畜牧兽医学报  2019, Vol. 50 Issue (1): 21-27. DOI: 10.11843/j.issn.0366-6964.2019.01.003    PDF    
沙门菌非编码小RNA RyhB研究进展
陈斌杰1,2, 王亨1,2, 陈艳飞1,2, 潘夏雨3, 袁天梅3, 朱国强1,2, 孟霞1,2     
1. 扬州大学兽医学院, 扬州 225009;
2. 江苏省动物重要疫病与人兽共患病防控协同创新中心, 扬州 225009;
3. 广西园丰牧业集团股份有限公司, 钦州 535400
摘要:非编码小RNA(small non-coding RNA,sRNA)是一类基因组中被转录但不翻译成蛋白质的RNA分子,可在转录后水平调控基因表达。与蛋白质介导的调控系统不同,当细菌遇到不利的生长环境时,sRNA介导的调控可对环境变化做出快速应答。沙门菌RyhB-1和RyhB-2是两种相似性较高的sRNA,通过碱基互补配对方式,在调控因子作用下共同或单独调控靶基因表达。铁匮乏时,RyhB-1和RyhB-2可促进沙门菌摄取铁元素、限制胞内非必需含铁蛋白生成以及加快铁硫蛋白的储存,是沙门菌在转录后水平调控铁稳态的主要元件。此外,当沙门菌遭遇氧化应激、缺氧或酸性环境等不利环境胁迫时,RyhB可分别控制活性氧自由基的生成、平衡硝酸盐等无机物稳态、调节细菌运动性以及沙门菌毒力等应对环境变化。本文就沙门菌RyhB生理特征及其调控机制和功能进行阐述,以期为后续沙门菌RyhB的研究提供指导信息。
关键词非编码小RNA    沙门菌    RyhB    
Research Progress on Small Non-Coding RNA RyhB of Salmonella
CHEN Binjie1,2, WANG Heng1,2, CHEN Yanfei1,2, PAN Xiayu3, YUAN Tianmei3, ZHU Guoqiang1,2, MENG Xia1,2     
1. College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
2. Jiangsu Co-Innovation for Important Animal Infectious Diseases and Zoonose, Yangzhou 225009, China;
3. Guangxi YUANFENG Animal Husbandry Group Co. LTD, Qinzhou 535400, China
Abstract: Small non-coding RNA (sRNA) is a type of RNA molecule that is transcribed but not translated into protein in the genome and controls gene expression at the post-transcriptional level. Unlike protein-mediated regulation system, sRNA-mediated regulation can respond to environmental changes quickly when bacteria confront adverse growth environment. RyhB-1 and RyhB-2 are two highly homologous sRNAs in Salmonella, which regulate target genes expression singly or together with the help of regulating factors by base pairing. RyhB-1 and RyhB-2 are major components of Salmonella iron homeostasis regulation at post-transcriptional level by increasing the iron uptake, limiting non-essential iron-utilizing proteins synthesis and accelerating the storage of iron-sulfur protein when iron is scarce. In addition, when Salmonella encounters various environmental stresses such as oxidative stress, hypoxia or acidic environment, RyhB can also control the production of reactive oxygen species, balance the stability of inorganic substances such as nitrate, and regulate bacterial motility and Salmonella virulence to cope with environmental changes. This paper is concerned with the physiological characteristics, regulatory mechanisms and functions of Salmonella RyhB to provide guidance for the subsequent study of RyhB.
Key words: small non-coding RNA     Salmonella     RyhB    

