高级检索
  实用休克杂志  2018, Vol. 2Issue (2): 91-93, 103  

引用本文 [复制中英文]

唐婉琦, 马晓媛, 杨雪, 马娓, 严军, 梁华平. “二次休克”打击模型的建立[J]. 实用休克杂志, 2018, 2(2): 91-93, 103.
Tang Wanqi, Ma Xiaoyuan, Yang Xue, Ma Wei, Yan Jun, Liang Huaping. Establishment of "Secondary Shock" Model[J]. Journal of Practical Shock, 2018, 2(2): 91-93, 103.

基金项目

国家自然科学基金(项目号81671906)

通信作者

梁华平, Email: 13638356728@163.com

文章历史

收稿日期:2018-03-03
“二次休克”打击模型的建立
唐婉琦 , 马晓媛 , 杨雪 , 马娓 , 严军 , 梁华平     
陆军军医大学大坪医院野战外科研究所, 创伤、烧伤与复合伤国家重点实验室
摘要目的 模拟临床创伤休克并发脓毒性休克的情况,建立"二次休克"打击动物模型,连续观察小鼠血压和生存情况,为筛选抗休克药物提供实验动物模型。方法 采用双后肢股骨骨折加眼球放血45%建立创伤休克(TH)模型;于TH术后8h进行盲肠结扎穿孔术(CLP)构建"二次打击"模型。将70只6~8周龄成年雄性C57BL/6小鼠随机分为:创伤休克组(TH+生理盐水),模型组(TH+CLP+生理盐水),假手术组(TH+开腹腔+生理盐水),各组持续观察小鼠平均动脉血压(MPa)以及生存情况;于TH后0 h,2 h,32 h,各组分别处死5只小鼠(处死小鼠前持续观察小鼠生命状态),收集血液检测血清肌酐值。结果 各组TH后血压急剧下降,在第二次打击CLP后血压持续降低,模型组血压下降较假手术组与创伤休克组剧烈(P < 0.05)。与假手术组、创伤休克组相比,模型组死亡率明显增加(P < 0.05),血清肌酐值显著增高(P < 0.05),经CLP后小鼠的呼吸频率增加,渐出现体温冰冷,蜷缩拥挤。结论 小鼠TH术后8 h并发脓毒性休克(即"二次休克"模型)较假手术组与创伤休克组的死亡率明显增加,血压持续下降,肾功能损害,符合临床创伤性休克并发脓毒性休克的病理生理改变,动物模型成功构建。
关键词创伤性休克    脓毒性休克    持续性低血压    
Establishment of "Secondary Shock" Model
Tang Wanqi , Ma Xiaoyuan , Yang Xue , Ma Wei , Yan Jun , Liang Huaping     
State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
Abstract: Objective To simulate the situation of clinical traumatic shock combined with septic shock. The "secondary shock" animal model was established to continuously observe the blood pressure and survival of mice, and to provide an experimental animal model for screening anti-shock drugs. Methods A model of traumatic shock (TH) was established using femoral fractures in both hindlimbs plus 45% of ocular exsanguination. Cecal ligation and puncture (CLP) was performed 8 hours after TH to establish a "second strike" model. 70 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into traumatic shock group (TH + saline), model group (TH + CLP + saline), and sham operation group (TH + open celiac + normal saline). The mean arterial blood pressure (MPa) and survival of the mice were observed continuously in each group; at TH 0h, 2h and 32h, 5 mice were sacrificed respectively in each group (the mice were continuously observed before the mice were sacrificed), and the blood was collected to detect serum creatinine. Results Each group of blood pressure (BP) dropped sharply after TH and the BP continued to decrease after CLP. The BP of model group decreased more severe than the sham operation group and the traumatic shock group (P < 0.05). Compared with the sham-operated group and the traumatic shock group, the mortality rate of the model group was significantly increased (P < 0.05), and the serum creatinine value was significantly higher (P < 0.05). After the CLP, the respiratory frequency of the mice increased, and body temperature gradually declined. Conclusions Compared with the sham-operated group and the traumatic shock group, the mortality of mice in secondary shock model increased significantly, blood pressure continued to decrease, and renal function was impaired, which conformed to clinical traumatic shock process. The animal model of "Secondary Shock" was successfully established.
Key words: Traumatic shock    Septic shock    Persistent hypotension    

严重创伤伴大量失血致休克,随后并发脓毒性休克会导致多器官功能衰竭和死亡[1-2]。据2017年第七十届世界卫生大会统计,全球每年有超过3100万新发脓毒症病例,且其数量以每年1.5%-8.0%的速度递增,每年大约有600万人死于脓毒症[3]。创伤和脓毒症都会引起血压的下降[4-5],因此本研究着眼于血压的改变,TH致血压下降,在血压回升过程中进行第二次打击CLP模型,旨在为创伤后脓毒症筛选抗休克药物提供一种可靠的动物模型。它作为临床研究的补充,通过动物实验可以探讨其发病机制和寻找有效的干预手段。

