畜牧兽医学报  2017, Vol. 48 Issue (4): 652-659. DOI: 10.11843/j.issn.0366-6964.2017.04.008    PDF    
小鼠精子透明质酸酶SPAM1在受精过程中的功能研究
周崇1,3#, 黄莉2,3#, 石德顺1, 蒋建荣1, 马场忠3     
1. 广西大学, 亚热带生物资源保护利用国家重点实验室, 南宁 530004;
2. 广西壮族自治区兽医研究所, 广西兽医生物技术重点实验室, 南宁 530001;
3. 日本筑波大学, 生命环境系, 筑波 305-8572
摘要:旨在研究小鼠精子透明质酸酶SPAM1(Sperm adhesion molecule 1)对受精过程中精子/卵丘互作的影响,并初步探讨其可能的作用机制。本研究抽提小鼠尾尖基因组,利用PCR法检测小鼠Spam基因型;筛选的野生型(WT)和Spam1敲除(KO)小鼠,提取附睾尾部精子蛋白进行Western blot和酶活性检测;经TYH培养液2 h获能后,分别对精子的运动性、穿透和分散卵丘细胞能力及体外受精(IVF)进行统计分析。结果表明,KO小鼠精子中未检测到SPAM1蛋白,透明质酸酶活性也极显著低于WT小鼠(P < 0.01);而获能后精子运动性,在KO和WT小鼠之间差异不显著(P>0.05);与WT相比,KO小鼠精子缺失Spam1后,极显著地影响卵丘细胞层基质中精子顶体反应的发生比率(P < 0.01),导致精子穿透卵丘细胞层的能力极显著降低(P < 0.01),仅有少数精子能够到达卵子透明带表面,大量精子极易黏附于卵丘细胞层表面或外部边缘(P < 0.01);此外,KO小鼠精子IVF 2 h的卵丘细胞分散和受精率均呈现显著延迟(P < 0.05)。综上表明,小鼠精子透明质酸酶SPAM1与顶体反应相关联并影响精子/卵丘互作。揭示SPAM1在穿卵过程中除了具有降解透明质酸的作用外,还存在其他的非酶活性功能。
关键词SPAM1    精子/卵丘互作    顶体反应    精子    小鼠    
Functional Analysis of Mouse Sperm Hyaluronidase SPAM1 in Fertilization
ZHOU Chong1,3#, HUANG Li2,3#, SHI De-shun1, JIANG Jian-rong1, BABA Tadashi3     
1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China;
2. Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China;
3. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City 305-8572, Japan
Abstract: This study was aimed to elucidate the possible functions of sperm adhesion molecule 1 (SPAM1) on the sperm/cumulus interaction during fertilization and explore its potential mechanism. Genomic DNA was extracted from the tails of mice and genotype for Spam1 null mutation was confirmed by PCR analysis. The protein of the screened wild type (WT) and Spam1-deficient (KO) sperm were extracted and confirmed by Western blot, and the hyaluronidase activity was measured by the colorimetric method. The epididymal sperm were capacitated by incubation for 2 h and subjected to the assays of sperm motility, sperm/cumulus interaction or in vitro fertilization (IVF). These results showed that the SPAM1 protein was readily absent in the KO sperm, and the hyaluronic acid-hydrolyzing enzymes activity was significantly reduced in the KO sperm, compared to that of the WT sperm (P < 0.01). There were no significant differences in sperm motility between the KO and WT groups after capacitation (P>0.05). However, the loss of SPAM1 significantly influenced the percentage of acrosome-reacted sperm in the extracellular matrix of the cumulus (P < 0.01), resulted in a markedly decrease in sperm entry into and/or penetration of the cumulus mass, only a few sperm succeeded in access to the surface of the oocyte zona pellucida (ZP) and contrastly a remarkably great deal of sperm accumulated on the surface or outer edge of the cumulus (P < 0.01). In addition, sperm lacking SPAM1 caused the delayed cumulus disperse and fertilization at IVF 2 h (P < 0.05). Therefore, mouse sperm hyaluronidase SPAM1 may be associated with the acrosome reaction and affect the sperm/cumulus interaction, which reveal that SPAM1 may play other possible roles in sperm access to the oocyte ZP except the hyaluronan-degrading activity.
Key words: SPAM1     sperm/cumulus interaction     acrosome reaction     sperm     mouse    

