畜牧兽医学报  2017, Vol. 48 Issue (4): 699-705. DOI: 10.11843/j.issn.0366-6964.2017.04.013    PDF    
禽波氏菌强毒株感染雏鸡呼吸系统荷菌量及病变规律的研究
杨萍萍1, 袁朋1, 魏凯1, 胡莉萍2, 朱瑞良1     
1. 山东农业大学动物科技学院, 泰安 271000;
2. 山东省动物疫病预防与控制中心, 济南 250022
摘要:禽波氏菌为产碱杆菌科波氏杆菌属成员,主要导致咳嗽等呼吸道症状。为探索禽波氏菌经呼吸道的入侵过程及其病变发生发展规律,本试验利用筛选到的强毒株经鼻腔感染SPF雏鸡,在感染后的不同时间检测气管和肺荷菌量的变化,通过扫描电镜观察禽波氏菌在气管的定植及其病变规律,利用间接免疫酶组化研究禽波氏菌在肺中的定植规律,分析肺和支气管的病理组织学变化。结果发现,在感染之初气管中细菌数量较多,而肺中较少,之后气管和肺的荷菌量均呈明显上升趋势。感染后1 d即发现禽波氏菌已经在气管纤毛上定植,且纤毛开始出现脱落;到5 d时气管黏膜表面呈斑驳状,纤毛大面积脱落,甚至出现空洞。肺在感染后2 d检测出细菌定植,主要分布在肺房和呼吸毛细管壁的细胞质中,之后随着感染时间的延长,阳性信号不断增加。肺和支气管的病理变化在5 d时出现,主要表现淤血;至感染后10 d,大量细胞坏死。试验结果表明所筛选禽波氏菌分离株对雏鸡的呼吸道具有很强的亲嗜性,优先定植于气管上皮细胞的纤毛上,并随之在气管、支气管和肺产生一系列的组织病理学变化。
关键词禽波氏菌    雏鸡    呼吸道    定植    病理变化    
Study on Colonization and Pathological Changes of Chick Respiratory Tract Induced by Bordetella avium Virulent Isolate
YANG Ping-ping1, YUAN Peng1, WEI Kai1, HU Li-ping2, ZHU Rui-liang1     
1. College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China;
2. Shandong Animal Disease Prevention and Control Center, Jinan 250022, China
Abstract: Bordetella avium (B. avium), one of the members of Bordetella genus, Alcaligenes Branch, mainly causes birds cough and other respiratory symptoms. To explore its invasive procedure by respiratory tract and regular pattern of lesions development, SPF chicks were challenged by nasal infection with a screened virulent B. avium strain. After infection, bacteria quantity in trachea and lungs were detected at different times. Tracheas colonization and lesions were observed by SEM. Lungs colonization pattern were detected by indirect immunoenzymatic staining. Histopathological changes in lung and bronchus were detected by pathological examination. It was found that bacterial infection of the trachea was in larger quantities, and only a small amount in the lungs at the beginning. And then the amount of bacteria in trachea and lungs showed a clear upward trend. B. avium had colonized on the cilia of trachea, and cilia began to fall off on 1 d after infection. To 5 d after infection, tracheal mucosal surface mottled, cilia fell off in a large area, and even holes appeared. Lungs colonization were detected on 2 d after infection, and B. avium were mainly distributed in the cytoplasm of lung housing and respiratory capillary walls. Positive signals were increasing with the extension of time. Pathological changes in the lungs and bronchi appeared on 5 d after infection, mainly showed congestion. To 10 d after infection, a large number of cell necrosis appeared. In conclusion, this B. avium isolate has a strong tropism on chick respiratory tract. Especially it has priority colonization on cilia of tracheal epithelial cells, and subsequently causes a series of histopathological changes in the trachea, bronchi and lungs.
Key words: Bordetella avium     chick     respiratory tract     colonization     pathological changes    

禽波氏菌为产碱杆菌科波氏杆菌属成员,报道表明该属的几种细菌均可导致相似的呼吸道症状[1-6]。尽管禽波氏菌在基因组上与其他成员存在较大差异[7],但仍可引起各种禽类呈现相似的呼吸系统疾病,因此通常称之为禽波氏菌病。禽波氏菌病主要症状包括鼻气管炎、眼炎等[8-13]。近几年发现禽波氏菌可导致鸡胚的孵化率降低和死亡率增高,同时实验室也多次从鸡胚中分离到该菌[14],并且证实其经常与免疫抑制性病毒共感染存在[15-16]

