2. 四川大学数学学院, 四川成都 610064;
3. 西北大学地质学系大陆动力学国家重点实验室, 陕西西安 710069
2. School of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China;
3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
地震信号的时—频表示(TFR)在地震数据处理和解释中得到广泛应用,如时—频域去噪[1-2]、油气储层识别与储层描述[3-4]等,因此,TFR方法研发一直受到业界的重视[5-8]。基于傅里叶变换(FT)导出了一系列时频分析方法,如短时傅里叶变换(STFT)、连续小波变换(CWT)、S变换(ST)以及各种广义S变换(GST)[9-15]。ST的时间窗是频率的函数,其时—频谱的时间分辨率依赖于频率[11]。GST能够优化频率依赖性,但没有通用的优化标准分析窗函数,需要根据具体应用调节窗函数[4, 15]。在上述TFR方法中,ST在有效性与计算效率之间具有好的平衡,已被广泛用于储层描述,但存在以下不足:①时—频谱的能量分布中心不在地震波主频处,而向高频方向偏移;②时—频谱的高频时间分辨率较高、低频时间分辨率较低;③在数值计算时奇异频率引起不稳定现象。上述不足导致ST时—频谱不能表示地震属性随深度的变化,而且较低的低频时间分辨率也不适合储层识别,因为低频振幅异常往往是油气储层的标志[16-19]。由于地震波通过储层时高频能量被吸收[20],因此地震记录低频阴影区的能量分布可指示储层分布。
W变换(WT)[21]是近年来提出的一种新时—频分析技术,它克服了ST的不足,其时—频谱的能量集中在地震波主频附近,而且提高了低频时间分辨率,适合于储层描述。Li等[3]注意到WT的时—频谱在主频处出现振幅分裂现象,这是由WT的标准偏差函数在主频处的奇异性(不可微)所致;为此,设计了一种新的变频高斯标准偏差函数,具有主频的双参数多元复合指数形式,通过引入趋势因子p,获得了更光滑、更灵活的窗函数,得到广义WT(GWT)。由于新的标准偏差函数在主频处是可微的,消除了WT的时—频谱在主频处的振幅分裂现象,时—频谱的能量集中在主频附近,GWT提供了更好的TFR性能。随后,Chen等[4]又在GWT中增加了一个标量因子,提出三参数WT(TPWT),可更灵活地调节时—频分辨率。TPWT是分析非平稳信号的有效工具,已成功用于油气储层识别。然而,前人没有详细论述TPWT的可逆性。为此,本文研究了TPWT的可逆性,首先从理论上证明TPWT不是严格可逆的,而是一种近似可逆的变换工具。合成地震数据与实际地震记录的数值计算展示了TPWT逆变换的重建精度,所做工作为TPWT的合理应用提供了参考。
1 TPWT数学理论 1.1 WT地震记录
$ W(\tau ,f)={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}x\left(t\right){g}_{\sigma }\left(t-\tau ,f;\tau \right)\mathrm{e}\mathrm{x}\mathrm{p}\left(-\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}t $ | (1) |
式中:
$ {g}_{\sigma }(t,f;\tau )=\frac{1}{\sqrt[]{2\mathrm{\pi }}\sigma (\tau ,f;k)}\mathrm{e}\mathrm{x}\mathrm{p}\left[-\frac{{t}^{2}}{2{\sigma }^{2}(\tau ,f;k)}\right] $ | (2) |
式中
$ \sigma (\tau ,f;k)=\frac{k}{{f}_{0}\left(\tau \right)+\left|{f}_{0}\left(\tau \right)-f\right|} $ | (3) |
式中:k为标量因子;
$ \sigma (\tau ,f;k)=\left\{\begin{array}{c}\begin{array}{cc}\frac{k}{f}& f > {f}_{0}\end{array}\\ \begin{array}{cc}\frac{k}{2{f}_{0}-f}& \begin{array}{c}\end{array}f\le {f}_{0}\end{array}\end{array}\right. $ | (4) |
$ \frac{\partial \sigma(\tau, f ; k)}{\partial f}=\left\{\begin{array}{cl} -\frac{\sigma^2(\tau, f ; k)}{k} & f>f_0 \\ \text { 不存在 } & f=f_0 \\ \frac{\sigma^2(\tau, f ; k)}{k} & f<f_0 \end{array}\right. $ | (5) |
可见
把
$ g_\sigma(t, f ; \tau)=\frac{1}{\sqrt{2 \pi} \sigma(\tau, f ; \boldsymbol{\varPhi})} \exp \left[-\frac{t^2}{2 \sigma^2(\tau, f ; \boldsymbol{\varPhi})}\right] $ | (6) |
则标准偏差函数定义为
$ \sigma(\tau, f ; \boldsymbol{\varPhi})=\frac{1}{\sqrt[p]{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p}} $ | (7) |
式中
结合式(6)和式(7),得到TPWT[4]
$ \begin{array}{l}\mathrm{T}\mathrm{P}\mathrm{W}\mathrm{T}(\tau ,f)\mathrm{ }=\frac{\sqrt[p]{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)\mathrm{ }-f\right|}{{k}_{2}}\right]}^{p}}}{\sqrt[]{2\mathrm{\pi }}}{\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}x\left(t\right)\times \\ \\ \mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{{(t-\tau )}^{2}}{2}{\left\{\sqrt[p]{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)\mathrm{ }-f\right|}{{k}_{2}}\right]}^{p}}\right\}}^{2}\right)\times \\ \mathrm{e}\mathrm{x}\mathrm{p}\left(-\mathrm{i}2\mathrm{\pi }f\right)\mathrm{d}t\end{array} $ | (8) |
