畜牧兽医学报  2017, Vol. 48 Issue (10): 1912-1919. DOI: 10.11843/j.issn.0366-6964.2017.10.014    PDF    
皖西白鹅育肥期肌肉脂肪酸组成及肝PPARαFADS2和ME1基因表达规律的研究
陈兴勇, 赵宁, 张燕, 耿照玉     
安徽农业大学动物科技学院, 合肥 230036
摘要:旨在探明皖西白鹅育肥期肌肉脂肪酸组成及肝脂肪酸合成相关基因的表达规律。本研究选取同批出雏的70日龄时体重相近的皖西白鹅60只,分为3个重复,每个重复20只,育肥至100日龄。育肥期每10 d(70~100日龄)从各重复取5只屠宰,分离胸肌、腿肌和肝。气相色谱法检测肌肉脂肪酸组成,RT-PCR分析肝PPARαFADS2和ME1基因相对表达量。结果表明:1)胸肌饱和脂肪酸含量高于腿肌(P < 0.000 1),单不饱和脂肪酸和多不饱和脂肪酸含量均低于腿肌(P=0.044,P=0.017);C16:1和C18:2含量随育肥时间增加,C18:0含量随育肥时间下降。2)PPARα在育肥20 d高表达,育肥30 d低表达(P<0.000 1);FADS2育肥10 d时表达量最高(P=0.009);ME1育肥30 d表达量最低(P=0.010)。3)PPARα表达量上升伴随C16:1、C18:3、UFA/SFA含量上升,同时SFA含量下降;FADS2表达量上升伴随C16:1、C18:1、C18:3、MUFA和UFA/SFA含量上升,SFA、PUFA含量下降。ME1基因的表达量上升则C16:1、C18:1、C18:3、MUFA和UFA/SFA上升,同时C18:0、C20:3和SFA含量下降。皖西白鹅PPARαFADS2和ME1基因相对表达量均和脂肪酸组成显著相关,可作为脂肪酸性状选育的候选基因。
关键词皖西白鹅    脂肪酸组成    PPARα    FADS2    ME1    
The Fatty Acid Profile in Muscles and Expression of PPARα, FADS2 and ME1 Genes in Liver of Chinese Wanxi White Geese in Fattening Period
CHEN Xing-yong, ZHAO Ning, ZHANG Yan, GENG Zhao-yu     
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Abstract: This study aimed to elucidate the fatty acids content in muscles and fatty acid synthesis related gene expression profile in muscle of Wanxi White geese during fattening period. A total of 60 geese were selected at 70 d of age with similar body weight. The geese were divided into 3 replicates with 20 per replicate. Five geese were randomly selected from each replicate for breast muscle, leg muscle and liver sampling with 10 d interval during fattening till 100 d of age. Gas chromatography was used for fatty acid content determination and RT-PCR was used for PPARα, FADS2 and ME1 gene expression levels determination. The results showed that: 1) Saturated fatty acid content in breast muscle was higher than that in leg muscle (P < 0.000 1). Monounsaturated fatty acids and polyunsaturated fatty acids were lower in breast muscle than that in leg muscle (P=0.044, P=0.017). The content of C16:1 and C18:2 were increased, C18:0 was decreased during fattening. 2) The expression of PPARα was the highest on 20 d and the lowest on 30 d (P < 0.000 1) in fattening period. The expression of FADS2 was the highest on 10 d (P=0.009) in fattening period. The expression of ME1 was lowest on 30 d (P=0.010) in fattening period. 3) The expression of PPARα increasing was associated with the increasing C16:1, C18:3 and UFA/SFA contents while the content of SFA decreased. The expression of FADS2 increasing was associated with the increasing C16:1, C18:1, C18:3, MUFA and UFA/SFA contents, while SFA and PUFA decreased. The expression of ME1 increasing was associated with the increasing C16:1, C18:1, C18:3, MUFA and UFA/SFA contents, while C18:0, C20:3 and SFA contents decreased. The expression levels of PPARα, FADS2 and ME1 were significantly associated with fatty acids content in Chinese Wanxi White geese, suggesting that these genes might be used as candidate genes for fatty acid selection in geese breeding.
Key words: Wanxi White geese     fatty acid profile     PPARα     FADS2     ME1    