哺乳动物受精是一个极其复杂的、有序的生理过程,包括精子依次穿透卵丘细胞层和卵子透明带,随后与卵子质膜融合并最终完成受精[1-5]。成熟的卵母细胞是以卵子-卵丘细胞复合体 (Oocyte-cumulus complex, OCC) 形式被排出。卵丘细胞对于卵母细胞正常发育和成功受精具有非常重要的作用[6]。体外受精时某些物种去除卵丘细胞会导致受精率显著降低[1]。而Adam3敲除 (Adam3 KO) 小鼠的体外研究也表明,精子不能结合到无卵丘细胞的裸卵透明带而导致受精失败[7]。A.N.Fatehi等[8]和R.Li等[9]研究发现,卵丘细胞不仅能够增加卵母细胞的体外受精率,还有助于防止多精受精,提高胚胎后续发育能力。因此,卵丘细胞的存在对于受精至关重要。

排卵前,在促排卵素LH作用下卵丘细胞间形成大量细胞外基质,主要包括透明质酸[10-11]及其各种结合蛋白, 如TSG6[12]、HAS2[13]等,这些成分的显著增加使OCC迅速膨胀,从而引发排卵反应[14]。自然受精过程中,精子首先必须要侵入并穿透卵丘细胞层。长期以来,人们一直认为具有透明质酸分解活性的透明质酸酶是受精所必须的。在小鼠精子中,已经鉴定出至少3种透明质酸酶SPAM1(也称PH-20)[15]、HYAL2[16]和HYAL5[17],它们均通过糖基磷脂酰肌醇 (Glycosylphosphatidylinositol, GPI) 锚定在精子顶体膜上,且均具有能够分解透明质酸的酶活性[15-19]。PH-20/SPAM1被透明质酸酶抑制剂或抗氨基端活性部位的抗体封闭后,小鼠精子无法穿透卵丘细胞层到达卵子透明带[20-21];而在猪上,添加抗-SPAM1多克隆抗体也能够抑制受精过程中的精/卵相互作用[22]。但基因敲除研究表明,Spam1敲除 (Spam1 KO)[18-19]Hyal5敲除 (Hyal5 KO)[19]小鼠精子均能够穿透卵丘细胞层并使卵母细胞受精,揭示这两种透明质酸酶均非受精所必需。其中,Spam1 KO小鼠表现为精子穿透和分散卵丘细胞能力下降、受精延迟,并有大量精子蓄积在卵丘细胞层表面或外部边缘[18-19, 23]。揭示SPAM1在精子穿透卵丘细胞层过程中具有更为重要的功能,但具体机制尚不清楚。因此,本研究通过对Spam1 KO小鼠精子在IVF早期阶段的精卵互作进行观察,以初步探讨透明质酸酶SPAM1在精子侵入和穿透卵丘细胞层过程中的作用机制,为进一步阐释受精机理以及医学临床研究奠定基础。

1 材料与方法 1.1 材料 1.1.1 试验动物

野生型 (WT) ICR系小鼠 (雄性:3~5月龄;雌性:8~10周龄) 购自日本SLC公司;Spam1 KO小鼠自制于筑波大学T.Baba教授实验室。小鼠的饲养管理和使用,严格按照筑波大学实验动物管理委员会的管理条例执行。

1.1.2 试剂及仪器

所有化学药品除特别说明外均购自Sigma公司。抗-SPAM1[18]、抗-HYAL5[19]、抗-PRSS21[24]、抗-ADAM3[7]多克隆抗体由T. Baba教授实验室自制;抗-IZUMO1[25]单克隆抗体由大阪大学M. Okabe教授惠赠;HRP标记的羊抗兔IgG、HRP标记的羊抗大鼠IgG、Alexa Fluor 488标记的羊抗大鼠IgG购自CST公司。Bio Rad蛋白免疫印迹及成像系统;Hamilton Thorne计算机辅助精液分析 (CASA) 系统;Olympus IX71倒置荧光显微镜。

