畜牧兽医学报  2019, Vol. 50 Issue (10): 2147-2155. DOI: 10.11843/j.issn.0366-6964.2019.10.022    PDF    
郁金散对大肠湿热证大鼠回肠、结肠黏膜SIgA和炎性因子的影响
姚万玲, 文艳巧, 华永丽, 纪鹏, 魏彦明     
甘肃农业大学动物医学院, 兰州 730070
摘要:旨在探讨郁金散对大肠湿热证大鼠回肠、结肠肠黏膜SIgA和炎性因子的影响。体重180~220 g Wistar大鼠40只,随机分为正常对照组、大肠湿热证模型组、自愈组和郁金散治疗组,每组10只。通过饮食设置(高糖高脂饮食)、饥饱失常和灌服白酒并结合高温高湿环境,最后腹腔注射生物因子大肠杆菌,以模拟大肠湿热证发病条件,建立大肠湿热证大鼠模型。郁金散治疗组用郁金散治疗5 d,然后采集回肠和结肠组织制作病理切片,进行组织病理学观察;用ELISA法检测回肠和结肠黏液中免疫球蛋白SIgA含量及组织炎性细胞因子TNF-α、IL-1β、IL-6、IL-10、IL-17和IL-23含量。结果显示,模型大鼠回肠和结肠黏膜上皮细胞变性、坏死、脱落,上皮完整性被破坏,有炎性细胞浸润现象;郁金散治疗组黏膜上皮再生,完整性得到恢复,连续性良好,排列有序,炎性细胞浸润明显减少。模型组大鼠回肠和结肠黏液中的SIgA含量均显著高于正常对照组(P < 0.05);郁金散治疗组显著低于自愈组(P < 0.05)。模型组回肠和结肠组织中促炎因子TNF-α、IL-1β、IL-6、IL-17和IL-23含量显著或极显著高于正常对照组(P < 0.05或P < 0.01),抑炎因子IL-10含量显著或极显著低于正常对照组(P < 0.05或P < 0.01);郁金散治疗组回肠组织的上述炎性因子含量与自愈组相比均差异显著(P < 0.05);结肠中的TNF-α、IL-10、IL-23与自愈组差异显著(P < 0.05);IL-1β、IL-6、IL-17与自愈组差异极显著(P < 0.01)。结果表明,大肠湿热证模型大鼠回肠和结肠黏膜免疫稳态被打破,表现为SIgA分泌亢进,炎性细胞因子分泌紊乱;郁金散治疗可以促使其显著回调。
关键词郁金散    大肠湿热证    SIgA    炎性因子    
Effects of Yujin Powder on SIgA and Inflammatory Cytokines in Ileal and Colonic Mucosa of Large Intestine Dampness-heat Syndrome Rat
YAO Wanling, WEN Yanqiao, HUA Yongli, JI Peng, WEI Yanming     
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract: This study was conducted to explore the effects of Yujin powder (YJP) on SIgA and inflammatory cytokines in ileal and colonic mucosa of Large Intestine Dampness-heat Syndrome (LIDHS) rat. Forty Wistar rats were randomly divided into 4 groups:normal control, LIDHS model, self-healing and YJP treatment group, with 10 rats in each group. The rat model of LIDHS was established through setting such complex factors as high-sugar and high-fat diet, improper diet, high temperature and high humidity environment, drinking and intraperitoneal injection of Escherichia coil to imitate the inducing conditions of LIDHS. After the model being successfully established, the rats of YJP treatment group were treated with YJP for 5 days. And then we collected ileum and colon, made histopathological slices and observed the pathological changes of ileum and colon. Mucous SIgA and tissue TNF-α, IL-1β, IL-6, IL-10, IL-17 and IL-23 in ileum and colon were detected by ELISA method. The results showed that in model rats, the ileal and colonic mucosal epithelium cells showed degeneration, necrosis and exfoliation, the integrality of epithelium was destroyed; and there were inflammatory cells infiltration. In YJP group, mucosal epithelium regenerated, the integrality was recovered, the continuity was good, epithelium cells have a regular arrangement, and inflammatory cells infiltration obviously decreased. The contents of mucous SIgA in ileum and colon in LIDHS model group were significantly higher than those in normal group (P < 0.05); those in YJP treatment group were both significantly lower than those in self-healing group (P < 0.05). The contents of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-17 and IL-23 in ileum and colon tissue were significantly or extremely significantly higher than those in normal group (P < 0.05 or P < 0.01). The contents of anti-inflammatory cytokine IL-10 were significantly or extremely significantly lower than those in normal group (P < 0.05 or P < 0.01). The contents of above inflammatory cytokines in ileum tissue in YJP treatment group were significantly different from those in self-healing group (P < 0.05); the contents of TNF-α, IL-10 and IL-23 in colon were significantly different from those in self-healing group (P < 0.05); the contents of IL-1β, IL-6 and IL-17 were extremely significantly different from those in self-healing group (P < 0.01). It is demonstrated that ileal and colonic mucosal immune homeostasis of LIDHS model rat was destroyed, which manifested as hypersecretion of SIgA and secretion disorder of inflammatory cytokines. The treatment of YJP could back-regulate this phenomenon.
Key words: Yujin powder (YJP)     large intestine dampness-heat syndrome (LIDHS)     SIgA     inflammatory cytokine    