脂肪酸组成作为评价肌肉营养价值的重要指标一直是研究的热点。与猪肉和牛肉不同,家禽肌肉不饱和脂肪酸(Unsaturated fatty acid,UFA)含量远高于饱和脂肪酸(Saturated fatty acid,SFA)的相对含量[1-4],且必需脂肪酸(Essential fatty acid,EFA)含量高[5]。研究普遍认为,草食动物体内不饱和脂肪酸含量相对较高[6]。鹅作为草食类家禽,肌肉中不饱和脂肪酸含量高于鸡肉和鸭肉,营养价值丰富,且亚麻酸含量超过其他肉类[1, 7-8]。G.Haraf等[9]研究波兰本地鹅脂肪酸组成,发现鹅肌肉中存在十几种脂肪酸,以油酸比例最高,其次是亚油酸、棕榈酸、硬脂酸等。不同部位肌肉脂肪酸组成有所差异,与胸肌相比,腿肌的多不饱和脂肪酸和必需脂肪酸含量较高[10]。中国地方鹅品种众多,脂肪酸组成在品种间存在差异[11],说明脂肪酸组成受遗传调控。家禽脂肪酸合成代谢相关基因的表达有别于哺乳动物,约70%的脂肪酸在肝中合成,其次来源于日粮,仅5%在脂肪组织中合成[12]。PPARs信号通路是调控脂肪酸合成代谢的重要通路,由不饱和脂肪酸等配体激活的过氧化物酶体增殖剂激活受体-α(Peroxisome proliferators-activated receptors-α,PPAR-α)调控下游靶基因如苹果酸酶1基因(Malic enzyme 1,ME1)、Δ6-脂肪酸脱氢酶基因(Fatty acid desaturase 2,FADS2) 等的表达,参与三羧酸循环[13],在脂肪酸的生物合成过程中发挥生物学功能。FADS2在肝中高表达[14],该基因合成的脂肪酸脱氢酶是不饱和脂肪酸生物合成过程中的关键酶,其在肝中高表达验证了肝是不饱和脂肪酸合成的重要场所。ME1在家禽肝的长链脂肪酸合成中起重要作用[15],为脂肪酸的生物合成提供NADPH和乙酰辅酶A[16]

在鹅生长发育过程中,育肥期是脂肪沉积的关键阶段,皖西白鹅作为我国中型鹅种,育肥期肉质脂肪酸组成和结构尚无报道。为此,本试验以皖西白鹅为对象,研究育肥期胸肌和腿肌脂肪酸组成和比例,肝中调控脂肪酸合成代谢相关基因的表达规律,以及基因表达与脂肪酸组成的相关性。研究结果为鹅脂肪酸候选基因的选择提供依据。

1 材料与方法 1.1 试验动物与样品采集

以皖西白鹅为试验动物,同批出雏的鹅苗均由安徽省六安市皖西白鹅保种场提供,在相同饲养管理条件下饲养至70日龄开始育肥,选择体重相近、健康状况良好的60只鹅,分为3个重复,每个重复20只。采用半开放式分栏饲养方式,饲喂基础日粮,日粮成分:粗灰分7.11%,粗蛋白质16.11%,粗脂肪1.98%,粗纤维5.19%,钙2.00%,钾0.60%,代谢能15.89 MJ·kg-1。自由饮水,在育肥期0、10、20、30 d分别取15只,颈部放血宰杀,立即取1 g左右胸肌、腿肌和肝组织样于RNA保存液中(索莱宝,北京),-80 ℃保存备用;待胴体冷却后取5 g左右胸肌、腿肌样于冻存管,-80 ℃保存备用。

1.2 试验方法

氯仿-甲醇(2:1,V/V)法提取肌肉组织中脂肪酸,组织匀浆机60 Hz匀浆2 min,摇床震荡10 min,4 000 r·min-1离心10 min,抽滤,所得滤渣相同方法提取1次,用适量0.9% NaCl溶液洗涤合并所得滤液,分液漏斗中静置分层,取下层溶液,旋转蒸发仪在40 ℃水浴锅中真空浓缩,加入2 mL正己烷溶解并转移至10 mL离心管中,用于脂肪酸衍生。