沙门菌是一群寄生于人和动物肠道的革兰阴性杆菌,绝大多数沙门菌对人和动物有致病性,引起多种不同临床表现的沙门菌病,是人类食物中毒的主要病原之一,对医学、兽医学和公共卫生均十分重要[1]。沙门菌多种毒力因子(如毒力岛Ⅰ和耐药基因等)受非编码小RNA(small non-coding RNA, sRNA)调控[2-4]。细菌sRNA是一类由50~500个核苷酸组成,在基因组中被转录但不编码蛋白质的RNA分子[5-6]。RyhB是细菌中一种参与调控胞内铁代谢的主要调控元件[7],当铁匮乏时,RyhB可促进细菌铁摄取蛋白(如shiAiucD编码的铁载体等含铁蛋白)表达,加快铁元素的摄取[8],同时限制胞内非必需含铁蛋白生成[9]以及加快铁硫蛋白的储存[10-11]。RyhB最初在大肠杆菌中发现[12],其大小约为90 bp[13]。之后在沙门菌发现有两种同源性较高、功能类似的sRNA:RyhB-1(又名RyhB或RfrA)和RyhB-2(又名IsrE或RfrB)[14-15],其大小分别为96和98 bp[16]。最新研究发现,Poly(A)聚合酶可通过添加Poly(A)尾促进外切核糖核酸酶将RNA降解,减少非特异性靶标与RyhB结合,有助于稳定RyhB sRNA及其功能的发挥[17]。沙门菌RyhB除了参与铁代谢调控[16, 18],还参与抗氧化应激[19-20]、耐酸性[16]、硝酸盐稳态[21-22]以及细菌运动性[23]等多种生命活动过程。本文就沙门菌RyhB生理特征及其调控机制和功能进行阐述。

1 沙门菌RyhB基本特征

沙门菌ryhB-1位于yhhXyhhY基因之间,以与yhhX相反的方向转录。ryhB-2在STM1273下游,与STM1273部分重叠。两种RyhB具有遗传稳定性[24]。研究发现,不同环境压力下沙门菌两种ryhB基因表达机制不同——低铁[25]和氧化应激[19]诱导沙门菌ryhB-1大量表达,而生长稳定期是诱导ryhB-2大量表达的首要因素(图 1A)[16]。沙门菌两种ryhB之间相似性为65%,二者均含有一段33 bp完整保守的同源序列(ACGACATTGCTCACATTGCTTCCAGTATTATTT)[16],推测两种RyhB可调控同一靶标的转录(如sodB)。研究发现,沙门菌两种RyhB在不同环境下调控不同基因的表达,如acnBsafArbsK仅受RyhB-1调控[24],而参与运动性和趋化性的基因(flgJcheYfliF)仅受RyhB-2调控[23],表明两种RyhB功能不冗余(图 1BD)。

图 1 沙门菌RyhB介导的调控机制 Figure 1 Model of RyhB-mediated regulations in Salmonella

沙门菌RyhB发挥生物学功能需要以下几种调控因子协助:1)Fur(ferric uptake regulator)蛋白,一种细菌重要的全局性铁感应调控蛋白[26]。高铁条件下,受Fe2+活化Fur蛋白与ryhB基因上“fur盒”序列结合,抑制ryhB的转录[14]。“fur盒”是细菌ryhB启动子区上一段大小为19 bp(GATAATGATAATCATTATC)的保守序列[27]。当细菌胞内铁浓度下降时,Fur-Fe2+活性降低,不再结合“fur盒”序列,使RyhB表达增加。2)Hfq蛋白(Sm-like host factor I)——一种1998年在大肠杆菌中发现的高度保守的RNA伴侣蛋白[28],其与RyhB结合后,可诱导RyhB二级结构发生改变[29-30],增加RyhB稳定性,有助于RyhB与靶标mRNA碱基互补配对,抑制靶mRNA翻译[31-32]。3)当RyhB识别靶标形成mRNA-Hfq-RyhB复合体后,细菌核糖核酸酶(ribonucleases)便可将其降解[33]。沙门菌有三种核糖核酸酶可催化sRNA-靶mRNA复合体水解,分别是RNaseE[34-35]、RNaseⅢ[36]和PNPase[37-38]。有报道称,大肠杆菌即使缺失RNaseE,RyhB依然可以抑制sodB mRNA的转录,表明RyhB与靶标mRNA碱基互补配对后可以降低其转录效率[39-40],但目前在沙门菌还未发现类似的报道。