材料与方法 一、实验动物及实验环境

70只6~8周龄雄性C57BL/6小鼠,体质量(20±2)g,实验小鼠分笼饲养于陆军军医大学大坪医院野战外科研究所实验动物中心,动物合格证号: SCXK(京) 2016-0002,温度25℃、12 h光照、45%湿度的环境中,自由饮水,进食标准普通饲料,封闭管理。

二、动物分组

适应性喂养1周后随机选取70只8周龄的雄性C57BL/6小鼠,体重(20±2) g,按随机数字表法分为:创伤休克组(TH+生理盐水), 模型组(TH+CLP+生理盐水),假手术组(TH+开腹腔+生理盐水),各组持续观察小鼠平均动脉血压(MPa)以及生存情况; 于TH后0 h, 2 h, 32 h,各组分别处死5只小鼠(处死小鼠前持续观察小鼠生命状态),收集血液检测血清肌酐值。

三、创伤脓毒症动物模型

术前12 h禁食不禁水,小鼠异氟烷吸入麻醉后,止血钳钳夹双后肢骨折,随后眼眶放出总血量的45%,因此诱导出血性休克。术后各组腹腔给予1 ml的0.9%生理盐水。第二次打击于创伤失血后8 h,模型组进行盲肠结扎穿孔术(CLP), 模型制作:小鼠异氟烷吸入麻醉后,腹部皮肤消毒,于腹中线做切口,打开腹腔,游离盲肠,于盲肠根部结扎,用穿刺针在结扎的盲肠中部对穿一次,挤出少许粪便,回纳盲肠,缝合腹腔并消毒,术后立即皮下给予1 ml的0.9%生理盐水复苏; 而假手术组只开腹、关腹与复苏,不结扎或穿孔盲肠。各组小鼠术后不限食水。

四、检测小鼠血压

使用尾压法(Tail-cuff法),即将传感器套在老鼠尾部,通过充气、放气对尾动脉加压和释压的同时监测血流信号,得出血压值,在TH造模后每两小时动态检测小鼠血压。

五、检测小鼠血清肌酐

于TH后0 h, 2 h, 32 h,小鼠异氟烷吸入麻醉后眼眶放血,将血液室温静置1 h后,以400 g/min离心10 min,分离血清;用全自动生化分析仪检测血清肌酐(Scr)。

六、统计学分析

各实验均重复3次以上。应用SPSS 13.0软件处理数据,多组间比较采用单因素方差分析,P < 0.05为差异有统计学意义。

结果 一、小鼠一般情况

与在TH后1 h蜷缩拥挤,体温下降相比, 小鼠TH后8 h精神状态变好,体温回升。模型组和假手术组小鼠在“二次打击”造模1 h后蜷缩拥挤,活动减少,呼吸急促,体温下降;在造模8 h后,假手术组小鼠活泼好动,呼吸均匀,体温恢复,而模型组小鼠蜷缩不动,体表温度冰冷。

二、“二次休克”创伤脓毒症小鼠生存率变化

创伤休克致小鼠急性死亡,8h后制备CLP模型开始持续观察各组小鼠生存情况;创伤休克组与假手术组死亡率无差异;与假手术组和创伤休克组相比,模型组小鼠死亡率明显升高(P < 0.05,图 1)。

图 1 与假手术组和创伤休克组比较,*P < 0.01
三、创伤脓毒症小鼠血压变化

TH致血压下降,8 h后制备脓毒症模型各组血压继续下降;创伤后22 h(即CLP后14 h),与血压回升到正常水平的创伤休克组相比,假手术组和模型组平均动脉压水平较低,但假手术组明显高于模型组(P < 0.05,图 2)。

图 2 与假手术组和创伤休克组比较,* P < 0.05
四、血清肌酐含量的变化

TH后2 h三组小鼠血清肌酐含量没有差异;TH后32 h(即CLP后24 h),创伤休克组与假手术组肌酐含量无差异,而与这两组相比,模型组血清肌酐含量显著升高(P < 0.05,图 3)。

图 3 与假手术组和创伤休克组比较,*P < 0.05
讨论

创伤性休克易并发脓毒性休克且死亡率较高,预后较差,其相关病理生理机制尚不清楚。临床上以患者为研究对象探讨创伤脓毒性休克的发生机制和干预措施受到伦理学等多方面的制约。目前研究创伤脓毒症,主要采用“二次打击”动物模型,即股骨骨折,穿刺眼眶或者腹腔抽血诱导出血性休克,在1 d或者2 d后进行CLP建模[2, 6],以探讨创伤脓毒症的发生机制和干预策略。