在国外,禽波氏菌的宿主主要是火鸡,给火鸡养殖造成了巨大的经济损失[17]。而国内尽管没有火鸡发病的报道,但感染对象几乎涉及了鸡、山鸡、鸭等禽类中各个类别[18-19]。另在2008和2009年有报道表明在患有呼吸道疾病和纤维素性肺炎的人类患者体内也分离到了该菌[20-21],因而使其上升至公共卫生范畴。

目前国内外对于同为波氏杆菌属的百日咳波氏杆菌、副百日咳波氏杆菌和支气管败血波氏杆菌等的研究较多[4-5, 22-24],而对禽波氏菌相关致病因子的靶细胞及致病机制等方面的研究相对滞后。呼吸道是禽波氏菌等很多病原体入侵机体的重要通道。尤其是气管,其上皮细胞往往是很多病原定植和复制的原发位点[25],但同时也是阻挡病原入侵的重要屏障。研究气管上皮细胞被病原定植感染后的形态和特性变化,以及随之引发的细胞和分子机制及其相互作用,将有利于阻止病原在机体的定植和损伤。

本研究利用从多株鸡胚分离株中筛选出来的LL09强毒株,人工试验经呼吸道感染雏鸡,探讨其对雏鸡呼吸系统的危害,揭示其在雏鸡呼吸道中的定植和导致组织损伤的规律,为今后预防和控制禽波氏菌导致的危害提供借鉴。

1 材料与方法 1.1 材料 1.1.1 菌株

试验中所用禽波氏菌LL09菌株为山东农业大学动物科技学院预防兽医学实验室分离、鉴定、保存,其23S rRNA的GenBank收录号为HM545299。

1.1.2 试验用鸡胚、动物

18~19日龄SPF鸡胚100枚,购自山东斯帕法斯 (SPAFS) 公司。豚鼠,购自山东泰安八十八医院实验动物中心。

1.1.3 试剂

脑心浸液肉汤 (BHI),美国Difco公司产品;HRP标记羊抗鼠二抗、伊红Y (醇溶性)、苏木素染色液,Solarbio公司产品;多聚-L-赖氨酸 (相对分子质量15 000~30 000)、牛血清白蛋白,美国Sigma公司产品;切片石蜡,上海宏钛公司生产;胰酶 (1:250),美国Amresco公司产品;DAB显色试剂盒,天根公司生产;试验中所使用其他试剂均为国产分析纯。

1.1.4 仪器

RX2孵化器,美国LYON生产;Ultrafree ze3410超低温冰箱,美国Thermo-Heto生产;Hfsafe-1200A2生物安全柜,香港力康生产;SHA-C水浴振荡器,常州中捷生产;Autoclave MLS-3750全自动高压蒸汽灭菌器,日本SANYO生产;2400光学显微镜及数码显微照相系统,日本Nikon生产;JSM-6610LV扫描电镜,日本JEOL生产。

1.2 方法 1.2.1 禽波氏菌的活化及凝集特性检测

将保存的禽波氏菌LL09株接种于脑心浸液肉汤,37 ℃摇床振摇培养,复苏后接种SPF鸡胚检测其致病性,自胚体重新分离后接种于脑心浸液肉汤,取18 h处于对数生长期的肉汤培养物,用平板凝集试验检测凝集1%豚鼠红细胞的能力。参照文献方法细菌计数,调整菌液浓度后用于雏鸡的攻毒[26]

1.2.2 攻毒用SPF雏鸡的孵化及饲养

将100枚18~19日龄的SPF鸡胚置于严密消毒的孵化器中孵化,孵出后待雏鸡稳定12 h,挑选精神好,体型大小均一的雏鸡84只,攻毒后放于隔离罩中饲养,饲料、饮水均灭菌处理,自由采食、饮水。