2 沙门菌RyhB功能研究

沙门菌RyhB不仅对维持自身的铁代谢平衡起至关重要的全局性调控作用,还参与沙门菌氧化应激、耐酸性、维持硝酸盐稳态、细菌运动性等方面的调控,在沙门菌致病过程中起重要作用。

2.1 RyhB调控铁代谢

铁对于所有形式的生命都是绝对必需的,可参与三羧酸循环、DNA生物合成等重要的生物过程[41-42]。细菌侵袭宿主后,宿主体内的低铁环境是限制病原菌增殖的重要因素,病原菌通过调控一系列铁吸收相关蛋白或调控因子维持体内铁平衡,RyhB在此过程中发挥了重要的调控作用[9, 43]。研究表明,RyhB通过感应环境中可用铁含量的变化,调节铁摄入量,以适应环境变化[44]。沙门菌RyhB调控铁代谢的机制与大肠杆菌相似:当细菌胞内铁匮乏时,Fur蛋白与Fe2+分离后失活,RyhB不受Fur蛋白的抑制而快速表达,与Hfq相结合后,稳固了二级结构使其不易被RNA酶降解,且有助于RyhB识别靶标mRNA并与其结合,从而活化铁载体蛋白的表达。铁载体蛋白合成并分泌到细胞外鳌合铁离子后,被细胞膜上的铁转运蛋白运送到细胞质中,补充胞内铁含量[45-47]。RyhB还可与胞内非必需含铁蛋白等靶标mRNA碱基互补配对,阻抑核糖体结合到mRNA上,降低其翻译效率[48];被RNA酶识别后形成一个称为RNA降解体的ryhB-靶标mRNA-RNA酶的复合物,随后被RNA酶降解,减少铁消耗。除此之外,RyhB分子还可加快胞内铁储存蛋白如Fe-S蛋白的翻译[10],将铁储存或加以利用,以维持细菌胞内的铁平衡(图 1C)。

2.2 RyhB调控氧化应激

有氧条件下,铁元素以Fe3+的形式存在,既不易获得也不具有毒性。但Fe3+易与氧气产生Haber-Weiss/Fenton反应生成有害的活性氧自由基(ROS),如超氧化物O2-、H2O2和游离的羟基自由基OH-[9, 49],可破坏DNA、RNA和细胞膜等[42]。因此,细菌必须根据自身需要,既要维持充足的供应,调控细胞内游离铁达到有效的铁稳态,又要防止铁含量过多产生铁诱导性毒性[43, 50]。研究表明,沙门菌RyhB可参与这种氧化应激调控——用H2O2分别作用于鼠伤寒沙门菌ryhB-1、ryhB-2、ryhB-1/ryhB-2缺失株后,均表现出生长缺陷,且细菌内活性氧物质及蛋白质羟基化的水平升高,NADH/NAD+比例发生改变,这种新陈代谢紊乱表明RyhB-1和RyhB-2在抗H2O2作用过程中具有重要作用。进一步研究表明,此过程中ryhB-1和ryhB-2表达具有OxyR依赖性。OxyR通过与ryhB-1和ryhB-2的启动子区直接相互作用促进ryhB-1和ryhB-2表达,起到抗H2O2处理的作用[19]。沙门菌fur缺失株中,ryhB缺失可增强fur缺失株抗H2O2的能力,表明RyhB-1和RyhB-2抗氧化应激的作用受到Fur蛋白的影响,推测与ryhB缺失引起含铁蛋白表达下调,导致细胞内游离铁含量增加有关[51]

氧化应激时,需氧菌通过呼吸链减少NADH的产生,可限制ROS物质的生成,降低对细胞的损伤[52]。而RyhB可调控NADH/NAD+的比例起抗氧化应激作用。因为沙门菌两种RyhB都参与调控与三羧酸循环相关蛋白(如sdhCDAB,编码琥珀酸脱氢酶)的mRNA(图 1C)[13, 53]。研究发现,H2O2作用后,沙门菌中ryhB的缺失可引起NADH水平增加[19]。因此,推测RyhB通过调控电子通量平衡和细胞内ROS水平相关的基因发挥抗氧化作用。