大肠湿热证系指湿热蕴结大肠致大肠传导失司所表现以泄泻下痢为主的一系列证候[1]。在畜禽和人类临床多发,常见于湿热型腹泻性疾病中。腹泻性疾病是困扰现代畜禽养殖业的顽疾之一,而湿热型腹泻是其最主要的类型。在中兽医学中,郁金散为治疗大肠湿热证的常用经典方剂之一。临床实践表明,郁金散对湿热型腹泻性疾病有较好的治疗效果。

研究证实,消化道除具有最重要的营养吸收功能外,还对机体的免疫稳态具有重要的调节功能,因此,也被认为是机体最大的免疫器官,主要包含器官化的淋巴组织,如回肠淋巴集结(PPs)、肠系膜淋巴结以及孤立淋巴滤泡、弥散淋巴组织、黏膜相关淋巴细胞及相关分子等[2]。但是,与机体系统免疫相比较,消化道黏膜免疫最显著的特征之一是其主效应分子为SIgA[3]。它由分布于肠固有层内的浆细胞分泌,分子一般由二聚体或三聚体构成,可以由多聚免疫球蛋白受体pIgR跨膜转运至肠腔,在肠腔黏液层形成免疫保护屏障。除此之外,还有大量的细胞因子,例如TNF-α、IL-1β、IL-6、IL-10、IL-17和IL-23等在消化道黏膜免疫稳态的调节中发挥着重要的调节作用,其分泌异常通常与某些疾病关系密切。例如,有研究表明,在溃疡性结肠炎等炎症性肠病中,发现IL-1和TNF-α等均大量分泌;在结肠炎症发生过程中起重要作用[4]。另外,也有研究表明,TNF-α、IL-1β和IL-6等在启动肠黏膜固有免疫中发挥重要作用[4]。IL-17和IL-23在肠免疫稳态的维持以及炎症性肠病中均具有重要的作用[5]

本试验通过模拟大肠湿热证发病条件建立大肠湿热证大鼠模型,观察回肠和结肠的病理变化,检测回肠和结肠黏液主效应分子SIgA和组织炎性细胞因子TNF-α、IL-1β、IL-6、IL-10、IL-17和IL-23,分析大肠湿热证与肠黏膜免疫防御紊乱之间的关系,以及郁金散对其调控作用机制,以期为探索大肠湿热证的发病实质和内涵以及郁金散对其治疗作用机制提供依据。

1 材料与方法 1.1 主要试剂和仪器

黄芩苷(110715-201619)、栀子苷(110749-201718)、芍药苷(110736-201640)、没食子酸(110831-201605)、盐酸小檗碱(110713-201613)、姜黄素(110823-201706)和大黄素(110756-201512)标准品,中国食品药品检定研究院;SIgA、TNF-α、IL-1β、IL-6、IL-10、IL-17、IL-23 ELISA试剂盒,北京奇松生物科技有限公司;Thermo SCIENTIFIC SORVALL ST 8R高速冷冻离心机,美国Thermo Scientific公司;iMark型酶标仪,美国BIO-RAD公司;Leica切片机,德国Leica公司;OlympusDP-71显微照相系统,日本Olympus公司。

