其治疗效果越来越差,并在临床MRSA菌株之间广泛传播[7-8]

氟喹诺酮类耐药主要由喹诺酮类耐药决定区(QRDR)发生突变和外排泵基因介导的药物外排两种机制决定[6]。前者突变主要发生在金黄色葡萄球菌GrlA/GrlB和GyrA/GyrB喹诺酮类耐药决定区,导致与药物亲和力下降,后者主要包括分别由染色体和质粒编码的外排泵基因介导的外排泵效应,染色体编码的外排泵基因通常有norAnorBnorCmdeAmepAsepAsdrM,质粒编码的外排泵基因有qacA/BqacGqacHqacJsmr[9]。作者在本文中对我国奶牛源性MRSA分离株的抗生素耐药性进行检测,对相应的外排泵基因进行了扩增,并分析了耐药性和外排泵基因的相关性,旨在为更好地认识MRSA中外排泵基因的分布及控制MRSA感染提供科学依据。

1 材料与方法 1.1 试验菌株

328株金黄色葡萄球菌于2016年5月—2019年3月从甘肃、山西、江苏和黑龙江4个省的20个奶牛养殖场采集的临床型和隐性乳腺炎奶样中分离获得,保存于中国农业科学院兰州畜牧与兽药研究所微生物课题组。

1.2 主要试剂与器材

TSB、MHA培养基购自OXOID公司,血平板购自广东环凯微生物科技有限公司,试验所用药敏纸片均为Oxoid公司产品,Bacterial DNA Kit购自OMEGA公司,Premix TaqTM、Agarose购自TaKaRa公司,SEDI PCR仪购自威泰克公司,mecAmecC基因引物及外排泵基因引物由北京六合华大基因科技股份有限公司合成。

1.3 MRSA菌株的筛选与鉴定 1.3.1 药敏纸片法筛选MRSA

参照2013版美国临床实验标准委员会标准[10],采用K-B药敏纸片法(头孢西丁,30 μg)对328株金黄色葡萄球菌进行药物敏感性检测,筛选对头孢西丁耐药的菌株。

1.3.2 PCR法鉴定MRSA

TSB培养金黄色葡萄球菌16~18 h,取1.5 mL菌液按照Bacterial DNA Kit操作说明提取细菌基因组DNA,用于PCR反应,mecAmecC基因特异性引物见表 1。PCR反应体系为25 μL,反应条件:94 ℃预变性5 min;94 ℃变性1 min,55 ℃退火1 min,72 ℃延伸2 min,共30个循环;72 ℃终延伸5 min[11]。PCR产物经10 g·L-1的琼脂糖凝胶电泳,根据目的条带大小鉴定mecAmecC基因。

表 1 mecAmecC基因特异性引物 Table 1 Specific primers of mecA and mecC
1.4 药物敏感性检测

对所有检测为MRSA的菌株用以下13种抗生素进行药物敏感性检测:青霉素、环丙沙星、左氧氟沙星、庆大霉素、卡那霉素、克林霉素、氯霉素、呋喃妥因、喹奴普丁/达福普汀、利福平、四环素、新诺明/甲氧苄啶和利奈唑胺。试验结果根据2013版CLSI判读标准[10],将所有MRSA分为S(敏感)、I(中度敏感)和R(耐药)三类。

1.5 外排泵基因的检测

根据Premix TaqTM使用说明进行各外排泵基因的PCR扩增,PCR配制体系为25 μL:Premix TaqTM13 μL,上、下游引物各0.5 μL,ddH2O 9 μL,DNA模板2 μL。PCR反应条件:94 ℃预变性4 min;94 ℃变性30 s,60 ℃(norA)、62 ℃(norBnorC)、61 ℃(sepAmepAmdeA)退火50 s,72 ℃延伸55 s,共30个循环;72 ℃终延伸5 min。对于qacA/Bsmr基因,PCR反应条件:95 ℃预变性1 min;95 ℃变性1 min,58 ℃退火45 s,72 ℃延伸1 min,共30个循环;72 ℃终延伸5 min。反应结束后,取PCR产物5 μL在10 g·L-1的琼脂糖凝胶上电泳。各外排泵基因特异性引物及退火温度见表 2

表 2 各外排泵基因引物序列及扩增条件 Table 2 Sequences and amplification conditions of efflux pump genes
1.6 统计分析

