2. 中国科技大学附属第一医院, 安徽省立医院南区ICU
2. The first affiliated hospital of university of science and technology of China, Anhui provincial hospital south district ICU, Hefei, China
脓毒症(sepsis)的特征是机体对感染的反应失调而导致的危及生命的器官功能障碍,目前研究表明器官功能损伤程度与脓毒症患者的预后直接相关[1, 2]。因此探讨脓毒症多器官功能障碍的机制并采取有效的干预措施是脓毒症研究的重要方向。本文就目前与脓毒症多器官功能障碍相关的发病机制研究做简要阐述。
一、炎症反应脓毒症发生时,机体免疫系统被激活,免疫应答清除病原微生物及其成分,同时诱发炎症反应,过强的炎症反应会导致组织细胞损伤及器官功能障碍。病原相关分子模式,如鞭毛蛋白、肽聚糖、病毒RNA、内毒素等分子,可以被免疫细胞识别,通过toll样受体4(Toll-like receptor 4、TLR4)、髓样因子2 (myeloid differentiation factor 2)、CD14等辅因子, 进一步激活白介素-1受体相关激酶(IL-1 receptor-associated kinase、IRAK)和肿瘤坏死因子受体相关因子家族(tumour necrosis factor receptor- associated factor families, TRAF)等细胞内信号通路[3]。细胞内信号通路的激活可进一步活化核因子κB (NF- κB),最终启动固有免疫相关基因的表达[4]。
动物实验表明,NF-κB在脓毒症多器官损伤中发挥作用,抑制NF-κB的活性可以保护肝、肾和肺等脏器的功能。小白菊内酯是一种NF- κB抑制剂,在内毒素诱导的脓毒症小鼠模型中,小白菊内酯能够降低血浆硝酸盐/亚硝酸盐的水平,减轻肺组织中性粒细胞浸润,改善小鼠血流动力学,提高脓毒症小鼠的生存率[5]。姜黄素是姜黄中提取出的天然活性物质,可抑制NF-κB活性,在脓毒症小鼠模型中,姜黄素能够降低血浆中白介素1β (Interleukin 1beta, IL-1β),白介素6 (IL-6)和肿瘤坏死因子-α (TNF-α)水平,降低肝组织中一氧化氮(NO)水平,抑制肝细胞凋亡;在脓毒症大鼠模型中,姜黄素能降低血清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)和碱性磷酸酶(ALP)水平,提高肝脏抗氧化酶,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽(GSH)和谷胱甘肽过氧化物酶(GSH-px)的水平[6]。活化的IκB激酶(IKK)可以激活NF-κB,在脓毒症小鼠模型中,IKK的抑制剂减轻肾脏及肝脏损伤,减弱肺组织炎症反应,对脓毒症引起的多脏器功能损伤有保护作用[7]。P65分子是NF-κB的结合原件,寡脱氧核苷酸(oligodeoxynucleotide, ODN)可以与P65竞争性结合,抑制NF-κB的活性,在脓毒症小鼠模型中,ODN可以减轻脾细胞的凋亡,同时抑制肺组织炎症反应,减少肺损伤,提高脓毒症小鼠的生存率[8]。
二、内皮细胞损伤及微循环障碍血管内皮细胞是水、气体、蛋白质和血细胞在微循环内的转运屏障,同时通过释放活性介质,参与血管收缩舒张、炎症反应及凝血过程,调控微循环的稳态。脓毒症时,血管内皮细胞激活并出现功能障碍,进而导致白细胞趋化迁移,炎症反应的爆发,微循环障碍和血管通透性改变[9]。内皮细胞损伤时,部分毛细血管出现血供完全停止或间断停止,伴有毛细血管密度下降,在器官中表现为血液的非均匀灌注[10]。这种内皮细胞损伤诱发的微循环的障碍使得器官在血供充分的情况下,仍可出现部分区域的组织缺氧和细胞的氧合异常,进而导致器官功能障碍[11]。组胺可以增加血管内皮细胞的通透性,脓毒症时,组胺及其受体的水平明显增加,导致内皮细胞的通透性增加[12]。
血小板释放的分子,如鞘氨醇-1-磷酸(S1P)、血清素、血管生成素-1和腺嘌呤核苷酸等,可增加内皮细胞的屏障特性,脓毒症发生时,血管内皮细胞屏障功能受损,而鞘氨醇-1-磷酸(S1P)受体激动剂和血管生成素-1对脓毒症多器官功能障碍有治疗作用[13]。
三、凝血功能异常脓毒症时,抗凝失调,纤维蛋白溶解受损以及组织因子(TF)介导的凝血酶生成等因素导致机体凝血异常,而微循环血栓形成可以导致组织缺血、器官灌注不足及多器官功能障碍。蛋白C是天然的抗凝剂,血栓调节蛋白与凝血酶结合后可将其转化为蛋白C的激活剂,进而激活内皮细胞表面的蛋白C。脓毒症时,蛋白C系统合成减少、消耗增加,同时血栓调节蛋白和内皮细胞蛋白C受体表达下调可以减弱蛋白C系统的活性,影响机体抗凝系统[14]。生理状况下,促凝糖蛋白组织因子仅由单核及巨噬细胞释放,而脓毒症时,内皮细胞会释放大量促凝糖蛋白组织因子,导致凝血异常;同时,血小板的聚集可导致血小板血栓的形成,进一步加剧凝血异常[15, 16]。另外,濒死的中性粒细胞可释放中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs),加剧血栓形成,同时NETs可释放蛋白酶和阳离子蛋白,进而导致内皮细胞死亡[17]。