1.2 试验方法 1.2.1 引物设计与小鼠基因型鉴定

根据Spam1基因序列,针对WT和KO小鼠的基因型分别设计2对引物:Spam1:5′-GGTATTCAGAGGTACGATCAG-3′和5′-TTGAAGTCCAATCGACCAGCT-3′(扩增片段大小145 bp);Spam1 mutation:5′-TCGTGCTTTACGGTATCGCCGGCTCCCG-3′和5′-TTGAAGTCCAATCGACCAGCT-3′(扩增片段大小254 bp),用于筛选子代基因敲除小鼠。剪取小鼠尾尖,添加500 μL鼠尾组织裂解液,55 ℃恒温过夜,苯酚/氯仿法抽提小鼠尾部DNA,进行PCR扩增反应。PCR反应程序:94 ℃ 2 min;94 ℃ 60 s,60 ℃ 1 min,72 ℃ 30 s,35个循环;72 ℃ 1 min。

1.2.2 精子蛋白Western blot检测与酶活性分析

将雄性小鼠的新鲜附睾尾部精子回收, 置于磷酸盐缓冲液 (PBS) 中,2 000 r·min-1离心10 min, 弃上清液,用PBS重悬后,重复离心洗涤3次。沉淀物用裂解缓冲液 (20 mmol·L-1 Tris/HCl,1% Triton X-100,0.15 mol·L-1 NaCl,pH 7.4) 重悬洗涤1次,然后加入200 μL含有1%蛋白酶抑制剂混合物的裂解缓冲液,冰上裂解6 h。裂解后的精子上清液于12 000 r·min-1离心10 min, 回收备用。参照C.Zhou等[23]的方法,对目的蛋白SPAM1、HYAL5、PRSS21、ADAM3和IZUMO1进行Western blot检测;参照W.J.Kang等[26]的方法,对精子蛋白分解透明质酸的酶活性进行分析。

1.2.3 精子运动性分析

附睾尾部精子回收于200 μL TYH液滴中分散培养5 min,吸取液滴上方的精子添加到含有4 mg·mL-1 BSA的TYH液滴中,37 ℃、5% CO2和100%湿度培养箱中获能培养2 h。获能后的精子采用计算机辅助精液分析 (CASA) 系统进行检测,CASA主要参数:总运动活力 (TM)、前向运动 (PM)、急速运动 (RM)、平均速度 (APV)、侧摆幅度 (ALHD)、超活化运动 (HA)。各项参数检测设定值参照C.Zhou等[23]方法。

1.2.4 体外受精 (IVF)

将雌鼠腹腔注射PMSG (日本ASKA制药公司,东京) 和hCG (日本ASKA制药公司) 各5 IU,2次注射间隔48 h。hCG注射后14 h,于输卵管壶腹部收集含有M II期卵母细胞的OCC,并移至含有BSA的TYH液滴中。获能后的精子添加到TYH液滴中 (终浓度为1.5×102·μL-1),使其与卵母细胞受精。分别观察IVF 2和6 h卵丘细胞分散状况,并统计受精率。

1.2.5 精子/卵丘细胞穿透分析

为了标记精子核,小鼠附睾尾部精子在含有Hoechst 33342(2.5 μg·mL-1) 的TYH液滴中分散培养10 min,然后在含有4 mg·mL-1 BSA的TYH液滴中37 ℃、5% CO2和100%湿度培养箱中获能培养2 h。获能后的精子添加到TYH液滴中 (终浓度为1.5 × 102·μL-1),与OCC相互作用30 min。互作后,带有精子的OCC用4%多聚甲醛 (PFA) 固定15 min,然后用含有0.5%聚乙烯吡咯烷酮 (PVP) 的PBS洗涤2次。加入1:100稀释的抗-IZUMO1单克隆抗体,4 ℃作用2 h。用0.5% PVP的PBS洗涤3次,加入1:200稀释的Alexa Fluor 488标记的羊抗大鼠IgG,4 ℃作用1 h。用0.5% PVP的PBS洗涤3次,装载到载玻片,倒置荧光显微镜下观察。