Tang等研究发现,脓毒症发生时自主神经系统无法维持正常血压,所以抗休克药物提高平均动脉压对治疗脓毒症至关重要[7]。因此本研究构建“二次休克”双后肢骨折,随后眼眶放血占总血容量的45%,诱导创伤出血性休克(TH)[8],而后根据血压值的变化,血压回升过程中即TH后8 h进行CLP模型,旨在建立一种可靠的创伤休克后脓毒性休克动物模型,此模型更适合应用于抗休克药物的筛选。创伤或者脓毒症打击均可出现低灌注及持续性低血压[9-10]。本研究结果显示,模型组创伤后血压下降,在第二次打击CLP后血压持续下降,与假手术组和单纯的创伤休克组相比,模型组平均动脉压水平较低,说明脓毒性休克引起血压继续下降。

据2017年第七十届世界卫生大会统计,每年大约有600万人死于脓毒症,脓毒性休克致死率高达60%[11]。本研究观察创伤失血8小时后CLP小鼠(二次休克模型)死亡率,并将其与假手术组和创伤休克组进行对比。结果显示,创伤休克致小鼠急性死亡,各组间无差异;第二次打击CLP,与假手术组和创伤休克组相比,模型组小鼠的存活率明显降低(P < 0.05),与之前报道的创伤并发脓毒症的生存情况相符。

Vanmassenhove等[12]研究发现,血清中肌酐变化与脓毒症致死率有相关性。本研究结果显示TH后2 h三组小鼠血清肌酐含量没有差异;创伤后32 h(即CLP后24 h),创伤休克组与假手术组肌酐含量无差异,而与这两组相比,模型组血清肌酐含量显著升高,说明“二次休克”模型较单纯的创伤休克对肾脏功能有明显损害。

综上所述,“二次休克”方法构建的创伤脓毒性休克模型满足创伤后脓毒性休克标准,选择在TH休克后血压回升过程中进行CLP,建立一种可靠的创伤休克后脓毒性休克动物模型,可为后续探讨创伤脓毒性休克发生机制以及应用抗休克药物治疗提供稳定的动物模型。

参考文献
[1]
Raeven P, Salibasic A, Drechsler S, et al. A non-lethal traumatic/hemorrhagic insult strongly modulates the compartment-specific PAI-1 response in the subsequent polymicrobial sepsis[J]. PLoS One, 2013, 8(2): 554-567.
[2]
Negrin LL, Jahn A, van Griensven M. Leptin Protects Against Mortality and Organ Dysfunction in A Two-Hit Trauma/Sepsis Model and is IL-6-Dependent[J]. Shock, 2017 Jul, 48(1): 130-137.
[3]
Stortz JA, Murphy TJ, Raymond SL, et al. Evidence for Persistent Immune Suppression in Patients Who Develop Chronic Critical Illness After Sepsis[J]. Shock, 2018, 49(3): 249-258. DOI:10.1097/SHK.0000000000000981
[4]
Bhandarkar P., et al. On-admission blood pressure and pulse rate in trauma patients and their correlation with mortality:Cushing's phenomenon revisited[J]. Int J Crit Illn Inj Sci, 2017, 7(1): p. 14-17. DOI:10.4103/2229-5151.201950
[5]
Marchick M.R., Kline J.A., Jones A.E.. The significance of non-sustained hypotension in emergency department patients with sepsis[J]. Intensive Care Med, 2009, 35(7): p. 1261-1264. DOI:10.1007/s00134-009-1448-x
[6]
Suzuki T, Shimizu T, Szalay L, et al. Androstenediol ameliorates alterations in immune cells cytokine production capacity in a two-hit model of trauma-hemorrhage and sepsis[J]. Cytokine, 2006, 34(1-2): 76-84. DOI:10.1016/j.cyto.2006.04.007
[7]
Tang Y, Sorenson J, Lanspa M, et al. Systolic blood pressure variability in patients with early severe sepsis or septic shock:a prospective cohort study[J]. BMC Anesthesiol, 2017, 17(1): 82. DOI:10.1186/s12871-017-0377-4
[8]
孙振威, 等. 小鼠失血性休克模型的建立与比较[J]. 中国输血杂志, 2016(10): 1116-1119.
[9]
Alsawadi A. The clinical effectiveness of permissive hypotension in blunt abdominal trauma with hemorrhagic shock but without head or spine injuries or burns:a systematic review[J]. Open Access Emergency Medicine Oaem, 2012, 4: 21.
[10]
Bruijns SR, Guly HR, Bouamra O, et al. The value of traditional vital signs, shock index, and age-based markers in predicting trauma mortality[J]. J Trauma Acute Care Surg, 2013, 74(6): 1432-1437. DOI:10.1097/TA.0b013e31829246c7
[11]
Papali A, Eoin West T, Verceles AC, et al. Treatment outcomes after implementation of an adapted WHO protocol for severe sepsis and septic shock in Haiti[J]. J Crit Care, 2017, 41: 222-2208. DOI:10.1016/j.jcrc.2017.05.024
[12]
Vanmassenhove J, Lameire N, Dhondt A, et al. Prognostic robustness of serum creatinine based AKI definitions in patients with sepsis:a prospective cohort study[J]. BMC Nephrol, 2015, 16: 112. DOI:10.1186/s12882-015-0107-4