1.2 大肠杆菌

菌种为产毒性大肠杆菌O101,由中国兽医药品监察所提供,菌号CVCC231。攻毒前活化、接种至肉汤培养基,37 ℃振荡培养,4 ℃下保存备用。

1.3 郁金散制备及成分测定

参考《中兽医学》中郁金散的配方组成,郁金30 g、黄连30 g、黄芩30 g、黄柏30 g、栀子30 g、大黄60 g、白芍15 g、诃子15 g。按上述组方制备郁金散:按比例称取药物置于10倍水中浸泡30 min,武火煮沸后改用文火煎煮30 min,纱布过滤;药渣再以6倍水煎煮30 min;合并两次滤液,减压浓缩,定容至1.04 g·mL-1(换算为大鼠的给药剂量为10.4 g·kg-1),置4 ℃下保存备用。以上中药均购自甘肃西域阳光大药房,经甘肃农业大学动物医学院魏彦明教授鉴定。

用HPLC法测定了郁金散中7种主要有效成分黄芩苷、栀子苷、芍药苷、没食子酸、盐酸小檗碱、姜黄素和大黄素的含量,分别为1.624、2.541、2.783、21.633、17.349、0.149和0.104 mg·g-1(表 1)。

表 1 郁金散中7种主要有效成分的含量(n=3) Table 1 Contents of seven active components in Yujin Powder (n=3)
1.4 动物分组及造模

40只Wistar大鼠,200 g±20 g,清洁级,雌雄各半,由兰州大学医学院实验动物中心提供,动物生产合格证号:SCXK(甘)2013-0002。室温调整在18~25 ℃,湿度在50%±5%,12 h光照和12 h黑暗环境,标准饮食,自由给水。所有的动物福利和实验程序符合甘肃农业大学动物伦理委员会要求。适应7 d后,随机分为4组,每组10只:正常对照组(NC)、模型组(Model)、自愈组(Self-healing)、郁金散治疗组(YJP)。按照本实验室以前的方法建立大肠湿热证大鼠模型[6],简述如下:除正常对照组外,其他组全程饮用蜂蜜水;前10 d,禁食和饲喂充足饲料并灌服猪油隔日交替进行;接下来每天早上灌服白酒,然后置于高温仓8 h,连续5 d;最后腹腔注射大肠杆菌,且24 h后再注射一次。自然环境饲养1 d,模型建立成功。造模完成后,处死模型组大鼠并取样。郁金散治疗组分别以10.4 g·(kg·d)-1剂量灌胃方药,共5 d;自愈组灌服等量生理盐水。试验期间,正常对照组饲养于自然环境,饲喂普通饲料,灌胃、腹腔注射等量生理盐水。试验结束后处死所有大鼠取样。

1.5 组织病理学观察

以回盲部为始端,剪取回肠和结肠各1 cm,置于4%甲醛溶液中固定15 d以上。流水冲洗样本中的甲醛,乙醇脱水,二甲苯透明,石蜡包埋,切片(4 μm),常规方法HE染色,显微镜下观察,并用OlympusDP-71显微照相系统照相。

1.6 回肠和结肠黏膜SIgA的检测

从距回盲部3.5 cm处迅速剪取回肠和结肠各1.5 cm,平铺于滤纸上,纵向切开,暴露黏膜面,用载玻片轻轻刮取肠黏液5次,收集于EP管中,再加入含0.1%蛋白酶抑制剂的0.01 mol·L-1冰浴磷酸盐缓冲液(PBS)1 mL,充分混匀,3 000 r·min-1,离心15 min取上清液,-80 ℃下冻存待检。检测前室温下解冻,采用ELISA法按照试剂盒说明进行SIgA检测。

1.7 肠组织炎性细胞因子的检测

从距回盲部1.5 cm处迅速剪取回肠和结肠各约1 cm,准确称取0.5 g左右,按1:5的比例加入生理盐水于匀浆器中冰浴下研磨制成匀浆,4 ℃ 3 000 r·min-1离心15 min,取上清,-80 ℃保存待测。检测前室温下解冻,采用ELISA法按照试剂盒说明进行TNF-α、IL-1β、IL-6、IL-10、IL-17和IL-23的检测。

1.8 统计分析

数据均采用x±s表示,所用统计软件为SPSS 23.0 (SPSS Inc., Chicago, USA),用ANOVA分析法比较各组数据的差异显著性。P < 0.05认为差异显著,P < 0.01认为差异极显著。