1.2.6 数据分析

用Student’s t-检验进行统计分析试验数据。当P<0.05表示差异显著;当P<0.01表示差异极显著。

2 结果 2.1 Spam1 KO小鼠基因型鉴定与精子运动性分析

对子代小鼠尾部DNA进行PCR扩增检测Spam1基因型,选择仅有KO条带的小鼠作为试验组,选择仅有WT条带的小鼠作为对照组。Western blot的结果表明,经鉴定获得的KO小鼠精子中未检测到SPAM1蛋白存在,而HYAL5、PRSS21、ADAM3和IZUMO1 4种蛋白质则正常表达。KO小鼠由于缺失SPAM1而引起精子蛋白分解透明质酸的酶活性极显著变化 (P<0.01),仅降为WT的50.3%(图 1)。CASA分析结果表明,小鼠获能精子的各项运动参数在KO和WT之间差异不显著 (P>0.05)(表 1)。

M.DNA相对分子质量标准; H.阳性对照;1~22.子代小鼠;WT.野生型;KO.基因敲除。A.PCR鉴定小鼠基因型;B.Western blot检测精子蛋白表达;C.SPAM1活性分析。**.P<0.01 M.DNA marker; H.Positive control; 1-22.Filial generation mice; WT.Wild-type; KO.Knock-out.A.PCR to identify the mouse genotype; B.Western blot analysis of the sperm proteins; C.Hyaluronidase activity in sperm proteins. **.P < 0.01 图 1 Spam1 KO小鼠基因型鉴定与精子酶活性分析 Figure 1 Identify of Spam1 KO mouse genotype and analysis of hyaluronidase activity of sperm
表 1 野生型和Spam1敲除小鼠附睾尾部精子获能后的运动性分析 Table 1 Motility of capacitated epididymal sperm from WT and Spam1 KO mice
2.2 SPAM1对精子穿透卵丘细胞层的影响

精子/卵丘细胞穿透试验结果表明,与WT相比,KO小鼠精子缺失透明质酸酶SPAM1后,导致精子穿透卵丘细胞层的能力极显著降低 (P<0.01),到达卵子透明带 (ZP) 的精子数量显著减少,而大部分精子极易黏附于OCC表面或外部边缘 (P<0.01),且极显著地影响卵丘细胞层基质中精子顶体反应的发生比率 (P<0.01)(图 2)。

A.小鼠精子穿透卵丘细胞层图 100×;B.大量精子蓄积在OCC表面;C.OCC中精子发生顶体反应的比率。OS.卵丘细胞层外部边缘;CM.卵丘基质;ZP.卵子透明带。**.P<0.01 A.Images of penetration of sperm through the cumulus 100×; B.Accumulation of sperm on the OCC surface; C.Ratio of acrosome reaction of sperm in the OCC.OS.OCC surface; CM.Cumulus matrix; ZP.Oocytes ZP.**.P < 0.01 图 2 SPAM1对精子穿透卵丘细胞层的影响 Figure 2 The effect of SPAM1 on the penetration of sperm through the cumulus
2.3 SPAM1对IVF过程中卵丘细胞分散和受精率的影响

小鼠精子在IVF过程中对卵丘细胞分散的状况,如图 3所示。与WT相比,KO小鼠精子对卵丘细胞分散能力显著降低。IVF 2 h时,可观察到卵丘细胞仍附着于卵母细胞,几乎未被分散;IVF时间延长至6 h,卵丘细胞虽被分散并脱离卵母细胞,但仍可观察到尚未完全分散的卵丘细胞团块。受精卵去除精子并继续培养至6 h,观察雌雄原核 (箭头) 并统计受精率。结果显示,KO小鼠精子的体外受精率呈现显著延迟 (表 2)。IVF 2 h,KO小鼠精子的体外受精率显著低于WT (P<0.05);随着IVF时间延长至6 h,两者之间没有显著差异 (P>0.05)。

图 3 IVF过程中卵丘细胞的分散状态200× Figure 3 Dispersal of cumulus cells from the cumulus mass in IVF 200×
表 2 野生型和Spam1敲除小鼠附睾尾部精子获能后的体外受精率 Table 2 IVF rate of capacitated epididymal sperm from WT and Spam1 KO mice
3 讨论