四、细胞凋亡在受到应激打击或者线粒体损伤等情况下,细胞会出现程序性死亡,即细胞凋亡。脓毒症发生时,在肠道上皮细胞、呼吸道上皮细胞、心肌细胞和淋巴细胞中,细胞凋亡明显增加,该过程是导致脓毒症免疫抑制和多器官损伤的机制之一[18]。在盲肠结扎穿孔致脓毒症小鼠模型中,脾脏淋巴细胞的凋亡显著增加[19]。肺上皮细胞的凋亡与脓毒症肺损伤密切相关[20]。Fas蛋白是一种跨膜受体,其与配体及带有死亡结构域的Fas相关蛋白(Fas-associated death domain, FADD)结合后,形成凋亡诱导复合物,启动细胞凋亡。在盲肠结扎穿孔致脓毒症小鼠模型中,通过注射小RNA干扰Fas相关蛋白可预防急性肺损伤的发生[21]。但是,微生物代谢产物以及机体调节因子会通过调控抗凋亡蛋白髓样细胞白血病-1(Anti-apoptotic protein myeloid cell leukaemia 1,Mcl-1)抑制中性粒细胞凋亡。凋亡受抑制后,组织器官中会出现中性粒细胞蓄积,氧自由基和蛋白酶大量释放,诱发器官功能障碍[22]。
五、线粒体受损线粒体是人体重要的细胞器,在ATP的产生、细胞内钙稳态、热量调节、活性氧和活性氮产生、激素产生等多个生理过程中发挥重要作用。在脓毒症时,机体的多种组织和器官中均会出现线粒体功能的损伤,其在多器官功能障碍中发挥重要作用[23]。研究发现,脓毒症大鼠肝脏细胞损伤程度与NO大量产生、线粒体呼吸链复合物I活性的抑制和ATP的耗竭程度明显相关[24]。在脓毒性休克患者中也发现,死亡人群肌肉组织中线粒体呼吸链复合物I和IV活性下降更为明显,同时伴有ATP水平的明显下降[25]。
脓毒症发生时,线粒体膜的去极化、氧合应激和炎症反应等过程可激活细胞自噬。线粒体自噬能够清除功能受损的线粒体,在有氧糖酵解情况下,可降低活性氧所致细胞损伤。因此目前观点认为,细胞自噬特别是线粒体自噬是机体在炎症反应时的一种自我适应性改变[26]。在脓毒症小鼠模型中,肝细胞自噬的受损可以加重线粒体功能障碍,同时诱发肝脏损伤[27]。在高血糖危重家兔模型中也发现,细胞自噬的受损与线粒体功能障碍、肝脏和肾脏的受损及受损程度明显相关;在死亡的家兔中,细胞自噬受损的现象更加严重;而通过雷帕霉素恢复细胞自噬可以保护家兔的肾脏功能[28]。阿霉素抑制可以通过抑制雷帕霉素靶蛋白(mTOR),增强线粒体自噬,减轻肝、肾及肌肉损伤,进而提高脓毒症小鼠的生存率[29]。阻断空泡分选蛋白34 (Vacuolar protein sorting 34,Vps34),可以抑制细胞自噬,进而加重脓毒症小鼠的肝功能损害[30]。在线粒体自噬时,TLR-9相关信号通路的激活可启动线粒体的生物再生,参与脓毒症发病时的器官功能恢复[31]。过氧化物酶体增殖物激活受体γ辅助活化因子1-a(Peroxisome proliferator-activated receptor gamma coactivator 1-a)是促进线粒体再生的转录因子,在脓毒症患者中,死亡人群中该因子的水平明显下降[25]。
六、器官之间交互作用器官之间的交互作用是脓毒症多器官功能障碍的发病机制之一。急性肾损伤患者易出现容量过负荷,进而影响肺及心脏功能。更重要的是,急性肾损伤患者会出现毒素和代谢物清除受损,并产生系统性炎症反应,进而影响其他器官功能。肾损伤小鼠血浆内TNF-α、IL-17A和IL-6水平明显增高,而TNF-α和IL-6可进一步导致小肠和肝损伤[32]。由于药物清除能力下降,肾衰竭患者体内抗生素、镇痛剂和镇静剂的水平增高,进而会累及损伤其他器官[33]。研究表明,缺血致肾损伤小鼠血浆IL-6水平增高会导致肺组织中趋化因子CXCL1水平增加及中性粒细胞蓄积,诱发肺功能损伤和炎症发生[34]。肾损伤小鼠脑组织会出现炎症指标增高,血脑屏障受损,并表现出中到重度的运动行为的受损[35]。ICU中呼吸衰竭或者脓毒性休克患者,肾功能衰竭是出现谵妄和昏迷的独立危险因素[36]。肾功能同样受其他器官功能的影响, 机械通气是肾功能损伤的危险因素。机械通气会导致胸腔内压增加、损害右心功能、限制心脏输出和氧气输送,同时机械通气可诱发炎症因子的释放,这些因素可能是导致肾功能损伤的因素;腹腔间隔室综合征患者过高的腹内压也可能会损伤肾脏灌注,导致肾功能受损[37~39]。
综上所述,及时有效治疗多器官功能损伤是脓毒症治疗的关键,但是脓毒症多器官功能障碍的发生涉及到多种机制,这就给治疗带来了复杂性和挑战性。目前动物研究表明,针对多器官功能障碍发病机制的干预措施可以改善脓毒症预后,因此对发病机制的深入探讨,并将成果有效地转化为临床治疗措施是未来脓毒症研究的方向[4, 7]。
| [1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
| [2] |
姚咏明, 任超, 吴瑶. 深化对脓毒性休克发病本质的认识[J]. 实用休克杂志, 2017, 1(1): 1-4. |
| [3] |
Hu H, Sun SC. Ubiquitin signaling in immune responses[J]. Cell Research, 2016, 26(4): 457-483. DOI:10.1038/cr.2016.40 |