1.2.3 雏鸡的攻毒

SPF雏鸡84只,随机分成2组,其中1组经鼻腔感染107 CFU的禽波氏菌LL09,另1组接种0.1 mL的无菌脑心浸液肉汤作为对照。感染后密切注意观察雏鸡的症状及精神状况,并分别于感染后的1 h、1 d、2 d、3 d、4 d、5 d和10 d从每组中随机抽取6只雏鸡,无菌剖检,观察气管和肺病变,并采集气管和肺,剪取中间部分称重后加生理盐水至1 mL,研磨均匀后,取0.1 mL进行10倍倍比稀释,涂布营养琼脂平板,细菌计数后取6只鸡平均数进行气管和肺荷菌量的计算;取感染后1、2、5和10 d的雏鸡气管剪成0.5 cm左右固定,用于扫描电镜观察禽波氏菌在气管的定植及致病作用;肺用10%福尔马林 (4%甲醛) 固定,制备4 μm石蜡切片,根据先前建立的免疫酶组化方法检测禽波氏菌在肺中的定植[26],HE染色后光学显微镜观察肺的病理变化。对照组样品采集同感染组。

1.3 数据统计

试验中所获取数据均用Excel 2003统计,DPS计算平均数并进行差异分析。

2 结果 2.1 禽波氏菌的活化及凝集特性检测

复苏后的禽波氏菌LL09株经接种鸡胚后能在一定时间内致死鸡胚,具有较强的致病性。经平板凝集试验检测,具有完全的凝集1%豚鼠红细胞的能力。

2.2 攻毒后雏鸡的症状表现

雏鸡攻毒后,对照组雏鸡表现正常,无明显症状出现。LL09感染组在感染1 d后,雏鸡表现精神萎靡,食欲不振,咳嗽但无流涕。

2.3 气管和肺的荷菌量监测

经无菌剖检,取样研磨后进行细菌计数,气管和肺的荷菌曲线如图 1所示。LL09感染组在感染后1 h分别在气管和肺中检出2.7×103和8.1×102 CFU·g-1,气管在感染后3 d和肺在感染后的5 d荷菌量均呈现明显的上升趋势。

图 1 攻毒后气管和肺的荷菌曲线 Figure 1 Increase curve of B. avium (lg10 CFU·g-1) in trachea and lung at different time post-infection
2.4 禽波氏菌在鸡气管的定植及其气管病变

气管取样固定后,扫描电镜观察发现LL09在感染组气管表面的定植及致病变规律如图 2图 3所示。在低倍镜下,对照组气管黏膜表面光滑;LL09感染组气管在感染后1 d气管表面稍有凹凸,但病变不明显,感染后2 d气管表面黏液层开始脱落,感染后5 d黏液层大片脱落,呈斑驳状,且出现大片无纤毛覆盖区域。在高倍镜下可以看到对照组气管纤毛上皮细胞完整,纤毛浓密、整齐;LL09感染组气管电镜照片中可清晰地看到感染后1 d LL09即可在气管表面的纤毛上定植 (黑色实心箭头),纤毛开始脱落 (白色箭头),感染2 d时,气管表面的纤毛脱落明显,感染5 d时,纤毛大面积脱落,且出现无纤毛覆盖空洞。感染10 d时的病变与感染5 d时没有差异。

A.对照;B. LL09感染后1 d气管黏膜表面;C. LL09感染后2 d气管黏膜表面;D. LL09感染后5 d气管黏膜表面 A. Control; B. Surface changes of trachea on 1 d post-infection; C. Surface changes of trachea on 2 d post-infection; D. Surface changes of trachea on 5 d post-infection 图 2 低倍电镜下气管表面变化 Figure 2 Surface changes of trachea under low power SEM
A.对照; B.感染后1 d LL09对气管纤毛的定植; C.感染后2 d LL09对气管表面纤毛的损伤; D.感染后5 d LL09对气管表面纤毛的损伤 A. Control; B. Colonization of LL09 in trachea cilia on 1 d post-infection; C. Colonization of LL09 in trachea cilia on 2 d post-infection; D. Colonization of LL09 in trachea cilia on 5 d post-infection 图 3 高倍镜下禽波氏菌对气管表面纤毛的定植及破坏 Figure 3 Colonization and damage to trachea cilia of B. avium under high power SEM
2.5 禽波氏菌在肺中的定植

经免疫酶组化检测,LL09感染后在肺中的定植如图 4所示。感染后1 d未检出棕褐色的阳性信号,2 d时出现零星信号,5 d时检测到明显的阳性信号,主要出现于肺房和呼吸毛细管壁的细胞质中,且随着感染时间的延长,阳性信号在不断增加。