2.3 RyhB调控耐酸性

有报道称,fur缺失的福氏志贺菌RyhB可抑制耐酸性所必需的ydeP基因(编码氧化还原酶)[54]。鼠伤寒沙门菌fur缺失后在酸性环境中的存活率与野生株相比明显降低;但同时缺失furryhB-1可轻微提高细菌的存活率,同时缺失furryhB-2可进一步提高这种存活率;而同时缺失furryhB-1和ryhB-2则可显著提高细菌的存活率[16],表明在鼠伤寒沙门菌fur缺失株中,RyhB-1和RyhB-2可抑制细菌在酸性环境中存活。值得一提的是,furryhB-1和ryhB-2 同时缺失可显著提高细菌的存活率,但其存活率依然明显低于野生株,表明鼠伤寒沙门菌中存在受Fur蛋白调控对耐酸性起重要作用的非RyhB依赖性相关基因。

2.4 RyhB调控硝酸盐稳态

当细菌厌氧呼吸时,硝酸盐(NO3-)、亚硝酸盐(NO2-)等无机化合物可作为末端电子受体[55-56]。研究表明,沙门菌硝酸盐稳态不仅受到Fur蛋白的调控,还与RyhB密切相关。在fur缺失株中,两种ryhB失活可显著提高narP基因的表达,显著下调narL基因的表达;只缺失一种ryhB基因,narPnarL基因表达没有变化[21],表明两种RyhB在Fur蛋白调控narPnarL基因的机制中影响硝酸盐代谢平衡。

2.5 RyhB影响细菌运动性

Kim和Kwon[23]对鼠伤寒沙门菌ryhB缺失株的转录组进行比较分析发现,与野生组相比,缺失ryhB-2后参与细菌运动性和趋化性的flgJcheYfliF的三个基因表达下调(图 1D)。运动性试验结果证明,ryhB-2缺失可降低细菌的运动性,而过表达ryhB-2时,细菌运动性可恢复至野生株水平。而在肠炎沙门菌中,ryhB单缺失均可降低细菌的运动性,ryhB双缺失则细菌运动能力下降更为明显。qRT-PCR比较发现,与野生株相比参与细菌运动能力相关的鞭毛亚单位基因fliC表达下调[57],表明肠炎沙门菌ryhB-1和ryhB-2缺失均可下调fliC的表达,降低细菌的运动性。

2.6 RyhB影响沙门菌毒力

细菌生物被膜在耐药性以及抵御宿主免疫等方面具有重要作用,是细菌毒力的重要组成[58-59]。本实验室的研究表明肠炎沙门菌RyhB-1和RyhB-2可影响肠炎沙门菌生物被膜的形成能力,且ryhB双缺失株的生物被膜形成能力比ryhB单缺失株明显降低[57],推测沙门菌RyhB-1和RyhB-2可影响沙门菌的毒力。同时肠炎沙门菌ryhB-1和ryhB-2缺失导致对肠上皮细胞的黏附和侵袭能力减弱[57],表明RyhB可增强沙门菌的侵袭力进而调控沙门菌的毒力。动物试验表明,ryhB-1和ryhB-2缺失后肠炎沙门菌对1日龄清远麻鸡半数致死量显著升高,毒力减弱,且ryhB双缺失株比单缺失毒力减弱更明显[60],表明两种RyhB均可影响沙门菌毒力。