2 结果 2.1 回肠和结肠组织病理学观察

回肠和结肠组织病理学观察结果显示,正常对照组回肠和结肠黏膜上皮完整无损,排列紧密,整齐有序,无炎性细胞浸润;大肠湿热证模型组黏膜上皮细胞变性、坏死、脱落,上皮完整性被破坏,伴有炎性细胞浸润;自愈组相对于模型组稍有缓解,但仍存在黏膜上皮的不完整性,排列杂乱;郁金散治疗组接近正常对照组,黏膜上皮完整性得到一定程度的恢复,连续性好,排列规则有序;炎性细胞浸润情况明显减少(图 1图 2)。

A.正常对照组;B.模型组;C.自愈组;D.郁金散治疗组。三角箭头表示上皮细胞变性、坏死、脱落,完整性被破坏;箭头表示炎性细胞浸润。标尺20 μm A. Normal control group; B. Model group; C. Self-healing group; D. YJP treatment group. Triangular arrows indicate degeneration, necrosis, exfoliation of epithelium cells and the integrality was destroyed; Arrows indicate inflammatory cells infiltration.The scale bar represents 20 μm 图 1 各组回肠组织病理切片 Fig. 1 Histopathological changes of the ileum
A.正常对照组;B.模型组;C.自愈组;D.郁金散治疗组。三角箭头表示上皮细胞变性、坏死、脱落,完整性被破坏;箭头表示炎性细胞浸润。标尺20 μm A. Normal control group; B. Model group; C. Self-healing group; D. YJP treatment group. Triangular arrows indicate degeneration, necrosis, exfoliation of epithelium cells and the integrality was destroyed; Arrows indicate inflammatory cells infiltration. The scale bar represents 20 μm 图 2 各组结肠组织病理切片 Fig. 2 Histopathological changes of the colon
2.2 回肠和结肠黏液SIgA含量

在回肠和结肠黏液中,模型组和自愈组的SIgA均显著高于正常对照组(P < 0.05),郁金散治疗组显著低于自愈组(P < 0.05),详见图 3。结果表明,大肠湿热证造模后回肠、结肠黏液中SIgA升高,经郁金散治疗后下降。

NC.正常对照组;M.模型组;Self-healing.自愈组;YJP.郁金散治疗组;P < 0.05表示差异显著 NC. Normal control group; M. Model group; Self-healing. Self-healing group; YJP. YJP treatment group; P < 0.05 indicate significant difference 图 3 回肠和结肠黏液SIgA含量 Fig. 3 Contents of SIgA in ileal and colonic mucus
2.3 回肠组织炎性细胞因子含量

模型组和自愈组的TNF-α和IL-1β均极显著高于正常对照组(P < 0.01),治疗组显著低于自愈组(P < 0.05);模型组的IL-6和IL-17极显著高于正常对照组(P < 0.01),自愈组显著高于正常对照组(P < 0.05),治疗组显著低于自愈组(P < 0.05);模型组和自愈组的IL-10显著低于正常对照组(P < 0.05),治疗组显著高于自愈组(P < 0.05);模型组和自愈组的IL-23显著高于正常对照组(P < 0.05),治疗组显著低于模型组和自愈组(P < 0.05), 详见图 4。结果表明,大肠湿热证模型大鼠的回肠组织炎性细胞因子网络发生紊乱,郁金散可以调控这一紊乱现象。

NC.正常对照组;M.模型组;Self-healing.自愈组;YJP.郁金散治疗组;P < 0.05表示差异显著;P < 0.01表示差异极显著 NC. Normal control group; M. Model group; Self-healing. Self-healing group; YJP. YJP treatment group; P < 0.05 indicate significant difference; P < 0.01 indicate extremely significant differences 图 4 回肠组织炎性细胞因子含量 Fig. 4 Contents of inflammatory cytokines in ileum tissue
2.4 结肠组织炎性细胞因子含量