A.未感染对照;B. LL09感染后2 d在肺中的定植;C. LL09感染后5 d在肺中的定植;D. LL09感染10 d在肺中的定植 A. Control; B. Colonization of LL09 in lungs on 2 d post-infection; C. Colonization of LL09 in lungs on 5 d post-infection; D. Colonization of LL09 in lungs on 10 d post-infection 图 4 禽波氏菌LL09在肺中的定植 (400×,DAB显色,苏木素复染) Figure 4 Colonization of B. avium LL09 in lungs (400×, colored by DAB and counterstained with hematoxylin)
2.6 肺及支气管的病理变化

经制备切片,HE染色后观察,发现LL09感染2 d时肺和支气管基本无病变出现;感染5 d时,肺淤血,支气管固有层内淤血;感染10 d时肺及支气管淤血加重,且大量肺房壁细胞坏死,出现肺房融合 (图 5C图 5D中箭头所示)。

A.感染5 d时肺的病理变化;B.感染5 d时支气管的病理变化;C.感染10 d时肺的病理变化;D.感染10 d时支气管的病理变化 A. Pathological changes of lungs on 5 d post-infection; B. Pathological changes of bronchus on 5 d post-infection; C. Pathological changes of lungs on 10 d post-infection; D. Pathological changes of bronchus on 5 d post-infection 图 5 肺和支气管的病理变化 (400×,HE染色) Figure 5 Pathological changes of lungs and bronchi (400×, colored with HE)
3 讨论

曾有文献报道禽波氏菌的凝集能力与其致病性的强弱直接相关[27],前期对实验室所分离到的禽波氏菌菌株进行了凝集能力的筛选,已经证实无凝集能力的禽波氏菌菌株致病力极弱,难以在鸡呼吸系统定植。为研究禽波氏菌对鸡呼吸系统的定植和损伤,试验中所选用的禽波氏菌LL09株为具有完全凝集能力的标准株。

另有文献表明可用离体气管环培养或气管上皮细胞分离培养的方法来研究病原体对气管细胞的定植损伤[17, 25],但考虑到体外器官培养或细胞培养所使用的培养液可能会对研究细菌的致病性有干扰作用,且单独的气管培养,缺乏完整的机体神经系统和体液系统的协调与应答。活体试验尽管繁琐,且有许多不可控因素,但得到的数据能够最真实地反映实际临床感染状况,因此最终选择采用SPF鸡模拟临床呼吸道感染来研究禽波氏菌LL09对鸡呼吸系统的致病作用。

从气管和肺的荷菌曲线看出在感染开始时,禽波氏菌在气管分布较多,而肺中仅有少量的菌存在。感染后二者的荷菌量均呈明显的上升趋势,不同之处在于气管的荷菌量在3 d后趋于平稳,而肺的荷菌量仍呈指数上升。说明随着病程的延长,气管的病变逐渐趋于稳定,而肺的病变加重。

扫描电镜观察禽波氏菌对气管的定植和损伤过程,可以看出在感染后1 d禽波氏菌LL09已经成功黏附在纤毛上,且在制备电镜样品的过程中未脱落,说明已经在纤毛细胞上定植,且非常牢固。另一方面也表明禽波氏菌与宿主气管纤毛细胞二者之间存在直接的相互作用。D. M. Miyamoto等报道禽波氏菌可诱导体外培养的气管纤毛细胞发生凋亡[17],在本试验中发现气管感染禽波氏菌后,黏膜上皮和纤毛均发生了形态上的变化,感染后2 d即可导致纤毛的脱落,充分证明了禽波氏菌对气管黏膜上皮和纤毛细胞的损伤,与文献报道中体外培养产生病变相似。而形态的变化则将直接导致纤毛上皮细胞功能的部分缺失。该结果的获得为进一步研究禽波氏菌与宿主气管细胞之间的相互作用和组织损伤产生的过程,测定细胞甚至分子水平上禽波氏菌与宿主细胞的病理生理学和组织形态学变化奠定了基础。

文献报道禽波氏菌主要导致禽类的呼吸系统尤其是气管的病变[1, 9, 27]。而本试验中在禽波氏菌对肺的定植规律图片 (图 4) 中观察到棕褐色阳性信号随着感染时间的延长不断增加,清晰地验证了感染后肺荷菌量的变化。表明尽管禽波氏菌在肺中的定植和病理变化的出现晚于气管,但同样是禽波氏菌定植感染的主要器官。随着禽波氏菌定植数量的不断增加,肺和支气管的病变也在不断加重 (图 5)。试验结果表明,LL09作为一株鸡胚分离株,仍对禽类的呼吸道具有特别的亲嗜性,而呼吸系统尤其是肺的严重病变将导致或伴随全身性的病理变化,从而产生比仅仅呼吸道感染更严重的危害。