简易碱式甲酯化法进行脂肪酸的衍生,加入1 mL 1 mol·L-1 KOH-甲醇,室温下摇床水平摇晃5 min,加入少量无水硫酸钠,静置分层,注射器吸取1 mL上清液,有机相过滤后中转入进样瓶中,用GC 7890A气相色谱仪(安捷伦,美国)分析。气象色谱条件:DB-WAX 30 m×0.25 mm×0.25 μm弹性石英毛细管柱,检测器为FID,载气为高纯氮气,流量0.8 mL·min-1,分流比为50:1,进样量为1 μL。进样口温度250 ℃,接口温度250 ℃。程序升温:柱温60 ℃,维持1 min,以15 ℃·min-1速率升至200 ℃,再以3 ℃·min-1速率升至230 ℃,保持5 min。C14-C22脂肪酸甲酯标准品定性,面积归一法定量。

采用总RNA提取试剂盒(Omega,美国)提取肝组织总RNA、逆转录试剂盒(宝生物,大连)合成cDNA,Primer Premier 5设计引物(表 1),β-actin作为内参,引物由上海生工生物股份有限公司合成。

表 1 荧光定量PCR引物 Table 1 Primers for quantitative RT-PCR

荧光定量PCR反应在ABI 7500 Real-time荧光定量PCR仪(ABI,美国)上进行,体系为20 μL:AceQ qPCR SYBR Green Master Mix(诺唯赞,南京) 10 μL,上下游引物各0.5 μL,ROX Reference Dye1 0.4 μL,cDNA 1 μL,DEPC处理水7.6 μL。荧光定量PCR反应程序:95 ℃ 5 min,40个循环(95 ℃ 10 s,60 ℃ 30 s),熔解曲线(95 ℃ 15 s, 60 ℃ 60 s, 95 ℃ 15 s)。每次反应每个样品做3个重复。2-△△CT公式计算表达量。

1.3 数据分析

数据由统计分析软件SPSS 22处理,组间差异用多因素方差分析和LSD多重比较法,脂肪酸组成和相关基因在肝中的表达量在性别间的差异分析采用t检验,相关性分析运用Pearson两尾检验。

2 结果 2.1 脂肪酸甲酯的定性

皖西白鹅肌肉中脂肪酸甲酯的组成成分见图 1,根据保留时间从低到高依次为C16:0、C16:1、C18:0、C18:1、C18:2、C18:3、C20:3。

图 1 皖西白鹅肌肉中各脂肪酸甲酯气相色谱图 Figure 1 The chromatograph analysis of fatty acid composition in muscle of Wanxi White geese
2.2 皖西白鹅肌肉中脂肪酸组成在不同肌肉组织随育肥时间的变化

皖西白鹅胸肌和腿肌脂肪酸组成差异显著(表 2)。胸肌C16:0含量(22.04%)高于腿肌(18.04%,P<0.000 1),C18:2含量(18.28%)低于腿肌(20.25%,P<0.000 1),C16:1和C18:1含量(1.26%,25.38%)低于腿肌(1.71%,28.62%;P=0.043,P=0.051),胸肌SFA含量(39.43%)高于腿肌(34.53%,P<0.000 1),UFA/SFA、MUFA和PUFA含量(1.47%,26.65%,30.84%)低于腿肌(1.83%,30.33%,32.40%;P<0.000 1,P=0.044,P=0.017),C18:0、C18:3和C20:3含量在胸肌和腿肌间无显著差异。

表 2 皖西白鹅育肥期肌肉组织中脂肪酸组成 Table 2 Fatty acid compositions in muscles of Chinese Wanxi White geese during fattening period

皖西白鹅脂肪酸组成随育肥时间变化显著(表 2)。C16:1含量随育肥时间增长而增加,在育肥0 d(0.93%)最低,育肥30 d(1.86%)最高;C18:0含量随育肥时间增长而下降,在育肥0 d时最高达18.37%;SFA含量随育肥时间增长而下降,在育肥30 d时最低(35.28%,P=0.003);UFA/SFA比例随育肥时间增长上升,在育肥30 d时最大(1.78,P=0.002);C16:0、C18:1、C18:3、C20:3、MUFA和PUFA含量在育肥期间无显著变化。

脂肪酸C18:1、C18:2、C18:3和MUFA在育肥时间和组织间存在交互作用(表 2)。脂肪酸C18:1含量在育肥30 d腿肌中最高(30.90%),脂肪酸C18:2含量在育肥0 d腿肌中最高(22.92%),脂肪酸C18:3在育肥10 d腿肌中最高(0.38%),MUFA含量在育肥10 d腿肌中最高(32.80%)。