不同参数的TPWT的表现形式不同:
(1)当
(2)当
(3)当
(4)当
式(7)可改写为
$ \sigma(\tau, f ; \boldsymbol{\varPhi})= \begin{cases}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f-f_0(\tau)}{k_2}\right]^p\right\}^{-\frac{1}{p}} & f>f_0 \\ f_0(\tau) & f=f_0 \\ \left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f_0(\tau)-f}{k_2}\right]^p\right\}^{-\frac{1}{p}} & f<f_0\end{cases} $ | (9) |
$ \begin{array}{l}\frac{\partial \sigma (\tau ,f;k)}{\partial f}=\\ \begin{cases}-\frac{\left[f-f_0(\tau)\right]^{p-1}}{k_2^p\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f-f_0(\tau)}{k_2}\right]^p\right\}^{\frac{1+p}{p}}} & f>f_0 \\ 0 & f=f_0 \\ \frac{\left[f_0(\tau)-f\right]^{p-1}}{k_2^p\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f_0(\tau)-f}{k_2}\right]^p\right\}^{\frac{1+p}{p}}} & f<f_0 \\ \end{cases}\end{array} $ | (10) |
可见
TPWT引入趋势因子
在理论上,TPWT的逆变换具有如下形式
$ x\left(t\right)={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}{\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\mathrm{T}\mathrm{P}\mathrm{W}\mathrm{T}(\tau ,f)\mathrm{e}\mathrm{x}\mathrm{p}\left(\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}\tau \mathrm{d}f $ | (11) |
可分解为
$ X\left(f\right)={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\mathrm{T}\mathrm{P}\mathrm{W}\mathrm{T}(\tau ,f)\mathrm{d}\tau $ | (12) |
$ x\left(t\right)={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}X\left(f\right)\mathrm{e}\mathrm{x}\mathrm{p}\left(\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}f $ | (13) |
式(12)为无损可逆条件[13, 21],式(13)为傅里叶逆变换(IFT)。当且仅当式(12)和式(13)同时成立时,才能保证式(11)成立。由式(8)可知
$ \begin{array}{l}{\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\mathrm{T}\mathrm{P}\mathrm{W}\mathrm{T}\left(\tau ,f\right)\mathrm{d}\tau ={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\frac{\sqrt[p]{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)\mathrm{ }-f\right|}{{k}_{2}}\right]}^{p}}}{\sqrt[]{2\mathrm{\pi }}}\times \\ {\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}x\left(t\right)\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{{(t-\tau )}^{2}}{2}{\left\{\sqrt[p]{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)\mathrm{ }-f\right|}{{k}_{2}}\right]}^{p}}\right\}}^{2}\right)\times \\ \mathrm{e}\mathrm{x}\mathrm{p}\left(-\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}t\mathrm{d}\tau \\ ={\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\left\{{\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\frac{1}{\sqrt[]{2\mathrm{\pi }}}{\left\{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)\mathrm{ }-f\right|}{{k}_{2}}\right]}^{p}\right\}}^{\frac{1}{p}}\right.\times \\ \left.\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{{(\tau -t)}^{2}}{2}{\left\{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)-f\right|}{{k}_{2}}\right]}^{p}\right\}}^{\frac{2}{p}}\right)\mathrm{d}\tau \right\}\times \\ x\left(t\right)\mathrm{e}\mathrm{x}\mathrm{p}\left(-\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}t\end{array} $ | (14) |