4 结论

禽波氏菌LL09分离株对雏鸡的呼吸道具有很强的亲嗜性,优先定植于气管上皮细胞的纤毛上,并随之在气管、支气管和肺产生一系列的组织病理学变化。

参考文献
[1] NOVIKOV A, SHAH N R, ALBITAR-NEHME S, et al. Complete Bordetella avium, Bordetella hinzii and Bordetella trematum lipid A structures and genomic sequence analyses of the loci involved in their modifications[J]. Innate Immun, 2014, 20(6): 659–672. DOI: 10.1177/1753425913506950
[2] 李洪广, 王芳, 姜平, 等. 兔支气管败血波氏杆菌PRN基因缺失突变株的构建及特性研究[J]. 畜牧兽医学报, 2012, 43(2) :299–305.
LI H G, WANG F, JIANG P, et al. Construction of defined mutations of PRN of rabbit Bordetella bronchiseptica and property research[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(2): 299–305. (in Chinese)
[3] SRIGLEY J A, GOLDFARB D M, PERNICA J M. Bordetella species other than Bordetella pertussis[J]. Clin Microbiol Newslett, 2015, 37(8): 61–65. DOI: 10.1016/j.clinmicnews.2015.03.004
[4] KAMACHI K, YOSHINO S, KATSUKAWA C, et al. Laboratory-based surveillance of pertussis using multitarget real-time PCR in Japan: evidence for Bordetella pertussis infection in preteens and teens[J]. New Microbes New Infect, 2015, 8: 70–74. DOI: 10.1016/j.nmni.2015.10.001
[5] WANG C W, LIU L P, ZHANG Z, et al. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin[J]. Int Immunopharmacol, 2015, 28(2): 952–959. DOI: 10.1016/j.intimp.2015.08.018
[6] IVANOV Y V, SHARIAT N, REGISTER K B, et al. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease[J]. BMC Genomics, 2015, 16: 863. DOI: 10.1186/s12864-015-2028-9
[7] SEBAIHIA M, PRESTON A, MASKELL D J, et al. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction[J]. J Bacteriol, 2006, 188(16): 6002–6015. DOI: 10.1128/JB.01927-05
[8] BEACH N M, THOMPSON S, MUTNICK R, et al. Bordetella avium antibiotic resistance, novel enrichment culture, and antigenic characterization[J]. Vet Microbiol, 2012, 160(1-2): 189–196. DOI: 10.1016/j.vetmic.2012.05.026
[9] LOKER S B, TEMPLE L M, PRESTON A. The Bordetella avium BAV1965-1962 fimbrial locus is regulated by temperature and produces fimbriae involved in adherence to turkey tracheal tissue[J]. Infect Immun, 2011, 79(6): 2423–2429. DOI: 10.1128/IAI.01169-10
[10] SUN Z H, WEI K, YAN Z G, et al. Effect of immunological enhancement of aloe polysaccharide on chickens immunized with Bordetella avium inactivated vaccine[J]. Carbohydr Polym, 2011, 86(2): 684–690. DOI: 10.1016/j.carbpol.2011.05.012
[11] LIU L P, YU C L, WANG C W, et al. Immuno-enhancement of Taishan Pinus massoniana pollen polysaccharides on recombinant Bordetella avium ompA expressed in Pichia pastoris[J]. Microb Pathog, 2016, 95: 54–61. DOI: 10.1016/j.micpath.2016.03.002
[12] ZHU F J, LIU X, SUN Z H, et al. Immune-enhancing effects of Taishan pinus massoniana pollen polysaccharides on DNA vaccine expressing Bordetella avium ompA[J]. Front Microbiol, 2016, 7: 66.
[13] ZHAO X, LIANG M F, YANG P P, et al. Taishan Pinus massoniana pollen polysaccharides promote immune responses of recombinant Bordetella avium ompA in BALB/c mice[J]. Int Immunopharmacol, 2013, 17(3): 793–798. DOI: 10.1016/j.intimp.2013.09.008
[14] 谭燕玲, 朱瑞良, 王慧, 等. 鸡胚胎性病原菌多重PCR检测方法的建立[J]. 中国预防兽医学报, 2011, 33(5) :374–377.