2.3 皖西白鹅脂肪酸组成在性别间的比较

皖西白鹅胸肌和腿肌肌肉脂肪酸C16:0、C18:0、C18:1、C18:2和C20:3在公鹅和母鹅间比较均无显著差异(表 3),母鹅腿肌C16:1含量高于公鹅(P=0.022),而胸肌C16:1含量低于公鹅(P=0.019),并且母鹅腿肌中C18:3含量显著低于公鹅(P=0.023)。

表 3 皖西白鹅育肥期肌肉脂肪酸组成性别间比较 Table 3 Comparison of fatty acids between genders in Wanxi White geese during fattening period
2.4 皖西白鹅肝PPARαFADS2、ME1基因表达受育肥时间的影响

皖西白鹅肝中PPARαFADS2和ME1基因在育肥期表达差异显著(表 4)。PPARα在育肥20 d高表达(1.45%),30 d低表达(0.38%)(P<0.000 1);FADS2的相对表达量在育肥10 d时最高(3.27%,P=0.009);ME1在育肥前期高表达(2.21%,2.66%,2.24%),育肥30 d低表达(0.43%,P=0.010)。PPARαFADS2基因表达在性别间无显著差异,但母鹅肝中ME1基因表达量显著高于公鹅(P=0.005)。

表 4 皖西白鹅肝组织PPARαFADS2和ME1基因相对表达量 Table 4 The gene expression levels of PPARα, FADS2 and ME1 in liver of Chinese Wanxi White geese
2.5 脂肪酸合成相关基因表达量与脂肪酸组成和含量的相关性

脂肪酸合成相关基因表达量与脂肪酸组成和含量相关性分析见表 5PPARα基因的表达量上升伴随C16:1、C18:3、UFA/SFA含量上升(P=0.004,P=0.036,P=0.021),同时SFA含量下降(P=0.016);FADS2基因的表达量上升伴随C16:1、C18:1、C18:3、MUFA和UFA/SFA含量上升(P<0.000 1,P=0.016,P=0.002,P=0.009,P=0.030),SFA、PUFA含量下降(P=0.046,P=0.040)。ME1基因的表达量上升则C16:1、C18:1、C18:3、MUFA和UFA/SFA上升(P<0.000 1,P=0.002,P=0.001,P=0.001,P<0.000 1),同时C18:0、C20:3和SFA的含量下降(P=0.007,P=0.046,P<0.000 1)。

表 5 脂肪酸相关基因表达量与脂肪酸组成和含量相关性分析 Table 5 Correlation coefficient between fatty acid components and related gene expressions
3 讨论

脂肪酸组成是决定动物产品风味和营养的重要因素[17],本试验结果显示,不同肌肉部位脂肪酸组成相差较大,腿肌比胸肌的不饱和脂肪酸含量高,饱和脂肪酸含量低,这与A.Okruszek[18]研究波兰2个品种鹅肌肉脂肪酸比较得出的结果基本一致。本试验中的皖西白鹅腿肌低饱和脂肪酸主要因为C16:0含量低,腿肌中MUFA含量高于胸肌,G.Geldenhuys和E.Baeza等[19-20]得到相似的结果,主要原因可能是胸肌和腿肌的肌纤维结构和功能不同,腿肌是由慢氧化糖酵解型的红肌纤维组成站立和行走的器官,胸肌是由快氧化糖酵解型的白肌纤维构成的飞行器官[21-22],就此推测,腿肌的运动量比胸肌多,骨骼肌对脂肪酸氧化代谢能力强[23],这可能是腿肌中棕榈酸含量比胸肌低的原因,糖酵解产物丙酮酸经过一系列酶催化合成单不饱和脂肪酸,产生单不饱和脂肪酸的含量也高。本试验发现,育肥时间也是影响脂肪酸组成的因素,郑晓等[24]比较分析了浙东白鹅35、70和120日龄胸肌脂肪酸组成,35日龄SFA含量最低,UFA含量最高。本试验中,皖西白鹅育肥30 d,肌肉中SFA含量最低而UFA含量最高,说明SFA随日龄增加降低,而UFA随日龄增加含量增多。试验发现,性别对皖西白鹅肌肉中多数脂肪酸组成的影响差异不显著。R.Poureslami等[25]研究肉鸡脂肪酸组成也认为,性别对脂肪酸组成影响甚微。G.Robert等[26]研究河狸鼠肌肉脂肪酸组成,认为性别对脂肪酸组成无显著影响。G.Osthoff等[27]研究鳄鱼脂肪酸组成发现,C16:1、C18:3以及单不饱和脂肪酸含量等在性别间差异显著。C.Koutsari等[28]认为,男性和女性应答相同脂肪类饮食变化的能力存在显著差异,男性血脂变化明显。本试验中,皖西白鹅公鹅腿肌C16:1含量低于母鹅,但胸肌中C16:1比例高于母鹅,腿肌中C18:3比例高于母鹅,可能与性别对日粮代谢吸收效果存在差异有关,另外,公鹅运动性较强,导致腿肌不饱和脂肪酸含量高于母鹅。