模型组的TNF-α和IL-23极显著高于正常对照组(P < 0.01),治疗组显著低于自愈组(P < 0.05);模型组和自愈组的IL-1β、IL-6和IL-17均极显著高于正常对照组(P < 0.01),治疗组极显著低于自愈组(P < 0.01);模型组和自愈组中的IL-10极显著低于正常对照组(P < 0.01),治疗组显著高于自愈组(P < 0.05), 详见图 5。结果表明,大肠湿热证模型大鼠的结肠组织炎性细胞因子网络发生紊乱,郁金散可以调控这一紊乱现象。

NC.正常对照组;M.模型组;Self-healing.自愈组;YJP.郁金散治疗组;P < 0.05表示差异显著;P < 0.01表示差异极显著 NC. Normal control group; M. Model group; Self-healing. Self-healing group; YJP. YJP treatment group; P < 0.05 indicate significant difference; P < 0.01 indicate extremely significant differences 图 5 结肠组织炎性细胞因子含量 Fig. 5 Contents of inflammatory cytokines in colon tissue
3 讨论

本试验中,模型组大鼠回肠和结肠黏液中SIgA含量均显著高于正常对照组。王自力等[7]报道,热应激可引起猪肠道黏液SIgA含量升高。给小鼠饲喂卵清蛋白后,肠道黏液SIgA含量显著上升[8]。这些研究与本研究结果一致。大量研究证实,SIgA是消化道黏膜免疫中最关键的效应分子,可在肠黏膜表面形成有效的防御屏障,以阻止病原入侵[9-10],然而,SIgA的组成成分分泌片,可优先与肠道中嗜酸性粒细胞上的相应受体结合,激活其脱颗粒反应[11-12]。在本研究中大肠湿热证动物机体肠道SIgA含量升高,提示模型组大鼠肠道内SIgA分泌功能亢进,可能是在大肠湿热证造模条件下,即高温高湿、肥甘厚味以及生物因子大肠杆菌的诱导下,模型大鼠的肠稳态被破坏,使其处于炎症状态,而升高的SIgA是对其保护性应答反应的表现之一。郁金散治疗后,其炎症反应减弱,促使SIgA抗体的分泌趋于正常水平。

细胞因子的结果显示,模型组大鼠回肠和结肠组织中促炎因子TNF-α、IL-1β、IL-6、IL-17和IL-23均显著升高,抑炎因子IL-10下降。有研究报道由甲胺喋呤诱导的小肠黏膜炎大鼠的肠组织中TNF-α和IL-1β含量升高,IL-10含量下降[13]。在炎症性肠炎中,肠黏膜IL-6[14]、IL-17[15]、IL-23[16]升高。本试验结果与这些研究结果相一致。这些细胞因子在肠道黏膜免疫稳态的调控中具有重要的作用。

