﻿ 一项高效的折射静校正技术
 石油地球物理勘探  2019, Vol. 54 Issue (4): 768-774  DOI: 10.13810/j.cnki.issn.1000-7210.2019.04.006 0
 文章快速检索 高级检索

### 引用本文

XIAO Yongxin, YANG Haishen, CUI Shitian, XU Lijun, ZHAO Weiwei, MA Jie. An efficient refraction statics method for massive seismic data. Oil Geophysical Prospecting, 2019, 54(4): 768-774. DOI: 10.13810/j.cnki.issn.1000-7210.2019.04.006.

### 文章历史

An efficient refraction statics method for massive seismic data
XIAO Yongxin , YANG Haishen , CUI Shitian , XU Lijun , ZHAO Weiwei , MA Jie
Acquisition Technique Center, BGP Inc., CNPC, Zhuozhou, Hebei 072751, China
Abstract: The refraction statics has become a very mature and stable approach after years of development and improvement.This paper puts forward an efficient refraction statics method with a set of strategies for nowadays massive seismic data based on the theory of refraction statics.A first-break fast invocation is achieved with an efficient management method; the refraction velocity parallel calculation is realized with the aperture-constraint method which reduces greatly data search time; and the delay time fast calculation is accomplished with the optimization of iteration algorithms.Model data tests show that the proposed method achieves a much higher calculation efficiency of refraction statics on the premise of ensuring the calculation accuracy.For real data tests, the proposed method realizes a calculation efficiency 200~360 times faster than that of a commercial software in the condition of the same hardware and the same data volume.
Keywords: refraction static corrections    refraction velocity    delay time    aperture constraints
0 引言

1 折射静校正原理

1.1 基本折射方程

 图 1 单个水平界面折射波时距曲线示意图
 $t=\frac{x}{v_{1}}+\frac{2 h \cos \theta}{v_{0}}$ (1)

 $t=t_{\mathrm{s}}+t_{\mathrm{r}}+\frac{x}{v_{1}}$ (2)

1.2 折射速度计算原理

 图 2 二维折射波传播示意图

 $T_{A R_{i}}=T_{A}+\frac{\overline{A R}_{i}}{v_{1}}+T_{R_{i}}$ (3)

 $T_{B R_{i}}=T_{B}+\frac{\overline{B R}_{i}}{v_{1}}+T_{R_{i}}$ (4)

 $\Delta T_{i}=T_{A}-T_{B}+\frac{\Delta X_{i}}{v_{1}}$ (5)

 图 3 折射速度计算示意图

 图 4 三维速度计算示意图

1.3 延迟时计算

 $t_{\mathrm{s}}+t_{\mathrm{r}}=t-\frac{x}{v_{1}}$ (6)

