工作空间

文章信息

吴佩, 李浩, 早浩龙, 王宇蕴, 杨建立, 汤利, 范伟
植物对缺磷和铝毒协同进化应答的分子生理机制
生物技术通报, 2020, 36(7): 170-181

WU Pei, LI Hao, ZAO Hao-long, WANG Yu-yun, YANG Jian-li, TANG Li, FAN Wei
Physiological and Molecular Mechanisms of Plant Co-evolution Responses to Phosphorous Deficiency and Aluminum Toxicity
Biotechnology Bulletin, 2020, 36(7): 170-181

文章历史

收稿日期:2019-12-12

植物对缺磷和铝毒协同进化应答的分子生理机制
吴佩1, 李浩1, 早浩龙1, 王宇蕴1, 杨建立2, 汤利1, 范伟1,3     
1. 云南农业大学资源与环境学院,昆明 650201;
2. 浙江大学生命科学学院 植物生理学与生物化学国家重点实验室,杭州 310058;
3. 云南农业大学西南中药材种质创新与利用国家地方联合工程研究中心 云南省药用植物生物学重点实验室,昆明 650201
摘要:酸性土壤占世界潜耕性土壤的50%,而缺磷(P)和铝(Al)毒是酸性土壤限制植物生长的两大营养逆境因子。有机酸、激素和铁(Fe)稳态在植物响应2种胁迫的信号交互和协同进化中扮演核心作用。系统综述了有机酸分泌、STOP1/ALMT1和STAR1/ALS3多效性调节、激素信号转导和细胞壁相关激酶在调控植物根发育和根构型以改善酸性土壤P有效性和Al耐性的分子生理机制,并对该领域发展前景进行了展望。
关键词酸性土壤    缺磷    铝毒    信号交互    胁迫应答    
Physiological and Molecular Mechanisms of Plant Co-evolution Responses to Phosphorous Deficiency and Aluminum Toxicity
WU Pei1, LI Hao1, ZAO Hao-long1, WANG Yu-yun1, YANG Jian-li2, TANG Li1, FAN Wei1,3     
1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201;
2. State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058;
3. National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201
Abstract: Acid soils comprise approximately 50% of potential arable lands worldwide. Phosphorus(P)deficiency and aluminum(Al)toxicity are two major nutritional stress factors limiting plant growth on acid soils. Studies have shown that organic acids(OA), hormones and iron(Fe)homeostasis play a core role in co-evolution and signal crosstalk of plant responses to both stresses. This article systematically reviewed the physiological and molecular mechanisms of OA secretion, pleiotropic regulation of STOP1/ALMT1 and STAR1/ALS3, hormone signal transduction and cell wall-related kinases in regulating plant root development and root architecture to improve P availability and Al resistance on acid soils and also prospected the visions in this field.
Key words: acid soils    phosphorus deficiency    aluminum toxicity    signal crosstalk    stress response    

酸性土壤约占世界潜耕性土壤的50%,其存在诸多养分限制因子,如磷(P)、钾(K)、钙(Ca)、镁(Mg)的缺乏和铝(Al)、锰(Mn)的过量[1-2]。其中,缺P与Al毒通常相互关联,因而代表了酸性土壤上限制作物生产的两大营养逆境因子[3-4]。作为必需营养元素,P在植物生长发育中起重要作用,包括脂质和核酸等结构成分的形成,以及参与多条代谢酶促反应和信号转导途径。虽然总P在多数土壤中是丰富的,但可溶性P常常难以满足植物的需求,特别是在Fe、Al和Mn含量丰富的酸性土壤中,P容易被这些元素固定。另一方面,当土壤pH低于5.5时,难溶性的矿物态Al可转化为可溶性的离子态Al(以Al3+为主),导致植物根生长受抑制,阻碍对水分和养分的吸收[5]。虽然增施P肥可通过增加P的有效性和降低Al活度来提高酸性土壤中作物的产量和品质,但P肥的利用率非常低(当季利用率仅为10%-25%)。幸运的是,不同植物和同一植物不同基因型间存在巨大的遗传变异。因此,通过现代生物技术和分子辅助育种提高作物P营养和Al抗性是今后培育“智能”作物品种的有效途径。