| [4] |
Lawrence, T. The Nuclear Factor NF-κB Pathway in Inflammation[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001651-a001651. |
| [5] |
Sheehan M, Wong HR, Hake PW, et al. Parthenolide, an Inhibitor of the Nuclear Factor-κB Pathway, Ameliorates Cardiovascular Derangement and Outcome in Endotoxic Shock in Rodents[J]. Molecular Pharmacology, 2002, 61(5): 953-963. DOI:10.1124/mol.61.5.953 |
| [6] |
Zhong W, Qian K, Xiong J, et al. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling[J]. Biomedicine & Pharmacotherapy, 2016, 83: 302-313. |
| [7] |
Coldewey SM, Rogazzo M, Collino M, et al. Inhibition of I? B kinase reduces the multiple organ dysfunction caused by sepsis in the mouse[J]. Disease Models & Mechanisms, 2013, 6(4): 1031-1042. |
| [8] |
Matsuda N, Hattori Y, Jesmin S, et al. Nuclear factor-kappaB decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis[J]. Molecular Pharmacology, 2005, 67(4): 1018. DOI:10.1124/mol.104.005926 |
| [9] |
Simon S, Jones AE, Puskarich MA, et al. Biomarkers of endothelial cell activation in early sepsis[J]. Shock, 2013, 39(5): 427-432. DOI:10.1097/SHK.0b013e3182903f0d |
| [10] |
Backer DD, Cortes DO, Donadello K, et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock[J]. Virulence, 2014, 5(1): 7. |
| [11] |
Kanoore Edul VS, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock[J]. Critical Care Medicine, 2012, 40(5): 1443-1448. DOI:10.1097/CCM.0b013e31823dae59 |
| [12] |
Hattori M, Yamazaki M, Ohashi W, et al. Critical role of endogenous histamine in promoting end-organ tissue injury in sepsis[J]. Intensive Care Medicine Experimental, 2016, 4(1): 36. |
| [13] |
Opal SM, Van dPT. Endothelial barrier dysfunction in septic shock[J]. Journal of Internal Medicine, 2015, 277(3): 277-293. DOI:10.1111/joim.12331 |
| [14] |
Levi M, van der Poll T. Inflammation and coagulation[J]. Critical Care Medicine, 2010, 38(2 Suppl): S26. |
| [15] |
Levi M, van der Poll T. Endothelial injury in sepsis[J]. Intensive Care Med, 2013, 39(10): 1839-1842. DOI:10.1007/s00134-013-3054-1 |
| [16] |
Davis RP.Miller Dorey S, Jenne CN. Platelets and coagulation in infection[J]. Clinical & Translational Immunology, 2016, 5(7): e89. |