3 展望

沙门菌是一类重要的人畜共患致病菌,其血清型众多,宿主谱广泛,研究沙门菌的致病机制以及防治沙门菌病具有重要的公共卫生意义。探索了解沙门菌RyhB调控机制,有助于为以后开发针对sRNA药物提供理论基础。目前针对沙门菌RyhB的研究还停留在RyhB参与的铁稳态调控、抗氧化应激、耐酸性、维持硝酸盐稳态和细菌运动性等功能,未来针对沙门菌RyhB的研究可集中在继续深入挖掘RyhB-1和RyhB-2调控的靶标基因方面,揭示其调控机制。此外,根据细菌所处环境变化不同,沙门菌诱导RyhB表达机制也不同,填补环境信号因子对沙门菌诱导RyhB表达机制的研究也是未来的一个研究热点;除此之外,沙门菌RyhB-1和RyhB-2可调控同一靶标但功能不冗余,二者的相互关系也有待深入研究。相信随着高通量测序技术的不断发展和sRNA研究手段的不断进步,沙门菌RyhB调控机制会越来越清晰,RyhB参与其他转录后加工和翻译调控的生命过程也会不断地被发现和认识。

参考文献
[1] 陆承平. 兽医微生物学[M]. 5版. 北京: 中国农业出版社, 2013.
LU C P. Veterinary microbiology[M]. 5th ed. Beijing: China Agriculture Press, 2013. (in Chinese)
[2] QUEREDA J J, COSSART P. Regulating bacterial virulence with RNA[J]. Annu Rev Microbiol, 2017, 71: 263–280. DOI: 10.1146/annurev-micro-030117-020335
[3] PAPENFORT K, VOGEL J. Regulatory RNA in bacterial pathogens[J]. Cell Host Microbe, 2010, 8(1): 116–127. DOI: 10.1016/j.chom.2010.06.008
[4] ZHANG S S, LIU S, WU N, et al. Small non-coding RNA RyhB mediates persistence to multiple antibiotics and stresses in uropathogenic Escherichia coli by reducing cellular metabolism[J]. Front Microbiol, 2018, 9: 136. DOI: 10.3389/fmicb.2018.00136
[5] STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria:expanding frontiers[J]. Mol Cell, 2011, 43(6): 880–891. DOI: 10.1016/j.molcel.2011.08.022
[6] 孟霞, 王亨, 朱国强. 沙门菌非编码小RNA调控功能研究进展[J]. 中国兽医学报, 2011, 31(12): 1803–1808.
MENG X, WANG H, ZHU G Q. Regulation function of non-coding small RNA in Salmonella[J]. Chinese Journal of Veterinary Science, 2011, 31(12): 1803–1808. (in Chinese)
[7] VEČEREK B, MOLL I, BLÄSI U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding[J]. EMBO J, 2007, 26(4): 965–975. DOI: 10.1038/sj.emboj.7601553
[8] PORCHERON G, DOZOIS C M. Interplay between iron homeostasis and virulence:Fur and RyhB as major regulators of bacterial pathogenicity[J]. Vet Microbiol, 2015, 179(1-2): 2–14. DOI: 10.1016/j.vetmic.2015.03.024
[9] MMASSÉ E, VANDERPOOL C K, GOTTESMAN S. Effect of RyhB small RNA on global iron use in Escherichia coli[J]. J Bacteriol, 2005, 187(20): 6962–6971. DOI: 10.1128/JB.187.20.6962-6971.2005
[10] MANDIN P, CHAREYRE S, BARRAS F. A Regulatory circuit composed of a transcription factor, IscR, and a regulatory RNA, RyhB, controls Fe-S cluster delivery[J]. mBio, 2016, 7(5): e00966–16.
[11] BOS J, DUVERGER Y, THOUVENOT B, et al. The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MsrB but not MsrA[J]. PLoS One, 2013, 8(5): e63647. DOI: 10.1371/journal.pone.0063647
[12] ARGAMAN L, HERSHBERG R, VOGEL J, et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli[J]. Curr Biol, 2001, 11(12): 941–950. DOI: 10.1016/S0960-9822(01)00270-6
[13] MASSÉ E, GOTTESMAN S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli[J]. Proc Natl Acad Sci U S A, 2002, 99(7): 4620–4625. DOI: 10.1073/pnas.032066599
[14] LECLERC J M, DOZOIS C M, DAIGLE F. Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells[J]. Microbiology, 2013, 159: 591–602. DOI: 10.1099/mic.0.064329-0