透明质酸酶于1929年由D.Reynals首次发现并命名为扩散因子[27],随后被鉴定并更名为透明质酸酶,其功能主要是水解透明质酸,在受精等诸多生命活动中都发挥重要作用。大量的研究资料表明,受精时获能精子释放透明质酸酶,分解OCC中蓄积的大量透明质酸并穿透卵丘细胞层到达卵子透明带[1, 4-5]。然而利用基因敲除小鼠精子分析表明,无论是SPAM1还是HYAL5均非受精所必需[18-19]。小鼠精子缺失SPAM1,会导致精子穿透和分散卵丘细胞能力下降、受精延迟,并有大量精子蓄积在卵丘细胞层表面或外部边缘[18-19, 23],但原因不明。因此,进一步探索精子缺失SPAM1为何会对精/卵互作造成影响,并探讨其可能的作用机制显得十分必要。

本研究使用Ph-20/Spam1基因敲除杂合子 (Spam1+/-) 小鼠用于群系维持[23],所以产生的子代小鼠可能出现Spam1+/+(WT)、Spam1+/-Spam1-/-(KO)3种表型。通过PCR反应和Western blot方法分别对小鼠尾部基因组DNA和精子蛋白进行了鉴定,筛选获得的Spam1 KO小鼠精子中不存在SPAM1蛋白。而Spam1 KO小鼠在精子形态、数量、大小[19]以及获能后精子运动性[23]等方面与WT没有显著差异,这一结果在本研究中也得到了印证。此外,Spam1 KO小鼠精子的透明质酸分解活性显著降低,并造成IVF时精子分散卵丘细胞能力下降,说明精子的透明质酸酶活性和卵丘细胞分散密切相关。这与S.Yoon等[22]和W.J.Kang等[26]的研究结果相似。成熟卵母细胞是以OCC的形式被排出。卵丘细胞层是受精时精子要穿越的第一道屏障。卵丘细胞能够参与精-卵之间的相互识别、引导和控制精子趋向卵母细胞、维持精子运动活力、诱导精子获能以及提高精子穿卵能力[1, 28-30]Spam1 KO小鼠精子在IVF时表现为穿透卵丘细胞层能力下降、受精延迟。本研究还发现Spam1 KO小鼠精子缺失Spam1后,导致精子极易黏附于OCC表面或外部边缘。小鼠精子透明质酸酶SPAM1在精子侵入和穿透卵丘细胞层时,可能具有某种非常重要但又非必需的功能。笔者前期的研究结果表明,利用透明质酸酶抑制剂Apigenin完全抑制精子的透明质酸分解活性,精子仍能正常侵入和穿透卵丘细胞层并完成受精[26]。综上表明,由于小鼠精子缺失SPAM1,而非缺失透明质酸酶活性造成的。因此,SPAM1在精子穿卵过程中除了具有分解透明质酸的酶活性外,可能还存在信号转导等其它的非酶活性功能。

受精时卵丘细胞及其细胞外基质也能诱导精子发生顶体反应[31]。已经发生顶体反应的精子仍然能够二次穿透ZP与卵母细胞完成受精[32]。体外受精时,某些物种在去除卵丘细胞条件下会导致受精率显著下降[1]。利用Cd46 KO小鼠研究证明,精子发生自发性顶体反应的比率与受精能力呈正相关[33]。本研究发现,相比于WT小鼠,Spam1 KO小鼠精子在TYH培养液中的获能及随后自发性顶体反应呈现显著延迟 (数据未发表)。穿卵30 min后,卵丘细胞层基质中的Spam1 KO小鼠精子发生顶体反应的比率显著低于WT。这些因素可能是导致Spam1 KO小鼠体外受精延迟的原因,揭示精子获能及随后发生顶体反应比率和受精能力密切相关。

4 结论

Spam1 KO小鼠精子缺失透明质酸酶SPAM1后,OCC中精子发生顶体反应的比率显著降低,导致KO精子穿透卵丘细胞层能力下降、受精延迟,大部分精子极易黏附于OCC表面或外部边缘。揭示SPAM1在穿卵过程中除了具有分解透明质酸的作用外,还存在其它的非酶活性功能。