试验首次研究了皖西白鹅肝PPARαFADS2和ME1基因相对表达量,PPARα不仅调控脂肪酸合成基因的表达,还是肝脂质分解代谢的主调节器,诱导在线粒体和过氧化物酶体参与下的脂肪酸氧化众多相关基因的表达[29-31],尤其是肝中线粒体和过氧化物酶体脂肪酸β氧化的活化剂[32]PPARα功能的多样性决定其相对表达量与脂肪酸组成关系的复杂性。本试验发现,PPARα相对表达量与单不饱和脂肪酸C16:1含量有极显著正相关性,C16:1由十六碳饱和脂肪酸(C16:0) 经Δ9-脂肪酸脱氢酶催化软脂酰CoA脱氢产生。因此推测,PPARα可能参与调控Δ9-脂肪酸脱氢酶的表达,从而影响肌肉中单不饱和脂肪酸的含量。FADS2在家禽中的表达与人相似,在肝中高表达[33-34],本试验中,育肥10 d时FADS2的表达水平最高,此阶段可能是皖西白鹅合成不饱和脂肪酸的高峰阶段。ME1基因几乎与所有脂肪酸含量均显著相关,ME1合成的苹果酸酶参与三羧酸循环,为脂肪酸的生物合成提供NADPH和乙酰CoA,参与脂肪酸合成的各个步骤[13],故推测其表达量与各脂肪酸含量均有一定的相关性。目前有关ME1基因表达的研究较少,其对脂肪酸组成调控的机制还有待进一步研究。本研究仅在转录水平分析了肝脂肪酸合成相关基因的表达,今后将从蛋白表达水平和酶活性等方面进行研究。

4 结论

皖西白鹅胸肌不饱和脂肪酸含量低于腿肌,饱和脂肪酸含量高于腿肌;随育肥时间延长不饱和脂肪酸比例上升;皖西白鹅PPARαFADS2和ME1基因的相对表达量均和脂肪酸组成显著相关,可作为脂肪酸性状选育的候选基因。