[15] ELLERMEIER J R, SLAUCH J M. Fur regulates expression of the Salmonella pathogenicity island 1 type Ⅲ secretion system through HilD[J]. J Bacteriol, 2008, 190(2): 476–486. DOI: 10.1128/JB.00926-07
[16] KIM J N, KWON Y M. Genetic and phenotypic characterization of the RyhB regulon in Salmonella Typhimurium[J]. Microbiol Res, 2013, 168(1): 41–49. DOI: 10.1016/j.micres.2012.06.007
[17] SINHA D, MATZ L, CAMERON T, et al. Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli[J]. RNA, 2018, 24(11): 1496–1511. DOI: 10.1261/rna.067181.118
[18] CHAREYRE S, MANDIN P. Bacterial iron homeostasis regulation by sRNAs[J]. Microbiol Spectr, 2018, 6(2). DOI: 10.1128/microbiolspec.RWR-0010-2017
[19] CALDERÓN I L, MORALES E H, COLLAO B, et al. Role of Salmonella typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response[J]. Res Microbiol, 2014, 165(1): 30–40. DOI: 10.1016/j.resmic.2013.10.008
[20] NEGRETE A, SHILOACH J. Improving E. coli growth performance by manipulating small RNA expression[J]. Microb Cell Fact, 2017, 16: 198. DOI: 10.1186/s12934-017-0810-x
[21] TEIXIDÓ L, CORTÉS P, BIGAS A, et al. Control by Fur of the nitrate respiration regulators NarP and NarL in Salmonella enterica[J]. Int Microbiol, 2010, 13(1): 33–39.
[22] CALDERÓN P F, MORALES E H, ACUÑA L G, et al. The small RNA RyhB homologs from Salmonella typhimurium participate in the response to S-nitrosoglutathione-induced stress[J]. Biochem Biophys Res Commun, 2014, 450(1): 641–645. DOI: 10.1016/j.bbrc.2014.06.031
[23] KIM J N, KWON Y M. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella:RyhB-2 regulates motility phenotype[J]. Microbiol Res, 2013, 168(10): 621–629. DOI: 10.1016/j.micres.2013.06.002
[24] KIM J N, KWON Y M. Phenotypic characterization of Salmonella RyhB-1 mutations that modulate target regulation[J]. Curr Microbiol, 2014, 69(2): 212–217. DOI: 10.1007/s00284-014-0572-1
[25] PADALON-BRAUCH G, HERSHBERG R, ELGRABLY-WEISS M, et al. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence[J]. Nucleic Acids Res, 2008, 36(6): 1913–1927. DOI: 10.1093/nar/gkn050
[26] THODE S K, BAEKKEDAL C, SÖDERBERG J J, et al. Construction of a fur null mutant and RNA-sequencing provide deeper global understanding of the Aliivibrio salmonicida Fur regulon[J]. PeerJ, 2017, 5: e3461. DOI: 10.7717/peerj.3461
[27] BAICHOO N, HELMANN J D. Recognition of DNA by Fur:a reinterpretation of the Fur box consensus sequence[J]. J Bacteriol, 2002, 184(21): 5826–5832. DOI: 10.1128/JB.184.21.5826-5832.2002
[28] GEISSMANN T A, TOUATI D. Hfq, a new chaperoning role:binding to messenger RNA determines access for small RNA regulator[J]. EMBO J, 2004, 23(2): 396–405. DOI: 10.1038/sj.emboj.7600058
[29] MORITA T, NISHINO R, AIBA H. Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs[J]. RNA, 2017, 23(9): 1419–1431. DOI: 10.1261/rna.060756.117
[30] SCHU D J, ZHANG A X, GOTTESMAN S, et al. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition[J]. EMBO J, 2015, 34(20): 2557–2573. DOI: 10.15252/embj.201591569