参考文献
[1] KNOBIL E, NEILL J D. The physiology of reproduction[M]. 2nd ed. New York: Raven Press, 1994: 189-317.
[2] WASSARMAN P M. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion[J]. Cell, 1999, 96(2): 175–183. DOI: 10.1016/S0092-8674(00)80558-9
[3] WASSARMAN P M, JOVINE L, LITSCHER E S. A profile of fertilization in mammals[J]. Nat Cell Biol, 2001, 3(2): E59–E64. DOI: 10.1038/35055178
[4] PRIMAKOFF P, MYLES D G. Penetration, adhesion, and fusion in mammalian sperm-egg interaction[J]. Science, 2002, 296(5576): 2183–2185. DOI: 10.1126/science.1072029
[5] IKAWA M, INOUE N, BENHAM A M, et al. Fertilization: a sperm's journey to and interaction with the oocyte[J]. J Clin Invest, 2010, 120(4): 984–994. DOI: 10.1172/JCI41585
[6] VANSOFLA F N, ROSHANGAR L, MONTASERI A, et al. Impact of prunus cerasus on PGR and HAS2 in cumulus cells and fertility outcome[J]. Adv Pharm Bull, 2016, 6(1): 65–69. DOI: 10.15171/apb.2016.010
[7] NISHIMURA H, KIM E, NAKANISHI T, et al. Possible function of the ADAM1a/ADAM2 fertilin complex in the appearance of ADAM3 on the sperm surface[J]. J Biol Chem, 2004, 279(33): 34957–34962. DOI: 10.1074/jbc.M314249200
[8] FATEHI A N, ZEINSTRA E C, KOOIJ R V, et al. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate[J]. Theriogenolngy, 2002, 57(4): 1347–1355. DOI: 10.1016/S0093-691X(01)00717-8
[9] LI R, NORMAN G R, ARMSTRONG D T, et al. Oocyte-secreted factor (s) determine functional differences between bovine mural granulosa cells and cumulus cells[J]. Biol Reprod, 2000, 63(3): 839–845. DOI: 10.1095/biolreprod63.3.839
[10] ZHANG H, TIAN S, KLAUSEN C, et al. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells[J]. Mol Cell Endocrinol, 2016, 428: 17–27. DOI: 10.1016/j.mce.2016.03.016
[11] CHEN X Y, BONFIGLIO R, BANERJI S, et al. Micromechanical analysis of the hyaluronan-rich matrix surrounding the oocyte reveals a uniquely soft and elastic composition[J]. Biophys J, 2016, 110(12): 2779–2789. DOI: 10.1016/j.bpj.2016.03.023
[12] BRIGGS D C, BIRCHENOUGH H L, ALI T, et al. Metal Ion-dependent heavy chain transfer activity of TSG-6 mediates assembly of the cumulus-oocyte matrix[J]. J Biol Chem, 2015, 290(48): 28708–28723. DOI: 10.1074/jbc.M115.669838
[13] SANTOS J D R, BATISTA R I T P, MAGALHĀES L C, et al. Overexpression of hyaluronan synthase 2 and gonadotropin receptors in cumulus cells of goats subjected to one-shot eCG/FSH hormonal treatment for ovarian stimulation[J]. Anim Reprod Sci, 2016, 170: 15–24. DOI: 10.1016/j.anireprosci.2016.03.008
[14] RICHARDS J S. Ovulation: new factors that prepare the oocyte for fertilization[J]. Mol Cell Endocrinol, 2005, 234(1-2): 75–79. DOI: 10.1016/j.mce.2005.01.004
[15] PRIMAKOFF P, HYATT H, MYLES D G. A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida[J]. J Cell Biol, 1985, 101(6): 2239–2244. DOI: 10.1083/jcb.101.6.2239
[16] MODELSKI M J, MENLAH G, WANG Y, et al. Hyaluronidase 2: a novel germ cell hyaluronidase with epididymal expression and functional roles in mammalian sperm[J]. Biol Reprod, 2014, 91(5): 109.
[17] KIM E, BABA D, KIMURA M, et al. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass[J]. Proc Natl Acad Sci USA, 2005, 102(50): 18028–18033. DOI: 10.1073/pnas.0506825102