用SPSS 25.0中的Chi-square test对MRSA外排泵基因的分布与耐药性之间的相关性进行分析。

2 结果 2.1 MRSA的鉴定

头孢西丁药敏试验显示,耐药菌株共79株,PCR扩增mecAmecC基因检测结果表明,79株菌均携带mecA基因,未检测到mecC基因,MRSA检出率为24.1%(79/328)。

2.2 MRSA的药敏试验

79株MRSA菌株对青霉素、庆大霉素和卡那霉素耐药率均为100.0%,对环丙沙星、左氧氟沙星和克林霉素的耐药率分别为94.9%、94.9%和87.3%,对氯霉素的敏感率为97.5%,所有MRSA菌株对呋喃妥因、喹奴普丁/达福普丁、新诺明/甲氧苄啶和利奈唑胺均表现为敏感,详见表 3

表 3 MRSA药物敏感性检测 Table 3 Antimicrobial susceptibility testing of MRSA
2.3 外排泵基因的检测

PCR扩增外排泵基因结果显示,79株MRSA菌株均携带外排泵基因norAnorBnorCsepAmepAmdeAqacA/B检出率为24.1%,未检出smr基因,mecA+norA-C+sepA+mepA+mdeA+qacA/B基因组合占24.1%(表 4)。

表 4 MRSA菌株外排泵基因检出率 Table 4 Frequency of efflux pump genes in MRSA
2.4 外排泵基因分布与牛源MRSA耐药性之间的相关性分析

MRSA对青霉素、庆大霉素、卡那霉素、环丙沙星、左氧氟沙星、克林霉素、利福平和四环素的耐药表型与外排泵基因norAnorBnorCsepAmepAmdeA均存在极显著的相关性(P<0.01),与qacA/B相关性较强(P<0.05),未发现MRSA耐药表型与smr基因存在相关性。

3 讨论

金黄色葡萄球菌是一种高致病性人畜共患致病菌,可引起反刍动物的临床型乳腺炎和隐性乳腺炎[12-13]。自1990年从医院患者中首次发现MRSA以来,MRSA感染已成为全球主要的公共卫生问题[14-15]。近年来,大量耐药性金黄色葡萄球菌的出现给奶牛乳腺炎的防控带来极大困难,并增加了治疗成本[16]。本研究对牛源MRSA的抗生素耐药性与相关外排泵基因进行检测,并分析外排泵基因的分布与牛源MRSA耐药性之间的相关性,明确了牛源MRSA分离株的抗生素耐药谱,并首次对牛源MRSA外排泵基因的频率分布进行研究。本次试验中MRSA的分离率为24.1%,比Bardiau等[17]、孟丹等[18]和王新等[19]报道的牛乳中MRSA分离率高,可能是因为样本量大小、采样季节或地域不同所致。

药敏试验检测结果显示,79株MRSA均为多重耐药菌株,表现为对3种以上的抗生素产生了不同程度的耐药,这与Papadopoulos等[20]、Bardiau等[17]和Seixas等[21]的报道一致。本研究中,所有测试菌株对青霉素、庆大霉素和卡那霉素均表现为耐药,对环丙沙星、克林霉素、利福平和四环素也具有较高的耐药性,这与Nasution等[22]的研究结果相同,这可能与临床上长期使用这些抗生素,导致细菌产生耐药性有关。而Klibi等[23]研究指出,MRSA对庆大霉素和卡那霉素敏感,这可能与外排泵基因未被激活,从而不能编码外排活性转运蛋白有关,具体机制有待进一步验证。

本研究中,79株MRSA分离株均含有外排泵基因norAnorBnorCsepAmepAmdeA。Antiabong等[24]报道,南非地区MRSA多重耐药外排泵基因norAnorBsepAmepAmdeA的携带率为95.9%~98.9%,norC流行率也达到79.4%,这与本研究结果基本一致,表明MRSA对一些常用的杀菌剂和抗生素药物具有较高的耐受潜力[25]。根据结构和所需能量来源的不同,可将多重耐药外排泵分为五大蛋白家族[25-26]。目前,由金黄色葡萄球菌质粒基因qac编码的外排泵蛋白QAC共有六种,分属于两大类蛋白家族,主要与季铵盐类化合物耐药相关,一类是主要促进子家族,包括QacA和QacB,另一类是多重耐药小蛋白家族,包括QacC、QacG、QacH和QacJ[27-28]。本研究中79株MRSA中qacA/B的检出率为24.1%,高于Worthing等[29]报道的MRSA中qacA/B的流行率(12.0%),这可能与样本量不同有关。进一步分析发现,MRSA对青霉素、环丙沙星、左氧氟沙星、庆大霉素、卡那霉素、克林霉素和四环素的表型耐药与外排泵基因norAnorBnorCsepAmepAmdeA的检出率极显著相关(P<0.01),与qacA/B相关性较强(P<0.05),表明norAnorBnorCsepAmepAmdeAqacA/B基因在MRSA耐药性中起着重要作用。