对比式(14)与式(12)可知
$ \begin{aligned} & \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{p}} \times \\ & \exp \left(-\frac{(\tau-t)^2}{2}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{2}{p}} \mathrm{~d} \tau=1\right. \end{aligned} $ | (15) |
令
$ \begin{aligned} & \mathrm{d} u=\frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{p}} \mathrm{~d} \tau+ \\ & (\tau-t) \mathrm{d}\left(\frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{p}}\right) \\ & =\left\{\begin{array}{l} \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{p}} \mathrm{~d} \tau+ \\ (\tau-t) \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{p}} \times \\ \left\{\frac{\left[f_0(\tau)\right]^{p-1}}{k_1^p}+\frac{\left[f_0(\tau)-f\right]^{p-1}}{k_2^p}\right\} f_0^{\prime}(\tau) \mathrm{d} \tau \quad f<f_0 \\ \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f-f_0(\tau)}{k_2}\right]^p\right\}^{\frac{1}{p}} \mathrm{~d} \tau+ \\ (\tau-t) \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f-f_0(\tau)}{k_2}\right]^p\right\}^{\frac{1}{p}} \times \\ \left\{\left[\frac{\left[f_0(\tau)\right]^{p-1}}{k_1^p}+\frac{\left[f-f_0(\tau)\right]^{p-1}}{k_2^p}\right\} f_0^{\prime}(\tau) \mathrm{d} \tau \quad f>f_0\right. \end{array}\right. \end{aligned}$ | (16) |
只有当
$ \mathrm{d}u\approx \frac{1}{\sqrt[]{2}}{\left\{{\left[\frac{{f}_{0}\left(\tau \right)}{{k}_{1}}\right]}^{p}+{\left[\frac{\left|{f}_{0}\left(\tau \right)-f\right|}{{k}_{2}}\right]}^{p}\right\}}^{\frac{1}{p}}\mathrm{d}\tau $ | (17) |
时,才能得到
$ \begin{aligned} & \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{1}{\rho}} \times \\ & \exp \left(-\frac{(\tau-t)^2}{2}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{\left|f_0(\tau)-f\right|}{k_2}\right]^p\right\}^{\frac{2}{p}} \mathrm{~d} \tau\right. \\ & \approx \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \exp \left(-u^2\right) \mathrm{d} u=1 \end{aligned} $ | (18) |
此时,由式(14)可得
$ \begin{aligned} & \int_{-\infty}^{+\infty} \operatorname{TPWT}(\tau, f) \mathrm{d} \tau \approx \int_{-\infty}^{+\infty} x(t) \exp (-\mathrm{i} 2 \pi f t) \mathrm{d} t \\ & \quad=X(f) \end{aligned} $ | (19) |
因此
$ {\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}{\int }_{-\mathrm{\infty }}^{+\mathrm{\infty }}\mathrm{T}\mathrm{P}\mathrm{W}\mathrm{T}(\tau ,f)\mathrm{e}\mathrm{x}\mathrm{p}\left(\mathrm{i}2\mathrm{\pi }ft\right)\mathrm{d}\tau \mathrm{d}f\approx x\left(t\right) $ | (20) |
式(20)在理论上证明了TPWT并不是严格可逆的,而是一种近似可逆的变换工具,这是由于在定义高斯窗函数时使用了非平稳的频率权重所致。
比较式(16)和式(17)可知,在推导近似逆变换公式(式(20))的过程中引入了近似表达式(式(17)),而忽略了
$ \begin{gathered} (\tau-t) \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f_0(\tau)-f}{k_2}\right]^p\right\}^{\frac{1}{p}} \times \\ \left\{\frac{\left[f_0(\tau)\right]^{p-1}}{k_1^p}+\frac{\left[f_0(\tau)-f\right]^{p-1}}{k_2^p}\right\} f_0^{\prime}(\tau) \mathrm{d} \tau \quad f<f_0 \end{gathered} $ | (21) |
或