[18] BABA D, KASHIWABARA S I, HONDA A, et al. Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg[J]. J Biol Chem, 2002, 277(33): 30310–30314. DOI: 10.1074/jbc.M204596200
[19] KIMURA M, KIM E, KANG W, et al. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization[J]. Biol Reprod, 2009, 81(5): 939–947. DOI: 10.1095/biolreprod.109.078816
[20] LIN Y, MAHAN K, LATHROP W F, et al. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg[J]. J Cell Biol, 1994, 125(5): 1157–1163. DOI: 10.1083/jcb.125.5.1157
[21] MYLES D G, PRIMAKOFF P. Why did the sperm cross the cumulus? To get to the oocyte. Functions of the sperm surface proteins PH-20 and fertilin in arriving at, and fusing with, the egg[J]. Biol Reprod, 1997, 56(2): 320–327. DOI: 10.1095/biolreprod56.2.320
[22] YOON S, CHANG K T, CHO H, et al. Characterization of pig sperm hyaluronidase and improvement of the digestibility of cumulus cell mass by recombinant pSPAM1 hyaluronidase in an in vitro fertilization assay[J]. Anim Reprod Sci, 2014, 150(3-4): 107–114. DOI: 10.1016/j.anireprosci.2014.09.002
[23] ZHOU C, KANG W, BABA T. Functional characterization of double-knockout mouse sperm lacking SPAM1 and ACR or SPAM1 and PRSS21 in fertilization[J]. J Reprod Dev, 2012, 58(3): 330–337. DOI: 10.1262/jrd.2011-006
[24] YAMASHITA M, HONDA A, OGURA A, et al. Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by sperm exposure to uterine microenvironment[J]. Genes Cells, 2008, 13(10): 1001–1013. DOI: 10.1111/gtc.2008.13.issue-10
[25] IKAWA M, TOKUHIRO K, YAMAGUCHI R, et al. Calsperin is a testis-specific chaperone required for sperm fertility[J]. J Biol Chem, 2011, 286(7): 5639–5646. DOI: 10.1074/jbc.M110.140152
[26] KANG W J, ZHOU C, KOGA Y, et al. Hyaluronan-degrading activity of mouse sperm hyaluronidase is not required for fertilization?[J]. J Reprod Dev, 2010, 56(1): 140–144. DOI: 10.1262/jrd.09-152N
[27] DURAN-REYNALS F. Tissue permeability and the spreading factors in infection: A contribution to the host: parasite problem[J]. Bacteriol Rev, 1942, 6(4): 197–252.
[28] OREN-BENAROYA R, ORVIETO R, GAKAMSKY A, et al. The sperm chemoattractant secreted from human cumulus cells is progesterone[J]. Hum Reprod, 2008, 23(10): 2339–2345. DOI: 10.1093/humrep/den265
[29] LISHKO P V, BOTCHKINA I L, KIRICHOK Y. Progesterone activates the principal Ca2+ channel of human sperm[J]. Nature, 2011, 471(7338): 387–391. DOI: 10.1038/nature09767
[30] SHIMADA M, YANAI Y, OKAZAKI T, et al. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization[J]. Development, 2008, 135(11): 2001–2011. DOI: 10.1242/dev.020461
[31] JIN M, FUJIWARA E, KAKIUCHI Y, et al. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization[J]. Proc Natl Acad Sci U S A, 2011, 108(12): 4892–4896. DOI: 10.1073/pnas.1018202108
[32] INOUE N, SATOUH Y, IKAWA M, et al. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs[J]. Proc Natl Acad Sci U S A, 2011, 108(50): 20008–20011. DOI: 10.1073/pnas.1116965108
[33] INOUE N, IKAWA M, NAKANISHI T, et al. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm[J]. Mol Cell Biol, 2003, 23(7): 2614–2622. DOI: 10.1128/MCB.23.7.2614-2622.2003