综上所述,MRSA对常用的抗生素青霉素、环丙沙星、左氧氟沙星、庆大霉素、卡那霉素和克林霉素等耐药率较高,临床上给药前应先进行药物敏感性测试,选用适当的抗菌药物进行治疗。后期我们将着力研究外排泵基因的表达与耐药性的关系,以期为MRSA耐药性研究提供更加完善的试验资料。外排泵基因虽然不能作为MRSA表型耐药的诊断标准,但其高携带率及潜在威胁应当引起重视。

4 结论

奶牛乳腺炎源MRSA的检出率为24.1%,牛源MRSA对常见的抗菌药物具有较高耐药率,临床上给药前应先进行药物敏感性测试,以便选用合适的抗菌药物,减少耐药菌株的产生,并且MRSA菌株外排泵基因携带率较高,其潜在威胁应引起重视。

参考文献
[1] GUIMARÃES F F, MANZI M P, JOAQUIM S F, et al. Short communication: outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd[J]. J Dairy Sci, 2017, 100(1): 726–730. DOI: 10.3168/jds.2016-11700
[2] RUEGG P L. Managing cows, milking and the environment to minimize mastitis[J]. Adv Dairy Technol, 2012, 24: 351–359.
[3] ELHAIG M M, SELIM A. Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt[J]. Trop Anim Health Prod, 2015, 47(2): 271–276. DOI: 10.1007/s11250-014-0715-1
[4] WANG W, LIN X H, JIANG T, et al. Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China[J]. Front Microbiol, 2018, 9: 1123. DOI: 10.3389/fmicb.2018.01123
[5] BIETRIX J, KOLENDA C, SAPIN A, et al. Persistence and diffusion of mecC-positive CC130 MRSA isolates in dairy farms in Meurthe-et-Moselle County (France)[J]. Front Microbiol, 2019, 10: 47. DOI: 10.3389/fmicb.2019.00047
[6] HASSANZADEH S, MASHHADI R, YOUSEFI M, et al. Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates[J]. Microb Pathog, 2017, 111: 71–74. DOI: 10.1016/j.micpath.2017.08.026
[7] COSTA S S, FALCÃO C, VIVEIROS M, et al. Erratum to:exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus[J]. BMC Microbiol, 2013, 13: 127. DOI: 10.1186/1471-2180-13-127
[8] WOODFORD N, LIVERMORE D M. Infections caused by Gram-positive bacteria:a review of the global challenge[J]. J Infect, 2009, 59(Suppl 1): S4–S16.
[9] POOLE K. Efflux pumps as antimicrobial resistance mechanisms[J]. Ann Med, 2007, 39(3): 162–176. DOI: 10.1080/07853890701195262
[10] Clinical and Laboratory Standards Institute. M100-S23 performance standards for antimicrobial susceptibility testing: twenty-third informational supplement[S]. Wayne: CLSI, 2013.
[11] GARCÍA-ÁLVAREZ L, HOLDEN M T G, LINDSAY H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark:a descriptive study[J]. Lancet Infect Dis, 2011, 11(8): 595–603. DOI: 10.1016/S1473-3099(11)70126-8
[12] LI T M, LU H Y, WANG X, et al. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015[J]. Front Cell Infect Microbiol, 2017, 7: 127.
[13] NEMEGHAIRE S, ARGUDÍN M A, HAESEBROUCK F, et al. Epidemiology and molecular characterization of methicillin-resistant Staphylococcus aureus nasal carriage isolates from bovines[J]. BMC Vet Res, 2014, 10: 153.
[14] CORNEJO-JUÁREZ P, VILAR-COMPTE D, PÉREZ-JIMÉNEZ C, et al. The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit[J]. Int J Infect Dis, 2015, 31: 31–34. DOI: 10.1016/j.ijid.2014.12.022
[15] ADLER A, GIVON-LAVI N, MOSES A E, et al. Carriage of community-associated methicillin-resistant Staphylococcus aureus in a cohort of infants in southern Israel:risk factors and molecular features[J]. J Clin Microbiol, 2010, 48(2): 531–538. DOI: 10.1128/JCM.02290-08
[16] HUIJPS K, LAM T J G M, HOGEVEEN H. Costs of mastitis:facts and perception[J]. J Dairy Res, 2008, 75(1): 113–120. DOI: 10.1017/S0022029907002932