TAN Y L, ZHU R L, WANG H, et al. Establishment of multiplex PCR detection for pathogens of chicken embryos[J]. Chinese Journal of Preventive Veterinary Medicine, 2011, 33(5): 374–377. (in Chinese)
[15] LIANG M F, ZHAO Q Y, LIU G H, et al. Pathogenicity of Bordetella avium under immunosuppression induced by Reticuloendotheliosis virus in specific-pathogen-free chickens[J]. Microb Pathog, 2013, 54: 40–45. DOI: 10.1016/j.micpath.2012.09.003
[16] GUO F X, XUE C, WU C, et al. Effects of polysaccharide on chicks co-infected with Bordetella avium and Avian leukosis virus[J]. Carbohydr Polym, 2014, 109: 71–76. DOI: 10.1016/j.carbpol.2014.03.048
[17] MIYAMOTO D M, RUFF K, BEACH N M, et al. Bordetella avium causes induction of apoptosis and nitric oxide synthase in turkey tracheal explant cultures[J]. Microbes Infect, 2011, 13(10): 871–879. DOI: 10.1016/j.micinf.2011.04.011
[18] MORENO L Z, KNÖBL T, GRESPAN A A, et al. Draft genome sequence of Bordetella avium Nh1210, an outbreak strain of lockjaw syndrome[J]. Genome Announc, 2015, 3(2): e00120–15.
[19] RAFFEL T R, REGISTER K B, MARKS S A, et al. Prevalence of Bordetella avium infection in selected wild and domesticated birds in the eastern USA[J]. J Wildl Dis, 2002, 38(1): 40–46. DOI: 10.7589/0090-3558-38.1.40
[20] SPILKER T, LIWIENSKI A A, LIPUMA J J. Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis[J]. Clin Microbiol Infect, 2008, 14(5): 504–506. DOI: 10.1111/j.1469-0691.2008.01968.x
[21] HARRINGTON A T, CASTELLANOS J A, ZIEDALSKI T M, et al. Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease[J]. Emerg Infect Dis, 2009, 15(1): 72–74. DOI: 10.3201/eid1501.071677
[22] 覃娟娟, 顾凡, 蔡雨涵, 等. 副猪嗜血杆菌毒力菌株和猪支气管败血波氏杆菌毒力菌株双重PCR检测方法的建立及应用[J]. 中国兽医学报, 2015, 35(8) :1217–1222.
QIN J J, GU F, CAI Y H, et al. Establishment and application of duplex PCR for detecting virulent strains of Haemophilus parasuis and Bordetella bronchiseptica[J]. Chinese Journal of Veterinary Science, 2015, 35(8): 1217–1222. (in Chinese)
[23] HITTLE L E, JONES J W, HAJJAR A M, et al. Bordetella parapertussis PagP mediates the addition of two palmitates to the lipopolysaccharide lipid A[J]. J Bacteriol, 2015, 197(3): 572–580. DOI: 10.1128/JB.02236-14
[24] MAESHIMA N, EVANS-ATKINSON T, HAJJAR A M, et al. Bordetella pertussis lipid A recognition by toll-like receptor 4 and MD-2 is dependent on distinct charged and uncharged interfaces[J]. J Biol Chem, 2015, 290(21): 13440–13453. DOI: 10.1074/jbc.M115.653881
[25] 胡思顺, 王晓丽, 陆时娟, 等. 鸡毒支原体HS株pMGA1.2重组蛋白的免疫保护性研究[J]. 中国预防兽医学报, 2015, 37(3) :225–228.
HU S S, WANG X L, LU S J, et al. The immunity of Mycoplasma gallisepticum strain HS recombinant adhesion protein rpMGA1.2[J]. Chinese Journal of Preventive Veterinary Medicine, 2015, 37(3): 225–228. (in Chinese)
[26] 杨萍萍, 刘静静, 赵雪, 等. 间接免疫酶组化检测禽波氏杆菌在感染鸡体内的抗原定位[J]. 中国兽医学报, 2013, 33(12) :1832–1837.
YANG P P, LIU J J, ZHAO X, et al. Study on localization of Bordetella avium in infected chickens by indirect immunoperoxidase techinique[J]. Chinese Journal of Veterinary Science, 2013, 33(12): 1832–1837. (in Chinese)
[27] TEMPLE L M, MIYAMOTO D M, MEHTA M, et al. Identification and characterization of two Bordetella avium gene products required for hemagglutination[J]. Infect Immun, 2010, 78(6): 2370–2376. DOI: 10.1128/IAI.00140-10