2 实现方法改进

2.1 高效的初至数据管理

(1) 初至文件共炮结构存储；

(2) 初至文件内容在原格式(图 5a)基础上做了精简，只保留炮检索引和初至时间两列数据，炮点索引及初至位置作为辅助文件(图 5b)；

 图 5 共炮初至文件格式 (a)原初至格式；(b)改进后初至格式

(3) 共检初至及共中心点初至采用一项专利技术[21]，高效快捷实时组织，磁盘空间和内存的使用降低4倍以上。

2.2 高效的折射速度实现方法

(1) 对炮点进行分区，按照工区方位角划分为若干规则矩形网格，对网格进行顺序编号，并记录每个网格内的炮点；

(2) 根据折射分层炮检距范围确定矩形网格编号范围，继而快速寻找所需炮点，此即“孔径约束法”；

(3) 只查找炮检距范围内网格的共用检波点；

(4) 根据折射速度计算原理求取折射速度。

 图 6 孔径约束折射速度计算示意图

2.3 高效的延迟时计算方法

3 理论模型试算

 图 7 理论模型

 图 8 KLSeisⅡ与某商用软件对比(针对一条检波线) (a)折射速度对比；(b)延迟时误差对比
4 应用实例

 图 9 折射静校正后叠加剖面对比 (a)某商用软件；(b)本文折射方法叠

 图 10 十字排列1500ms切片对比 (a)未做静校正；(b)某商用软件折射静校正；(c)本算法静校正

5 结论

 [1] 赵鸿儒, 郭铁栓, 徐子君, 等. 工程多波地震勘探[M]. 北京: 地震出版社, 1996. [2] Hagedoorn J G. The plus-minus method of interpre-ting seismic refraction sections[J]. Geophysical Prospecting, 1959, 7(2): 158-182. DOI:10.1111/j.1365-2478.1959.tb01460.x [3] Gardner L W. An area plan of mapping subsurface structure by refraction shooting[J]. Geophysics, 1939, 4(4): 247-259. DOI:10.1190/1.1440501 [4] Barthelmes A J. Application of continuous profiling to refraction shooting[J]. Geophysics, 1946, 11(1): 24-42. DOI:10.1190/1.1437212 [5] Scheidegger A E, Willmore P L. The use of a least squares method for the interpretation of data from seismic surveys[J]. Geophysics, 1957, 22(1): 9-22. DOI:10.1190/1.1438348 [6] Hawkins L V. The reciprocal method of routine shallow seismic refraction investigation[J]. Geophysics, 1961, 26(6): 808-819. [7] Palmer D. An introduction to the generalized reciprocal method of seismic refraction interpretation[J]. Geo-physics, 1981, 46(11): 1508-1518. [8] Bahorich M S, Coruh C, Robinson E S, et al. Static corrections on the southeastern Piedmont of the United States[J]. Geophysics, 1982, 47(11): 1540-1459. DOI:10.1190/1.1441304 [9] 陈广思. 相对折射静校正方法[J]. 石油地球物理勘探, 1990, 25(4): 407-428. CHEN Guangsi. Relative refraction statics[J]. Oil Geo-physical Prospecting, 1990, 25(4): 407-428. [10] 潘宏勋, 方伍宝, 武永山, 等. 改进的相对折射静校正方法[J]. 石油物探, 2003, 42(2): 208-211. PAN Hongxun, FANG Wubao, WU Yongshan, et al. An improved relative refraction statics technique[J]. Geophysical Prospecting for Petroleum, 2003, 42(2): 208-211. DOI:10.3969/j.issn.1000-1441.2003.02.012 [11] Bridle R. Analysis of reduced traveltime creates nonlinear delay-time solution[J]. The Leading Edge, 2017, 36(4): 319-323. DOI:10.1190/tle36040319.1 [12] Law B and Trad D. Robust refraction statics solution using feedback from reflection data[C].SEG Techni-cal Program Expanded Abstracts, 2017, 36: 2666-2670. [13] 高秦, 陈超群, 王智茹, 等. 多方法静校正融合技术在鄂尔多斯盆地黄土塬区中的应用[J]. 石油地球物理勘探, 2017, 52(增刊2): 38-44. GAO Qin, CHEN Chaoqun, WANG Zhiru, et al. Multiple statics fusion in loess tablelands, Ordos Basin[J]. Oil Geophysical Prospecting, 2017, 52(S2): 38-44. [14] 王志刚, 刘志伟, 王彦春, 等. 复杂近地表区综合长波长静校正方法[J]. 石油地球物理勘探, 2014, 49(3): 480-485. WANG Zhigang, LIU Zhiwei, WANG Yanchun, et al. An integrated long-wavelength static correction me-thod for complex near-surface area[J]. Oil Geophysical Prospecting, 2014, 49(3): 480-485. [15] 李素闪, 程元方, 刘建红, 等. 火成岩发育地区静校正技术与应用[J]. 石油地球物理勘探, 2017, 52(增刊2): 45-49. LI Sushan, CHENG Yuanfang, LIU Jianhong, et al. Static corrections for igneous rock areas[J]. Oil Geophysical Prospecting, 2017, 52(S2): 45-49. [16] Cox M著; 李培明, 柯本喜, 朱衍镛, 等译.反射地震勘探静校正技术[M].北京: 石油工业出版社, 2004, 153-261. [17] 陆基孟. 地震勘探原理(上册)[M]. 山东东营: 石油大学出版社, 1993: 30-48. [18] 杨海申, 蒋先艺, 高彦林, 等. 复杂区三维折射静校正技术与应用效果[J]. 石油地球物理勘探, 2005, 40(2): 219-225. YANG Haishen, JIANG Xianyi, GAO Yanlin, et al. 3D refraction static corrections in complex regions and its applied effects[J]. Oil Geophysical Prospecting, 2005, 40(2): 219-225. DOI:10.3321/j.issn:1000-7210.2005.02.025 [19] 何樵登. 地震勘探原理和方法[M]. 北京: 地质出版社, 1986: 77-115. [20] R E 谢里夫. 勘探地震学(上册)[M]. 北京: 石油工业出版社, 1999: 115-144. [21] 李逢春.地震三维观测系统的共中心点面元属性的分析方法及装置[P].CN103605161A, 2014.