促炎因子与抑炎因子的平衡对于炎性反应程度与临床预后有重要的意义。IL-1β可促进其他炎性细胞因子的表达,并与之协同,促进中性粒细胞的浸润[17]。更为重要的是,IL-1β可促使中性粒细胞和巨噬细胞活化及脱颗粒,促进炎性细胞释放前列腺素、血栓素、血小板活化因子等,增加肠上皮细胞和内皮细胞的通透性。这些因素均可加重肠黏膜炎症,促使黏膜充血、水肿、屏障防御功能减弱[18]。IL-6是由单核巨噬细胞产生的具有多向性的细胞因子,在炎症性肠炎肠道炎症和免疫反应中起放大效应[19],其生物学效应与IL-1β类似,可通过STAT-3途径激活NK-κB而诱导细胞间黏附分子(ICAM-1)的极化表达,后者再激活信号转导通路,介导淋巴细胞之间、淋巴细胞与靶细胞之间的黏附,促进炎性细胞浸润,加重肠黏膜的组织损伤。IL-6过度表达可增强肠上皮细胞分泌电解质,导致内皮细胞肿胀、通透性增强,使中性粒细胞涌出并浸润至炎症部位而引起肠道炎症[20]。TNF-α主要由活化的单核细胞和巨噬细胞分泌,能使血管内皮细胞黏附分子的表达上调,诱导内皮细胞产生血小板活化因子和趋化性因子IL-8,导致循环中中性粒细胞、淋巴细胞及单核巨噬细胞等与血管内皮细胞黏附,进而迁移和外渗至局部组织,引起炎症反应[21]。TNF-α在IL-6参与下可诱导凝血酶形成,使内皮细胞表面由抗凝状态变为促凝状态,导致黏膜微循环障碍,削弱肠道黏膜的屏障功能;TNF-α与IFN-γ作用使肠上皮细胞的屏障功能及形态结构发生改变,进而增加肠黏膜与血管壁通透性,最终破坏肠道黏膜完整性;TNF-α还能促使IL-1β等细胞因子的释放,形成网络,扩大炎症级联反应而促使肠黏膜损伤。IL-17主要由Th17细胞产生,具有强大的募集和激活中性粒细胞的能力,能诱导活化T细胞和刺激成纤维细胞、巨噬细胞和上皮细胞产生多种促炎介质IL-1、IL-6、TNF-α等,诱导炎症[22]。IL-17还可协同TNF-α促进中性粒细胞产生趋化因子,招募更多的中性粒细胞聚集在肠道局部,介导炎症反应。IL-23通过诱导并驱动Th17细胞产生IL-17、IL-6和TNF-α等,引起肠道炎症[23]。IL-10作为一种强有力的抗炎因子,既可抑制活化的单核细胞、粒细胞产生GM-CSF、G-CSF,限制中性粒细胞产生,又可以抑制单核/巨噬细胞产生趋化因子(如IL-8等),以抑制中性粒细胞及巨噬细胞的趋化性,减少其向炎症部位聚集。同时IL-10可以抑制单核/巨噬细胞、中性粒细胞、嗜酸性细胞产生促炎细胞因子(如TNF-α、IL-1β、IL-6等)[24]。这些因素使肠黏膜炎症反应减弱,组织损伤减轻,有利于组织的重建与修复。在本研究中,大肠湿热证模型大鼠的回肠和结肠组织中促炎细胞因子分泌增强,而抑炎因子的分泌受到抑制,提示大肠湿热证大鼠肠道炎性细胞因子网络平衡被打破,机体出现了一定程度的免疫调节紊乱现象。

通过郁金散的治疗,这种炎性细胞因子网络紊乱可被有效抑制,并促使其恢复到正常水平。已有研究证明,郁金及其有效成分挥发油、姜黄素类化合物都具有抗炎作用[25-26];诃子及其有效成分鞣质酚酸类、三萜类等具有抗炎镇痛作用[27];黄芩及其有效成分黄芩苷、黄芩素等[28],大黄及其有效成分大黄素、大黄酸等[29-30],黄连及其有效成分小檗碱等[31],栀子及其有效成分栀子苷等,白芍及其有效成分芍药苷等[32-33],黄柏及其有效成分挥发油、小檗碱、黄柏碱等均有抗炎作用[34-35]

4 结论

大肠湿热证模型大鼠回肠及结肠中SIgA过度分泌,促炎细胞因子分泌异常升高,抑炎因子分泌被抑制。经郁金散治疗后,各项指标均趋于或者恢复正常水平。提示大肠湿热证大鼠肠道中黏膜免疫主效应分子SIgA分泌亢进,炎性细胞因子网络平衡被打破。应用传统中兽药方剂郁金散治疗后,SIgA的过度分泌及炎性细胞因子网络紊乱被有效抑制,而达到治疗大肠湿热证的作用。为进一步研究大肠湿热的实质及郁金散对大肠湿热证的治疗机制提供依据。