[31] MORITA T, UEDA M, KUBO K, et al. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of readthrough products[J]. RNA, 2015, 21(8): 1490–1501. DOI: 10.1261/rna.051870.115
[32] MELAMED S, PEER A, FAIGENBAUM-ROMM R, et al. Global mapping of small RNA-target interactions in bacteria[J]. Mol Cell, 2016, 63(5): 884–897. DOI: 10.1016/j.molcel.2016.07.026
[33] ARBEL-GOREN R, TAL A, PARASAR B, et al. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli[J]. Nucleic Acids Res, 2016, 44(14): 6707–6720. DOI: 10.1093/nar/gkw273
[34] MORITA T, AIBA H. RNase E action at a distance:degradation of target mRNAs mediated by an Hfq-binding small RNA in bacteria[J]. Genes Dev, 2011, 25(4): 294–298. DOI: 10.1101/gad.2030311
[35] MACKIE G A. RNase E:at the interface of bacterial RNA processing and decay[J]. Nat Rev Microbiol, 2013, 11(1): 45–57. DOI: 10.1038/nrmicro2930
[36] AFONYUSHKIN T, VECˇEREK B, MOLL I, et al. Both RNase E and RNase Ⅲ control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB[J]. Nucleic Acids Res, 2005, 33(5): 1678–1689. DOI: 10.1093/nar/gki313
[37] BRIANI F, CARZANIGA T, DEHÒ G. Regulation and functions of bacterial PNPase[J]. Wiley Interdiscip Rev RNA, 2016, 7(2): 241–258. DOI: 10.1002/wrna.1328
[38] DENG Z L, LIU Z Z, BI Y J, et al. Rapid degradation of Hfq-free RyhB in Yersinia pestis by PNPase independent of putative ribonucleolytic complexes[J]. BioMed Res Int, 2014, 2014: 798918.
[39] MORITA T, MAKI K, AIBA H. RNase E-based ribonucleoprotein complexes:mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs[J]. Genes Dev, 2005, 19(18): 2176–2186. DOI: 10.1101/gad.1330405
[40] MORITA T, MOCHIZUKI Y, AIBA H. Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction[J]. Proc Natl Acad Sci U S A, 2006, 103(13): 4858–4863. DOI: 10.1073/pnas.0509638103
[41] WOOLDRIDGE K G, WILLIAMS P H. Iron uptake mechanisms of pathogenic bacteria[J]. FEMS Microbiol Rev, 1993, 12(4): 325–348. DOI: 10.1111/fmr.1993.12.issue-4
[42] ANDREWS S C, ROBINSON A K, RODRÍGUEZ-QUIÑONES F. Bacterial iron homeostasis[J]. FEMS Microbiol Rev, 2003, 27(2-3): 215–237. DOI: 10.1016/S0168-6445(03)00055-X
[43] MASSÉ E, SALVAIL H, DESNOYERS G, et al. Small RNAs controlling iron metabolism[J]. Curr Opin Microbiol, 2007, 10(2): 140–145. DOI: 10.1016/j.mib.2007.03.013
[44] SEMSEY S, ANDERSSON A M C, KRISHNA S, et al. Genetic regulation of fluxes:iron homeostasis of Escherichia coli[J]. Nucleic Acids Res, 2006, 34(17): 4960–4967. DOI: 10.1093/nar/gkl627
[45] SALVAIL H, LANTHIER-BOURBONNAIS P, SOBOTA J M, et al. A small RNA promotes siderophore production through transcriptional and metabolic remodeling[J]. Proc Natl Acad Sci U S A, 2010, 107(34): 15223–15228. DOI: 10.1073/pnas.1007805107
[46] CHU B C, GARCIA-HERRERO A, JOHANSON T H, et al. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view[J]. Biometals, 2010, 23(4): 601–611. DOI: 10.1007/s10534-010-9361-x
