﻿ 跨频段岩石波速及频散的实验研究
 石油地球物理勘探  2020, Vol. 55 Issue (2): 373-378  DOI: 10.13810/j.cnki.issn.1000-7210.2020.02.016 0
 文章快速检索 高级检索

### 引用本文

LI Minlong, LIU Haojie, YANG Hongwei, WEI Guohua, SHI Jianxin. Experimental study on cross-frequency wave velocity and dispersion in rocks. Oil Geophysical Prospecting, 2020, 55(2): 373-378. DOI: 10.13810/j.cnki.issn.1000-7210.2020.02.016.

### 文章历史

Experimental study on cross-frequency wave velocity and dispersion in rocks
LI Minlong , LIU Haojie , YANG Hongwei , WEI Guohua , SHI Jianxin
Shengli Geophysical Research Institute of Sinopec, Dongying, Shandong 257022, China
Abstract: We measure the elastic properties of two samples, A and B, saturated with different fluids (water and glycerol) at different frequencies (2~2000 Hz and 1 MHz).The results show that the frequency of dispersion increases with pore fluid mobility.The frequency of dispersion is positively correlated with porosity and permeability and negatively correlated with fluid viscosity.P-velocity increases with saturation at high frequencies; P-velocity first increases and then decreases with saturation at low frequencies.This means there is a critical saturation, the value of which is closely related to fluid mobility.
Keywords: dispersion    characteristic frequency    critical saturation    fluid mobility    viscosity
0 引言

1 实验方法 1.1 测量原理

 图 1 跨频段岩石物理参数测量系统的框架图
1.2 标准岩样制作

 图 2 标准岩样示意图(a)和实物图(b)

1.3 岩石物理参数计算

 $\varepsilon_{33}=\frac{\partial u}{\partial x}=F_{0} \cos (\sqrt{\frac{\rho}{E}} \times \omega x) \sin (\omega t)$ (1)

 $v=\frac{\varepsilon_{11}}{\varepsilon_{33}}$ (2)

 $E=E^{\mathrm{al}} \frac{\varepsilon_{33}^{\mathrm{al}}}{\varepsilon_{33}}$ (3)

 $u=\frac{E}{2(1+v)}$ (4)
 $K=\frac{E}{3(1+2 v)}$ (5)

 $V_{\mathrm{P}}=\sqrt{\frac{K+\frac{4}{3}}{\rho}}$ (6)
 $V_{\mathrm{S}}=\sqrt{\frac{u}{\rho}}$ (7)

 $V_{\mathrm{P}}^{\mathrm{u}}=\frac{L}{t_{\mathrm{P}}^{\mathrm{u}}}$ (8)
 $V_{\mathrm{S}}^{\mathrm{u}}=\frac{L}{t_{\mathrm{S}}^{\mathrm{u}}}$ (9)