$ \begin{gathered} (\tau-t) \frac{1}{\sqrt{2}}\left\{\left[\frac{f_0(\tau)}{k_1}\right]^p+\left[\frac{f-f_0(\tau)}{k_2}\right]^\rho\right\}^{\frac{1}{p}} \times \\ \left\{\frac{\left[f_0(\tau)\right]^{p-1}}{k_1^\rho}+\frac{\left[f-f_0(\tau)\right]^{p-1}}{k_2^\rho}\right\} f_0^{\prime}(\tau) \mathrm{d} \tau \quad f>f_0 \end{gathered} $ | (22) |
式(21)和式(22)均与
图 1为不同方法计算的主频为60 Hz的Morlet小波
为了检验TPWT逆变换的近似程度,分别采用合成地震记录和实际地震数据进行分解与重构计算。首先,合成了一个地震记录
图 8为实际资料叠加剖面,随机抽取第95道(图 9a),利用复数道分析方法计算瞬时频率,再用一个低通滤波器通过加权平均消除数值噪声[21],从而获得主频(图 9b),最终得到不同变换参数的TPWT时—频谱(图 9c~图 9e)。可见,重建数据的最大振幅误差的绝对值分别为401.45、426.92、381.55,即相对误差分别为12.07%、12.83%、11.47%(图 9f、图 9g)。在上述数值计算中,相对误差最小值为11.47%,最大值为21.35%,即误差是明显的。因此,TPWT的不可逆导致其应用受到局限,在去噪、高分辨率处理等需要重建数据的处理领域不宜使用。
(1)TPWT既解决了ST的低频时间分辨率低与时—频谱能量分布中心向高频偏移的问题,也克服了WT时—频谱在主频处的振幅分裂现象,能更准确地描述油气储层,更有利于地震解释。
(2)在理论上TPWT不是严格可逆的,而是一种近似可逆的变换工具,这与FT、ST不同。
(3)合成地震数据与实际地震记录的数值计算结果显示,与原始地震数据相比,利用逆TPWT重建地震道的相对误差为11.47%~21.35%,即理论上的不可逆导致较大的重建误差,严重影响TPWT的应用范围,在去噪、高分辨率处理等需要重建数据的处理领域不宜使用。
[1] |
LIU B, LIU Q, KANG X. Application of improved time⁃frequency representation to local noise removal[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(5): 2091-2096. DOI:10.1007/s13202-021-01171-9 |
[2] |
国胧予, 刘财, 刘洋. 滤波类方法衰减地震数据噪声[J]. 地球物理学进展, 2018, 33(5): 1890-1896. GUO Longyu, LIU Cai, LIU Yang. Filtering methods attenuate seismic data noise[J]. Progress in Geophy⁃sics, 2018, 33(5): 1890-1896. |
[3] |
LI R, ZHU X, ZHOU Y, et al. Generalized W transform and its application in gas⁃bearing reservoir characterization[J]. IEEE Geoscience and Remote Sensing Letters, 2022. DOI:10.1109/LGRS.2021.3108836 |
[4] |
CHEN H, PENG L, CHEN X, et al. A three⁃para⁃meter W transform and its application to gas reservoir identification[J]. Geophysics, 2022, 87(5): V521-V532. DOI:10.1190/geo2021-0803.1 |
[5] |
李思源, 徐天吉. 基于Wigner⁃Ville分布与Chrip⁃Z变换的高分辨时频分析方法[J]. 石油地球物理勘探, 2022, 57(1): 168-175, 211. LI Siyuan, XU Tianji. A new high⁃resolution time⁃frequency analysis method based on Wigner⁃Ville distribution and Chirp⁃Z transform[J]. Oil Geophysical Prospecting, 2022, 57(1): 168-175, 211. DOI:10.13810/j.cnki.issn.1000-7210.2022.01.018 |
[6] |
郝亚炬, 张华, 张生, 等. 应用组稀疏正则化反演的高分辨率自适应Gabor时频分析方法[J]. 石油地球物理勘探, 2023, 58(2): 412-421. HAO Yaju, ZHANG Hua, ZHANG Sheng, et al. High⁃resolution self⁃adaptive Gabor time⁃frequency analysis method based on group⁃sparse regularized inversion[J]. Oil Geophysical Prospecting, 2023, 58(2): 412-421. DOI:10.13810/j.cnki.issn.1000-7210.2023.02.018 |
[7] |
陆文凯, 张学工, 李衍达, 等. 时频域零炮检距地震道拟合[J]. 石油地球物理勘探, 2001, 36(1): 56-59, 71. LU Wenkai, ZHANG Xuegong, LI Yanda, et al. Fitting a zero⁃offset seismic trace in time⁃frequency domain[J]. Oil Geophysical Prospecting, 2001, 36(1): 56-59, 71. |
[8] |
高建虎, 雍学善, 刘洪. 频率域储层预测技术研究[J]. 天然气地球科学, 2007, 18(6): 808-812. GAO Jianhu, YONG Xueshan, LIU Hong. Study of reservoir prediction technology in frequency donain[J]. Natural Gas Geoscience, 2007, 18(6): 808-812. |
[9] |
DAUBECHIES I. Ten Lectures on Wavelets[M]. PA, United States: Society for Industrial and Applied Mathematics, 1992.