[17] BARDIAU M, YAMAZAKI K, DUPREZ J N, et al. Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk of bovine mastitis[J]. Lett Appl Microbiol, 2013, 57(3): 181–186. DOI: 10.1111/lam.12099
[18] 孟丹, 孟庆玲, 乔军, 等. 奶牛源金黄色葡萄球菌新疆流行株的耐药特性、毒力基因及分子分型[J]. 畜牧兽医学报, 2018, 49(1): 181–194.
MENG D, MENG Q L, QIAO J, et al. Study on resistance characteristics, virulence genes and molecular classification of Staphylococcus aureus isolated from cows in Xinjiang[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(1): 181–194. (in Chinese)
[19] 王新, 韦艺媛, 张静, 等. 乳房炎奶牛金黄色葡萄球菌毒素基因的检测及PFGE分型研究[J]. 畜牧兽医学报, 2011, 42(7): 974–980.
WANG X, WEI Y Y, ZHANG J, et al. Virulence genes and PFGE profiles of Staphylococcus aureus isolated from cows with subclinical and clinical mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(7): 974–980. (in Chinese)
[20] PAPADOPOULOS P, PAPADOPOULOS T, ANGELIDIS A S, et al. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece[J]. Food Microbiol, 2018, 69: 43–50. DOI: 10.1016/j.fm.2017.07.016
[21] SEIXAS R, SANTOS J P, BEXIGA R, et al. Short communication:antimicrobial resistance and virulence characterization of methicillin-resistant Staphylococci isolates from bovine mastitis cases in Portugal[J]. J Dairy Sci, 2014, 97(1): 340–344. DOI: 10.3168/jds.2013-7130
[22] NASUTION G S, SURYANTO D, KUSUMAWATI R L. Detection of mecA gene from methicillin resistant Staphylococcus aureus isolates of north sumatera[J]. IOP Conf Ser:Earth Environ Sci, 2018, 130(1): 012026.
[23] KLIBI A, JOUINI A, GÓMEZ P, et al. Molecular characterization and clonal diversity of methicillin-resistant and -susceptible Staphylococcus aureus isolates of milk of cows with clinical mastitis in Tunisia[J]. Microb Drug Res, 2018, 24(8): 1210–1216. DOI: 10.1089/mdr.2017.0278
[24] ANTIABONG J F, KOCK M M, BELLEA N M, et al. Diversity of multidrug efflux genes and phenotypic evaluation of the in vitro resistance dynamics of clinical Staphylococcus aureus isolates using methicillin; a model β-lactam[J]. Open Microbiol J, 2017, 11: 132–141. DOI: 10.2174/1874285801711010132
[25] COSTA S S, VIVEIROS M, AMARAL L, et al. Multidrug efflux pumps in Staphylococcus aureus:an update[J]. Open Microbiol J, 2013, 7: 59–71. DOI: 10.2174/1874285801307010059
[26] BAY D C, TURNER R J. Diversity and evolution of the small multidrug resistance protein family[J]. BMC Evol Biol, 2009, 9: 140. DOI: 10.1186/1471-2148-9-140
[27] LIU Q Z, LIU M N, WU Q, et al. Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital[J]. Scand J Infect Dis, 2009, 41(6-7): 403–409. DOI: 10.1080/00365540902856545
[28] WASSENAAR T M, USSERY D, NIELSEN L N, et al. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species[J]. Eur J Microbiol Immunol, 2015, 5(1): 44–61. DOI: 10.1556/EuJMI-D-14-00038
[29] WORTHING K A, MARCUS A, ABRAHAM S, et al. Qac genes and biocide tolerance in clinical veterinary methicillin-resistant and methicillin-susceptible Staphylococcus aureus and Staphylococcus pseudintermedius[J]. Vet Microbiol, 2018, 216: 153–158. DOI: 10.1016/j.vetmic.2018.02.004