参考文献
[1] 林树茂, 李海华, 钟赛意. 不同禽类肌肉脂肪酸组成的比较研究[J]. 中国畜牧杂志, 2004, 40(12): 18–20.
LIN S M, LI H H, ZHONG S Y. Comparison of fatty acid composition in muscle from different chicken breeds[J]. Chinese Journal of Animal Science, 2004, 40(12): 18–20. DOI: 10.3969/j.issn.0258-7033.2004.12.009 (in Chinese)
[2] 姜玲玲, 张晓红, 姚刚. 新疆暗腹雪鸡肌肉营养成分测定分析[J]. 畜牧与兽医, 2016, 48(10): 47–50.
JIANG L L, ZHANG X H, YAO G. Muscle nutrient contents of chicken of Tetraogallus himalayensis in Xinjiang area[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(10): 47–50. (in Chinese)
[3] 张明, 刘婷, 曾金焱, 等. 安西杂交一代牛肉脂肪酸组成及含量研究[J]. 畜牧兽医学报, 2016, 47(5): 1049–1056.
ZHANG M, LIU T, ZENG J Y, et al. Comparison of fatty acid profiles in first filial generation from Angus and crossbred simmental[J]. Acta Veterina et Zootechnica Sinica, 2016, 47(5): 1049–1056. (in Chinese)
[4] 祝仁铸, 尹逊河, 王元虎, 等. 猪肌肉组织MDHLPL基因表达与肌内脂肪含量和脂肪酸组成关系的研究[J]. 畜牧兽医学报, 2013, 44(8): 1182–1188.
ZHU R Z, YIN X H, WANG Y H, et al. The gene expression of MDH and LPL in muscle and their association with content of intramuscular fat and composition of fatty acids in pigs[J]. Acta Veterina et Zootechnica Sinica, 2013, 44(8): 1182–1188. DOI: 10.11843/j.issn.0366-6964.2013.08.002 (in Chinese)
[5] 吴云良, 赵伟, 林勇, 等. 苏北草鸡肌肉脂肪酸组分的气相色谱分析[J]. 江苏农业科学, 2013, 41(11): 344–345.
WU Y L, ZHAO W, LIN Y, et al. The fatty acid composition in muscle from Subei Cao chicken by using gas chromatography analysis[J]. Jiangsu Agricultural Sciences, 2013, 41(11): 344–345. DOI: 10.3969/j.issn.1002-1302.2013.11.134 (in Chinese)
[6] LIU H W, ZHOU D W. Influence of pasture intake on meat quality, lipid oxidation, and fatty acid composition of geese[J]. J Anim Sci, 2013, 91(2): 764–771. DOI: 10.2527/jas.2012-5854
[7] SCHMID A. The role of meat in the human diet[J]. Crit Rev Food Sci Nutr, 2011, 51(1): 50–66.
[8] YANOVYCH D, CZECH A, ZASADNA Z. The effect of dietary fish oil on the lipid and fatty acid composition and oxidative stability of goose leg muscles[J]. Ann Anim Sci, 2013, 13(1): 155–165.
[9] HARAF G, WOLOSZYN J, OKRUSZEK A, et al. Fatty acids profile of muscles and abdominal fat in geese of Polish native varieties[J]. Anim Sci Pap Rep, 2014, 32(3): 239–249.
[10] 潘爱銮, 蒲跃进, 吴艳, 等. 不同养殖方式对地方鸡肌肉脂肪酸含量的影响[J]. 湖北农业科学, 2014, 53(24): 6050–6053.
PAN A L, PU Y J, WU Y, et al. Effects of farming modes on fatty acid components in muscle tissues of local chicken[J]. Hubei Agricultural Sciences, 2014, 53(24): 6050–6053. (in Chinese)
[11] 汤青萍, 章双杰, 郭军, 等. 5个地方鹅品种肉品质测定与分析比较[J]. 家畜生态学报, 2010, 31(6): 61–66.
TANG Q P, ZHANG S J, GUO J, et al. Comparison of meat quality in five breeds of Chinese native geese[J]. Acta Ecologiae Animalis Domastici, 2010, 31(6): 61–66. (in Chinese)
[12] GRIFFIN H, ACAMOVIC F, GUO K, et al. Plasma lipoprotein metabolism in lean and in fat chickens produced by divergent selection for plasma very low density lipoprotein concentration[J]. J Lipid Res, 1989, 30(8): 1243–1250.
[13] DORAN O, MOULE S K, TEYE G A, et a1. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: relation ship with intramuscular lipid formation[J]. Brit J Nutr, 2007, 95(3): 609–617.
[14] 白义春. 鸡Δ6-脂肪酸脱氢酶基因的克隆及其在不同组织中的表达[D]. 郑州: 河南农业大学, 2008.
BAI Y C. Cloning of chicken delta-6 desaturase and its expression in different tissues[D]. Zhengzhou: Henan Agricultural University, 2008.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10466-2008212240.htm
[15] 杨烨, 冯玉兰. 鸡苹果酸酶基因的营养和激素调控的传导机制[J]. 福建畜牧兽医, 2004, 26(6): 7–9.
YANG Y, FENG Y L. Nutritional and hormonal signaling pathway of malic enzyme in chicken[J]. Fujian Journal of Animal Husbandry and Veterinary, 2004, 26(6): 7–9. (in Chinese)
[16] CHANG G G, TONG L. Structure and function of malic enzymes, a new class of oxidative decarboxylases[J]. Biochemistry, 2003, 42(44): 12721–12733. DOI: 10.1021/bi035251+