2 岩样测量 2.1 岩样物性参数

2.2 跨频段岩石物理参数测试

 图 3 不同流体饱和度下岩样A纵波速度与频率关系 (a)含水；(b)含甘油

 图 4 不同流体饱和度下岩样B纵波速度与频率关系 (a)含水；(b)含甘油
3 实验结果影响因素分析 3.1 饱和度

 图 5 不同频段下岩样A含水饱和度与纵波速度关系

3.2 流体黏度

 图 6 岩样B含不同流体时频率与纵波速度的关系
3.3 孔隙度和渗透率

4 结论

 [1] Spencer J W. Stress relaxation at low frequencies in fluid saturated rocks:attenuation and modulus dispersion[J]. Journal Geophysics Research, 1981, 86(B3): 1803-1812. [2] Paffenholz J, Burkhardt H. Absorption and modulus measurements in the seismic frequency and strain range on partially saturated sedimentary rocks[J]. Journal of Geophysical Research, 1989, 94(B7): 9493-9507. [3] Batzle M, Han D H, Castagna J.Fluids and frequency dependent seismic velocity of rocks[C].SEG Technical Program Expanded Abstracts, 1999, 18: 5-8. [4] Batzle M, Hofmann R, Han D H, et al. Fluids and frequency dependent seismic velocity of rocks[J]. The Leading Edge, 2001, 20(2): 168-171. [5] Batzle M L, Han D H, Hofmann R. Fluid mobility and frequency-dependent seismic velocity-Direct measurements[J]. Geophysics, 2006, 71(1): N1-N9. [6] Adam L, Batzle M. Elastic properties of carbonates from laboratory measurements at seismic and ultrasonic frequencies[J]. The Leading Edge, 2008, 27(8): 1026-1032. [7] Madonna C, Tisato N, Boutareaud S, et al.A new la-boratory system for the measurement of low frequency seismic attenuation[C].SEG Technical Program Expanded Abstracts, 2010, 29: 2675. [8] Mikhaltsevitch V, Lebedev M, Gurevich B.A low-frequency laboratory apparatus for measuring elastic and anelastic properties of rocks[C].SEG Technical Program Expanded Abstracts, 2011, 30: 2256-2260. [9] 李维新, 史謌, 王红, 等. 岩石物理弹性参数规律研究[J]. 地球物理学进展, 2007, 22(5): 1380-1385. LI Weixin, SHI Ge, WANG Hong, et al. The study on the relationships of elastic properties of rock physics[J]. Progress in Geophysics, 2007, 22(5): 1380-1385. [10] 任科英. 实验室岩心声学速度测试中的频散现象[J]. 石油地球物理勘探, 2011, 46(5): 779-782. REN Keying. Velocity dispersion of ultrasonic core measurement in laboratory[J]. Oil Geophysical Prospecting, 2011, 46(5): 779-782. [11] 勾彬彬, 陈学华, 瞿雷, 等. 依赖频率的裂缝孔隙介质弹性属性及参数影响[J]. 石油地球物理勘探, 2018, 53(6): 1235-1240. GOU Binbin, CHEN Xuehua, QU Lei, et al. Frequency-dependent elastic properties in fractured porous media and impact parameters[J]. Oil Geophysical Prospecting, 2018, 53(6): 1235-1240. [12] 张繁昌, 桑凯恒, 路亚威. 硬币型裂缝介质的频散与衰减[J]. 石油地球物理勘探, 2019, 54(4): 836-843. ZHANG Fanchang, SANG Kaiheng, LU Yawei. Frequency dispersion and attenuation of porous rocks with penny shaped fractures[J]. Oil Geophysical Prospecting, 2019, 54(4): 836-843. [13] 王大兴, 辛可峰, 李幼铭, 等. 地层条件下砂岩含水饱和度对波速及衰减影响的实验研究[J]. 地球物理学报, 2006, 49(3): 908-914. WANG Daxing, XIN Kefeng, LI Youming, et al. An experimental study of influence of water saturation on velocity and attenuation in sandstone under stratum conditions[J]. Chinese Journal of Geophysics, 2006, 49(3): 908-914. [14] 王峣钧, 陈双全, 王磊, 等. 基于斑块饱和模型利用地震波频散特征分析含气饱和度[J]. 石油地球物理勘探, 2014, 49(4): 715-722. WANG Yaojun, CHEN Shuangquan, WANG Lei, et al. Gas saturation analysis with seismic dispersion attribute based on patchy-saturation model[J]. Oil Geophysical Prospecting, 2014, 49(4): 715-722. [15] 未晛, 王尚旭, 赵建国, 等. 含流体砂岩地震波频散实验研究[J]. 地球物理学报, 2015, 58(9): 3380-3388. WEI Xian, WANG Shangxu, ZHAO Jianguo, et al. Laboratory study of velocity dispersion of the seismic wave in fluid-saturated sandstones[J]. Chinese Journal of Geophysics, 2015, 58(9): 3380-3388. [16] 马霄一, 王尚旭, 赵建国, 等. 岩石跨频段实验研究[J]. 地球物理学进展, 2018, 33(5): 1943-1950. MA Xiaoyi, WANG Shangxu, ZHAO Jianguo, et al. Laboratory study of rocks in multi-frequency band[J]. Progress in Geophysics, 2018, 33(5): 1943-1950.