在过去20多年间,关于缺P条件下植物P的吸收转运、分配利用以及信号调控研究已在拟南芥[Arabidopsis thaliana(L.)Heynh.]、水稻(Oryza sativ L.)和白羽扇豆(Lupinus albus L.)等模式植物中取得较大进展[6-7]。同样,从水稻、小麦(Triticum aestivum L.)、高粱[Sorghum bicolor(L.)Moench.]和拟南芥中也筛选出一系列抗Al基因,建立了植物抗Al分子调控网络的最新模型[8-9]。然而,抗Al基因可能对P营养具有多效性影响,表明在多重胁迫共存的酸性土壤中存在抗Al基因的协同进化机制。为此,本文系统综述了酸性土壤中调控植物抗Al和P营养协同进化机制的研究进展,提出了抗Al基因应用于酸性土壤作物改良,以及通过改变根发育和根构型来维持酸性土壤中良好P状况和作物生产力的可能性。

1 有机酸在酸性土壤缺P和Al毒胁迫应答中的作用

根伸长抑制是植物Al毒最明显的原初症状,被广泛作为Al毒的衡量指标[9]。植物在长期适应Al毒时已进化出一系列内部耐受和外部排斥的抗Al机制。其中,诱导根尖有机酸释放,对Al进行外部螯合的解毒机制被认为是大多数植物最主要的耐Al机制(图 1[9]。如表 1所示,虽然Al诱导不同植物分泌的有机酸种类不同,但主要为苹果酸、柠檬酸和草酸,而且大部分分泌部位都位于根尖。迄今为止,控制Al诱导苹果酸和柠檬酸分泌的基因在大部分物种中均被解析,但控制草酸分泌的基因仍未见报道。而且,除了小麦和大麦分泌的柠檬酸为组成型外,其他有机酸的分泌均受Al诱导。相对于Al,P在土壤中的扩散缓慢,植物大多通过扩大根系与土壤的接触面来提高对P的摄入。同时,根际释放的有机酸可增加螯合态P的释放和有效性(图 1)。与Al胁迫相比,不同植物缺P条件下分泌的有机酸种类和部位更为复杂,除了大豆[Glycine max(L.)Merr.]、橙子(Citrus sinensis L.)和拟南芥中控制苹果酸分泌的基因被解析外,其他研究仍停留在生理层面(表 1)。与此同时,越来越多研究证明,根系分泌有机酸越多,植物的抗Al性和P利用率越高。Tan等[49]发现外源添加P可减轻Al毒害,推测P能改善Al胁迫下植物的根形态发育和营养吸收。Pellet等[50]认为小麦根尖分泌磷酸盐可能是一种潜在的耐Al机制。Dong等[51]发现在低P条件下,P高效大豆基因型比P低效大豆基因型具有更强的耐Al性。Ligaba等[52]证明与P低效葡萄(Vitis vinifera L.)品种相比,P高效葡萄品种在Al胁迫下积累和分泌的有机酸更多。Liao等[53]证实大豆在Al胁迫时分泌柠檬酸,缺P时分泌草酸,而当两种胁迫组合时分泌苹果酸。Zheng等[54]研究也表明,抗Al荞麦(Fagopyrum esculentum Moench.)品种比Al敏感品种具有更高的P利用率。

图 1 有机酸在酸性土壤解Al毒和P活化中的作用(依据参考文献[10, 30, 55-58, 63-64]绘制)
表 1 不同物种应答Al胁迫和缺P的有机酸分泌模式

有机酸不仅在根际解Al毒和活化P,而且可以在细胞内实现Al3+的区隔化和P的释放(图 1)。吸收动力学发现,Al3+能快速进入根细胞内。在水稻中,天然抗性相关巨噬蛋白(Natural resistance associated macrophage protein,Nramp)家族成员Nrat1首先将Al3+转运到细胞内,然后通过半型ABC转运蛋白(Half-size ABC transporter)ALS1区隔到液泡中,形成Al-有机酸复合体(图 1[55-56]。在拟南芥中,水通道蛋白(Aquaporin)NIP1;2具有Al-苹果酸双向转运活性,可介导Al-苹果酸从根细胞壁进入共质体中,并将Al装载到木质部中实现根向地上部的运输(图 1[57]。细胞内的螯合解毒不仅有效降低Al3+对根细胞的伤害,还可从Al-P沉淀中释放出更多的可溶性P供细胞代谢所需(图 1)。另外,液泡中的有机酸还可作为配体取代与金属离子(如Ca2+和Fe2+)结合的P,从而促进P的释放以及向细胞质的转运。在水稻中,这一过程由2个定位于液泡膜的无机P转运蛋白(Vacuolar phosphate efflux transporter,VPE)OsVPE1和OsVPE2所介导(图 1[58]