[17] WOOD J D, ENSER M, FISHER A V, et al. Fat deposition, fatty acid composition and meat quality: A review[J]. Meat Sci, 2008, 78(4): 343–358. DOI: 10.1016/j.meatsci.2007.07.019
[18] OKRUSZEK A. Fatty acid composition of muscle and adipose tissue of indigenous Polish geese breeds[J]. Arch Tierz, 2012, 55(3): 294–302.
[19] GELDENHUYS G, HOFFMAN L C, MULLER N. The fatty acid, amino acid, and mineral composition of Egyptian goose meat as affected by season, gender, and portion[J]. Poult Sci, 2015, 94(5): 1075–1087. DOI: 10.3382/ps/pev083
[20] BAEZA E, CHARTRIN P, METEAU K, et al. Effect of sex and genotype on carcass composition and nutritional characteristics of chicken meat[J]. Br Poult Sci, 2010, 51(3): 344–353. DOI: 10.1080/00071668.2010.503472
[21] GELDENHUYS G, HOFFMAN L C, MULLER N. The effect of season, sex, and portion on the carcass characteristics, pH, color, and proximate composition of Egyptian Goose (Alopochen aegyptiacus) meat[J]. Poult Sci, 2013, 92(12): 3283–3291. DOI: 10.3382/ps.2013-03443
[22] GELDENHUYS G, HOFFMAN L C, MULLER N. Gamebirds: A sustainable food source in Southern Africa?[J]. Food Secur, 2013, 5(2): 235–249. DOI: 10.1007/s12571-013-0245-0
[23] 秦虹, 李颖, 石林, 等. t10, c12-共轭亚油酸对骨骼肌细胞脂肪酸代谢的影响[J]. 卫生研究, 2009, 38(3): 355–358.
QIN H, LI Y, SHI L, et al. Effect of t10, c12-conjugated linoleic acid on fatty acid metabolism in C2C12 myotubes[J]. Journal of Hygiene Research, 2009, 38(3): 355–358. (in Chinese)
[24] 郑晓, 潘道东, 曹锦轩. 不同日龄浙东自鹅氨基酸及脂肪酸组成与含量分析[J]. 食品科学, 2013, 34(12): 140–142.
ZHENG X, PAN D D, CAO J X. Amino acid and fatty acid profiles of muscles of Zhedong geese of different ages[J]. Food Science, 2013, 34(12): 140–142. DOI: 10.7506/spkx1002-6630-201312029 (in Chinese)
[25] POURESLAMI R, RAES K, HUYGHEBAERT G, et al. Effects of diet, age and gender on the polyunsaturated fatty acid composition of broiler anatomical compartments[J]. Br Poult Sci, 2010, 51(1): 81–91. DOI: 10.1080/00071660903419518
[26] ROBERT G, MARIAN C, AGNIESZKA R, et al. Fatty acid profile of hind leg muscle in female and male nutria (Myocastor coypus Mol.), fed green forage diet[J]. Meat Sci, 2010, 85(3): 577–579. DOI: 10.1016/j.meatsci.2010.03.008
[27] OSTHOFF G, HUGO A, GOVENDER D, et al. Comparison of the lipid composition of three adipose tissue types of male and female wild nile crocodiles (Crocodylus niloticus)[J]. J Herpetol, 2014, 48(4): 525–531. DOI: 10.1670/13-096
[28] KOUTSARI C, ZAGANA A, TZORAS I, et al. Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content[J]. Eur J Clin Nutr, 2004, 58(3): 495–502. DOI: 10.1038/sj.ejcn.1601836
[29] MANDARD S, MVLLER M, KERSTEN S. Peroxisome proliferator-activated receptor α target genes[J]. Cell Mol Life Sci, 2004, 61(4): 393–416. DOI: 10.1007/s00018-003-3216-3
[30] GEORGIADI A, KERSTEN S. Mechanisms of gene regulation by fatty acids[J]. Adv Nutr, 2012, 3(2): 127–134. DOI: 10.3945/an.111.001602
[31] HONDA K, SANEYASU T, SUGIMOTO H, et al. Role of peroxisome proliferator-activated receptor alpha in the expression of hepatic fatty acid oxidation-related genes in chickens[J]. Anim Sci J, 2015, 87(1): 61–66.
[32] RAMIAH S K, EBRAHIMII G Y M M. Physiological and pathophysiological aspects of peroxisome proliferator activated receptor regulation by fatty acids in poultry species[J]. World Poultry Sci J, 2016, 72(3): 551–562. DOI: 10.1017/S0043933916000490
[33] 卢冉. 鸡Δ-6脂肪酸脱氢酶基因启动子区域多态性及基因时空表达的研究[D]. 郑州: 河南农业大学, 2011.
LU R. Polymorphism and expression of chicken delta-6 desaturase promoter region[D]. Zhengzhou: Henan Agricultural University, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275121.htm
[34] CHO H P, NAKAMURA M T, CLARKE S D. Cloning, Expression, and Nutritional Regulation of the Mammalian Delta-6 Desaturase[J]. J Bio Chem, 1999, 274(1): 471–477. DOI: 10.1074/jbc.274.1.471