| [17] |
Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death:A Predominant Role of Histones[J]. Plos One, 2012, 7(2): e32366. DOI:10.1371/journal.pone.0032366 |
| [18] |
Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression:from cellular dysfunctions to immunotherapy[J]. Nature Reviews Immunology, 2013, 13(12): 862-874. DOI:10.1038/nri3552 |
| [19] |
Takebe M, Oishi H, Taguchi K, et al. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis[J]. Journal of Surgical Research, 2014, 187(2): 559-570. DOI:10.1016/j.jss.2013.10.050 |
| [20] |
Chopra M, Reuben JS, Sharma AC. Acute Lung Injury:Apoptosis and Signaling Mechanisms[J]. Experimental Biology & Medicine, 2009, 234(4): 361. |
| [21] |
Matsuda N, Yamamoto S, Takano KI, et al. Silencing of Fas-associated death domain protects mice from septic lung inflammation and apoptosis[J]. American Journal of Respiratory & Critical Care Medicine, 2009, 179(9): 806. |
| [22] |
Murphy MP, Caraher E. Mcl-1 is vital for neutrophil survival[J]. Immunologic Research, 2015, 62(2): 225-233. DOI:10.1007/s12026-015-8655-z |
| [23] |
Arulkumaran N, Deutschman CS, Pinsky MR, et al. Mitochondrial Function in Sepsis[J]. Shock, 2016, 45(3): 271-281. DOI:10.1097/SHK.0000000000000463 |
| [24] |
Brealey D, Karyampudi S, Jacques TS, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure[J]. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2004, 286(3): R491. |
| [25] |
Carré, Jane E, Orban JC, et al. Survival in Critical Illness Is Associated with Early Activation of Mitochondrial Biogenesis[J]. American Journal of Respiratory and Critical Care Medicine, 2010, 182(6): 745-751. DOI:10.1164/rccm.201003-0326OC |
| [26] |
Gómez, Hernando, Kellum JA, et al. Metabolic reprogramming and tolerance during sepsis-induced AKI[J]. Nature Reviews Nephrology, 2017, 13(3): 143-151. DOI:10.1038/nrneph.2016.186 |
| [27] |
Thiessen SE, Derese I, Derde S, et al. The Role of Autophagy in Critical Illness-induced Liver Damage[J]. Scientific Reports, 2017, 7(1): 14150. DOI:10.1038/s41598-017-14405-w |
| [28] |
Gunst J, Derese I, Aertgeerts A, et al. Insufficient autophagy relates to mitochondrial dysfunction, organ failure and adverse outcome in an animal model of critical illness[J]. Critical Care, 2012, 16(1): 11. DOI:10.1186/cc11151 |