参考文献
[1] 邓铁涛. 中医诊断学[M]. 2版. 北京: 人民卫生出版社, 2008.
DENG T T. Diagnostics of traditional Chinese medicine[M]. 2nd ed. Beijing: People's Medical Publishing House, 2008. (in Chinese)
[2] MEBIUS R E. Organogenesis of lymphoid tissues[J]. Nat Rev Immunol, 2003, 3(4): 292–303. DOI: 10.1038/nri1054
[3] MACPHERSON A J, UHR T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J]. Science, 2004, 303(5664): 1662–1665. DOI: 10.1126/science.1091334
[4] 张志军, 刘懿, 王磊, 等. TLR4mAb对急性期溃疡性结肠炎小鼠结肠黏膜中促炎因子TNF-α、IFN-γ、IL-1β的影响[J]. 复旦学报:医学版, 2008, 35(2): 176–180.
ZHANG Z J, LIU Y, WANG L, et al. Preventive effects of TLR4 monoclonal antibodies on the gut mucosal proinflammatory cytokines (TNF-α, IFN-γ, IL-1β) expression in mice with DSS-induced acute ulcerative colitis[J]. Fudan University Journal of Medical Sciences, 2008, 35(2): 176–180. (in Chinese)
[5] 郑紫丹, 万晓强, 刘梁英. 溃疡性结肠炎患者血清IL-23和IL-17的水平变化及意义[J]. 细胞与分子免疫学杂志, 2011, 27(2): 203–204.
ZHENG Z D, WAN X Q, LIU L Y. Serum contents of IL-23 and IL-17 in the patients with ulcerative colitis and the clinical significance[J]. Chinese Journal of Cellular and Molecular Immunology, 2011, 27(2): 203–204. (in Chinese)
[6] YAO W L, YANG C X, WEN Y Q, et al. Treatment effects and mechanisms of Yujin Powder on rat model of large intestine dampness-heat syndrome[J]. J Ethnopharmacol, 2017, 202: 265–280. DOI: 10.1016/j.jep.2017.03.030
[7] 王自力, 于同泉, 朱晓宇, 等. 中药复方对热应激下猪肠道组织IL-2、IL-10和黏液IgA含量影响[J]. 中国兽医杂志, 2007, 43(9): 83–85.
WANG Z L, YU T Q, ZHU X Y, et al. Effects of complex prescriptions of Chinese herbs on the concentration of IL-2, IL-10 and IgA in porcine intestines after heat stress[J]. Chinese Journal of Veterinary Medicine, 2007, 43(9): 83–85. DOI: 10.3969/j.issn.0529-6005.2007.09.022 (in Chinese)
[8] 黄煌, 郑鹏远, 罗予, 等. 食物过敏对小鼠肠道屏障功能及CD4+CD25+调节性T细胞的影响[J]. 世界华人消化杂志, 2008, 16(17): 1932–1937.
HUANG H, ZHENG P Y, LUO Y, et al. Influence of food allergy on gut barrier function and CD4+CD25+ regulatory T cells in food allergic mice[J]. World Chinese Journal of Digestology, 2008, 16(17): 1932–1937. DOI: 10.3969/j.issn.1009-3079.2008.17.018 (in Chinese)
[9] HAPFELMEIER S, LAWSON M A E, SLACK E, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses[J]. Science, 2010, 328(5986): 1705–1709. DOI: 10.1126/science.1188454
[10] FAGARASAN S, MURAMATSU M, SUZUKI K, et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora[J]. Science, 2002, 298(5597): 1424–1427. DOI: 10.1126/science.1077336
[11] LAMKHIOUED B, GOUNNI A S, GRUART V, et al. Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation[J]. Eur J Immunol, 1995, 25(1): 117–125.
[12] MOTEGI Y, KITA H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils[J]. J Immunol, 1998, 161(8): 4340–4346.
[13] DE ARAÚJO JÚNIOR R F, DA SILVA REINALDO M P O, DE CASTRO BRITO G A, et al. Olmesartan decreased levels of IL-1β and TNF-α, down-regulated MMP-2, MMP-9, COX-2, RANK/RANKL and up-regulated SOCs-1 in an intestinal mucositis model[J]. PLoS One, 2014, 9(12): e114923. DOI: 10.1371/journal.pone.0114923
[14] MUDTER J, NEURATH M F. IL-6 signaling in inflammatory bowel disease:pathophysiological role and clinical relevance[J]. Inflamm Bowel Dis, 2007, 13(8): 1016–1023. DOI: 10.1002/ibd.20148
[15] FUJINO S, ANDOH A, BAMBA S, et al. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut, 2003, 52(1): 65–70. DOI: 10.1136/gut.52.1.65
[16] LIU Z J, YADAV P K, XU X R, et al. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity[J]. J Leukoc Biol, 2011, 89(4): 597–606. DOI: 10.1189/jlb.0810456
[17] RADDATZ D, BOCKEMÜHL M, RAMADORI G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease:relation to clinical and endoscopic activity and outcome[J]. Eur J Gastroenterol Hepatol, 2005, 17(5): 547–557.