[47] TRONNET S, GARCIE C, REHM N, et al. Iron homeostasis regulates the genotoxicity of Escherichia coli that produces colibactin[J]. Infect Immun, 2016, 84(12): 3358–3368. DOI: 10.1128/IAI.00659-16
[48] NANDAL A, HUGGINS C C O, WOODHALL M R, et al. Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+-Fur is mediated by reversal of H-NS silencing and is RyhB independent[J]. Mol Microbiol, 2010, 75(3): 637–657. DOI: 10.1111/j.1365-2958.2009.06977.x
[49] BAEZ A, SHILOACH J. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli[J]. Antonie Van Leeuwenhoek, 2017, 110(1): 115–124. DOI: 10.1007/s10482-016-0781-7
[50] TRONNET S, GARCIE C, BRACHMANN A O, et al. High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic Escherichia coli through a non-canonical Fur/RyhB-mediated pathway[J]. Pathog Dis, 2017, 75(5). DOI: 10.1093/femspd/ftx066
[51] JACQUES J F, JANG S, PRÉVOST K, et al. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli[J]. Mol Microbiol, 2006, 62(4): 1181–1190. DOI: 10.1111/mmi.2006.62.issue-4
[52] MAILLOUX R J, LEMIRE J, APPANNA V D. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens[J]. Antonie Van Leeuwenhoek, 2011, 99(3): 433–442. DOI: 10.1007/s10482-010-9538-x
[53] WU Y, HAO Y Q, WEI X, et al. Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes[J]. Biotechnol Biofuels, 2017, 10: 248. DOI: 10.1186/s13068-017-0938-2
[54] OGLESBY A G, MURPHY E R, IYER V R, et al. Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP[J]. Mol Microbiol, 2005, 58(5): 1354–1367. DOI: 10.1111/j.1365-2958.2005.04920.x
[55] STEWART V, PARALES Jr J. Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12[J]. J Bacteriol, 1988, 170(4): 1589–1597. DOI: 10.1128/jb.170.4.1589-1597.1988
[56] GUNSALUS R P. Control of electron flow in Escherichia coli:coordinated transcription of respiratory pathway genes[J]. J Bacteriol, 1992, 174(22): 7069–7074. DOI: 10.1128/jb.174.22.7069-7074.1992
[57] 倪杰.非编码小RNA RyhB-1与IsrE在肠炎沙门氏菌致病性上的相互作用研究[D].扬州: 扬州大学, 2016.
NI J. Interaction of small non-coding RNA RyhB-1 and IsrE in the pathogenicity of Salmonella enteritidis[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-11117-1016288800.htm
[58] 张彬彬, 羊扬, 刘云, 等. Ⅰ型群体感应系统对禽致病性大肠杆菌生物被膜形成的调控机制研究[J]. 中国家禽, 2015, 37(24): 19–23.
ZHANG B B, YANG Y, LIU Y, et al. Study on regulatory mechanism of quorum sensing Ⅰ on biofilm in avian pathogenic Escherichia coli[J]. China Poultry, 2015, 37(24): 19–23. (in Chinese)
[59] MEY A R, CRAIG S A, PAYNE S M. Characterization of Vibrio cholerae RyhB:the RyhB regulon and role of ryhB in biofilm formation[J]. Infect Immun, 2005, 73(9): 5706–5719. DOI: 10.1128/IAI.73.9.5706-5719.2005
[60] 倪杰, 孟宪臣, 李芙蓉, 等. 肠炎沙门菌非编码小RNA RyhB-1和IsrE对清远麻鸡的致病性[J]. 中国兽医学报, 2017, 37(9): 1687–1692.
NI J, MENG X C, LI F R, et al. Pathogenicity of Salmonella enteritidis non-coding small RNAs RyhB-1 and IsrE in Qingyuan chickens[J]. Chinese Journal of Veterinary Science, 2017, 37(9): 1687–1692. (in Chinese)