| [29] |
Figueiredo N, Chora A, Raquel H, et al. Anthracyclines induce DNA damage response-mediated protection against severe sepsis[J]. Immunity, 2013, 39(5): 874-884. DOI:10.1016/j.immuni.2013.08.039 |
| [30] |
Carchman EH, Rao J, Loughran PA, et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice[J]. Hepatology, 2011, 53: 2053-2062. DOI:10.1002/hep.24324 |
| [31] |
Carchman EH, Whelan S, Loughran P, et al. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver[J]. FASEB J, 2013, 27(12): 4703-4711. DOI:10.1096/fj.13-229476 |
| [32] |
Won PS, Chen SWC, Mihwa K, et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy[J]. Lab Invest, 2011, 91(1): 63-84. |
| [33] |
Matzke GR, Aronoff GR, Atkinson AJ, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease:Improving Global Outcomes (KDIGO)[J]. Kidney International, 2011, 80(11): 1122-1137. DOI:10.1038/ki.2011.322 |
| [34] |
Ahuja N, Andreshernando A, Altmann C, et al. Circulating IL-6 mediates lung injury via CXCL1 production after acute kidney injury in mice[J]. Am J Physiol Renal Physiol, 2012, 303(6): F864. DOI:10.1152/ajprenal.00025.2012 |
| [35] |
Liu M, Liang Y, Chigurupati S, et al. Acute kidney injury leads to inflammation and functional changes in the brain[J]. Journal of the American Society of Nephrology, 2008, 19(7): 1360-1370. DOI:10.1681/ASN.2007080901 |
| [36] |
Siew ED, Fissell WH, Tripp CM, et al. Acute Kidney Injury as a Risk Factor for Delirium and Coma during Critical Illness[J]. Am J Respir Crit Care Med, 2016, 195(12): 1597-1607. |
| [37] |
Husain-Syed F, Slutsky AS, Ronco C, et al. Lung-kidney Crosstalk in the Critically Ill Patient[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 194(4): 402-414. DOI:10.1164/rccm.201602-0420CP |
| [38] |
van den Akker JP, Egal M, Groeneveld AB. Invasive mechanical ventilation as a risk factor for acute kidney injury in the critically ill:a systematic review and meta-analysis[J]. Critical Care, 2013, 17(3): R98. DOI:10.1186/cc12743 |
| [39] |
Rogers WK, Garcia L. Intra-Abdominal Hypertension, Abdominal Compartment Syndrome, and the Open Abdomen[J]. Chest, 2017, 153(1): 238-250. |
2018, Vol. 2