[18] ZHANG J X, DANG S C, QU J G, et al. Changes of gastric and intestinal blood flow, serum phospholipase A2 and interleukin-1β in rats with acute necrotizing pancreatitis[J]. World J Gastroenterol, 2005, 11(23): 3578–3581. DOI: 10.3748/wjg.v11.i23.3578
[19] 梁皓天, 宋静荣. TNF-α、IL-6、IL-8水平与溃疡性结肠炎相关性研究[J]. 中国现代药物应用, 2010, 4(21): 92.
LIANG H T, SONG J R. Study on the correlation between the levels of TNF-α, IL-6 and IL-8 and ulcerative colitis[J]. Chinese Journal of Modern Drug Application, 2010, 4(21): 92. DOI: 10.3969/j.issn.1673-9523.2010.21.078 (in Chinese)
[20] ZHANG F, YAO S M, ZHANG M X, et al. Roles of circulating soluble interleukin (IL)-6 receptor and IL-6 receptor expression on CD4+ T cells in patients with chronic hepatitis B[J]. Int J Infect Dis, 2011, 15(4): e267–e271. DOI: 10.1016/j.ijid.2010.12.008
[21] PAUL A T, GOHIL V M, BHUTANI K K. Modulating TNF-α signaling with natural products[J]. Drug Discov Today, 2006, 11(15-16): 725–732. DOI: 10.1016/j.drudis.2006.06.002
[22] KOLLS J K, LINDÉN A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467–476. DOI: 10.1016/j.immuni.2004.08.018
[23] 肖南平, 欧阳钦. IL-23/IL-17轴与炎症性肠病[J]. 国际消化病杂志, 2008, 28(3): 234–236.
XIAO N P, OUYANG Q. The interleukin-23/17 axis and inflammatory bowel disease[J]. International Journal of Digestive Diseases, 2008, 28(3): 234–236. DOI: 10.3969/j.issn.1673-534X.2008.03.022 (in Chinese)
[24] CASTRO-SANTOS P, SUAREZ A, MOZO L, et al. Association of IL-10 and TNFα genotypes with ANCA appearance in ulcerative colitis[J]. Clin Immunol, 2007, 122(1): 108–114. DOI: 10.1016/j.clim.2006.09.010
[25] KANT V, GOPAL A, PATHAK N N, et al. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats[J]. Int Immunopharmacol, 2014, 20(2): 322–330. DOI: 10.1016/j.intimp.2014.03.009
[26] DOMENICO C, LINSENBARDT H, HANEY R, et al. (544) Evaluating the anti-hyperalgesic and anti-inflammatory potential of curcumin in a human model of experimental pain[J]. J Pain, 2015, 16(S4): S112.
[27] NAIR V, SINGH S, GUPTA Y K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models[J]. J Pharm Pharmacol, 2010, 62(12): 1801–1806. DOI: 10.1111/j.2042-7158.2010.01193.x
[28] LEE W, KU S K, BAE J S. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo[J]. Inflammation, 2015, 38(1): 110–125.
[29] CHOI R J, NGOC T M, BAE K H, et al. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression[J]. Eur J Pharm Sci, 2013, 48(1-2): 272–281. DOI: 10.1016/j.ejps.2012.10.027
[30] HU B Y, ZHANG H, MENG X L, et al. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages[J]. J Ethnopharmacol, 2014, 153(3): 846–853. DOI: 10.1016/j.jep.2014.03.059
[31] WU J S, ZHANG H, HU B Y, et al. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells[J]. Eur J Pharmacol, 2016, 780: 106–114. DOI: 10.1016/j.ejphar.2016.03.037
[32] ZHANG W, DAI S M. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis[J]. Int Immunopharmacol, 2012, 14(1): 27–31.
[33] WANG Y N, ZHANG H, DU G H, et al. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway[J]. Int Immunopharmacol, 2016, 36: 67–72. DOI: 10.1016/j.intimp.2016.04.010
[34] HAN Y, XU L, WANG Q, et al. Chemical composition, antioxidant and antimicrobial activity of the essential oil of phellodendron amurense (Rupr.) from China[J]. Asian J Chem, 2015, 37(3): 841–844.
[35] CHOI Y Y, KIM M H, HAN J M, et al. The anti-inflammatory potential of Cortex Phellodendron in vivo and in vitro: down-regulation of NO and iNOS through suppression of NF-κB and MAPK activation[J]. Int Immunopharmacol, 2014, 19(2): 214–220. DOI: 10.1016/j.intimp.2014.01.020