|
[10] |
张建军, 魏修成, 刘洋. 地震资料小波时频分析中小波母函数的选取[C]. 中国地球物理学会第十九届年会论文集, 2003, 37.
|
[11] |
STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. DOI:10.1109/78.492555 |
[12] |
MCFADDEN P D, COOK J G, FORSTER L M. Decomposition of gear vibration signals by the generalized S transform[J]. Mechanical Systems and Signal Processing, 1999, 13(5): 691-707. DOI:10.1006/mssp.1999.1233 |
[13] |
PINNEGAR C R, EATON D W. Application of the S transform to prestack noise attenuation filtering[J]. Journal of Geophysical Research, 2003, 108(B9): ESE9.1-ESE9.10. |
[14] |
PINNEGAR C R, MANSINHA L. The S⁃transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1): 381-385. DOI:10.1190/1.1543223 |
[15] |
LI D, CASTAGNA J, GOLOSHUBIN G. Investigation of generalized S⁃transform analysis windows for time⁃frequency analysis of seismic reflection data[J]. Geophysics, 2016, 81(3): V235-V247. DOI:10.1190/geo2015-0551.1 |
[16] |
EBROM D. The low⁃frequency gas shadow on seismic sections[J]. The Leading Edge, 2004, 23(8): 772-772. DOI:10.1190/1.1786898 |
[17] |
Ten KROODE F, BERGLER S, CORSTEN C, et al. Broadband seismic data⁃The importance of low frequencies[J]. Geophysics, 2013, 78(2): WA3-WA14. DOI:10.1190/geo2012-0294.1 |
[18] |
刘兰锋, 刘全新, 雍学善, 等. 基于广义S变换的低频瞬时能量谱油气检测技术[J]. 天然气地球科学, 2005, 16(2): 238-241. LIU Lanfeng, LIU Quanxin, YONG Xueshan, et al. Hydrocarbon detection using instantaneous energy spectrum of low frequency based on general S transform[J]. Natural Gas Geoscience, 2005, 16(2): 238-241. |
[19] |
刘俊杰, 陈学华, 吴昊杰, 等. 稀疏广义S变换及其在储层地震低频异常检测中的应用[J]. 石油地球物理勘探, 2023, 58(3): 690-699. LIU Junjie, CHEN Xuehua, WU Haojie, et al. Sparse generalized S⁃transform and its application to detection of low⁃frequency seismic anomalies in reservoirs[J]. Oil Geophysical Prospecting, 2023, 58(3): 690-699. DOI:10.13810/j.cnki.issn.1000-7210.2023.03.010 |
[20] |
李庆忠. 走向精确勘探的道路——高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社, 1994.
|
[21] |
WANG Y. The W transform[J]. Geophysics, 2021, 86(1): V31-V39. DOI:10.1190/geo2020-0316.1 |
[22] |
LIU B T. Numerical S transform: Error analysis and application[C]. Proceedings of 2015 International Conference on Computer Science and Environmental Engineering, 2015, 1336⁃1342.
|
[23] |
SIMON C, VENTOSA S, SCHIMMEL M, et al. The S⁃transform and its inverses: side effects of discretizing and filtering[J]. IEEE Transactions on Signal Processing, 2007, 55(10): 4928-4937. DOI:10.1109/TSP.2007.897893 |
[24] |
地震信号瞬时频率的估算[J]. 地球物理学报, 2009, 52(1): 206-214. CHEN Lin, SONG Haibin. The estimation of instantaneous frequency of seismic signal[J]. Chinese Journal of Geophysics, 2009, 52(1): 206-214. |
[25] |
基于经验模态分解和小波变换的地震瞬时频率提取方法及应用[J]. 石油地球物理勘探, 2016, 51(3): 565-571. ZHANG Meng, WANG Huazhong, SUI Zhiqiang, et al. Seismic instantaneous frequency extraction based on empirical mode decomposition and wavelet transform[J]. Oil Geophysical Prospecting, 2016, 51(3): 565-571. DOI:10.13810/j.cnki.issn.1000-7210.2016.03.019 |