2 植物适应缺P和Al毒的分子机制 2.1 苹果酸和柠檬酸转运蛋白

小麦Al激活苹果酸转运蛋白(Aluminum-activ-ated malate transporter,ALMT)基因TaALMT1是第一个被克隆的耐Al基因[10]TaALMT1AtALMT1(拟南芥直系同源基因)共同编码介导根尖苹果酸分泌的阴离子通道蛋白(图 1[15, 59-60]。虽然TaALMT1和AtALMT1在无Al3+情况下也具有转运活性,但经Al3+刺激能增强转运活性[15, 59]。这种所谓的“Al激活”类似于配体-门控通道,Al与ALMT蛋白的结合有利于其开放状态的构象变化,从而促进苹果酸的转运。目前,虽然Al与ALMT结合的具体机制仍不清楚,但蛋白中存在的几个结构域可能与Al介导的ALMT活性增强有关[10, 61-62]。有报道称,TaALMT1对氨基丁酸(Gamma-aminobutyric acid,GABA)也具有较高的渗透性(图 1)。GABA不仅被TaALMT1运输而且可以调控TaALMT1的活性[63-64]。与ALMT1不同,Al诱导的柠檬酸分泌转运蛋白属于多种药物和毒性成分运出(Multidrug and toxic compound extrusion,MATE)家族亚组,最初通过图位克隆从高粱(SbMATE)[30]和大麦(Hordeum vulgare L.)(HvAACT1)[65]中被鉴定。随后在拟南芥(AtMATE1)[16]、玉米(Zea mays L.)(ZmMATE1)[26]、小麦(TaMATE)[11-12]、饭豆[Vigna umbellate(L.)Sweet.](VuMATE1和VuMATE2)[31-32]和水稻(Os-FRDL2和OsFRDL4)[27, 66]中发现同源蛋白。与ALMTs不同,MATEs介导pH依赖的柠檬酸转运,且不被Al3+激活[26, 30-32]。2007年,Doshi等[67]在爪蟾和酵母细胞2套系统中证实,高粱SbMATE底物识别更加广泛,不仅可转运柠檬酸,还可以转运乙酰亚胺。

植物P利用率与ALMTsMATEs表达的相关性已在大豆和小麦中被验证。在大豆P高效基因型HN89中,缺P诱导GmALMT1的上调表达可增加苹果酸的释放[36]。在大麦中过量表达小麦TaALMT1能提高酸性土壤作物的P吸收和籽粒产量[68],这在很大程度上归因于TaALMT1介导的抗Al性在酸性土壤中维持了根系的正常生长。同时,TaALMT1过表达大麦植株单位根系的P吸收量也增大,表明释放到根际的苹果酸推动了土壤P的活化和吸收[68]。进一步说明植物P有效性和抗Al性可能是通过ALMT的环境选择共进化的。随着研究的进一步深入,2种胁迫以调控根系发育为中心点的协同进化机制正被人们不断揭示。

2.2 STOP1/ALMT1的多效性调控

拟南芥C2H2锌指转录因子(Sensitive to proton rhizotoxicity,STOP1)AtSTOP1[69]和水稻直系同源蛋白(Al resistance transcription factor 1)OsART1[70]参与了转运蛋白基因的表达调控。其中,OsART1通过调控包括OsNrat1Nramp aluminum transporter 1)、OsMGT1Magnesium transporter 1)和OsFRDL4Ferric redutase defective 4)在内的膜转运蛋白基因参与水稻的抗Al性[27, 55, 71]。同样,AtSTOP1通过调控AtALMT1AtMATE1AtALS3(一个推测的Al3+转运蛋白)的表达参与拟南芥对Al的抗性[16, 69]。2017年,有研究发现,STOP1/ALMT1的作用并不仅局限于Al抗性上,还直接参与了缺P引起的根构型(Root system architecture,RSA)变化[47-48]。在缺P条件下,LPR1(Cell wall-targeted ferroxidase)/PDR2(P5-type ATPase)可诱导Fe3+和活性氧(reactive oxygen species,ROS)在根质外体中积累,进而导致胼胝质沉积和主根生长抑制(图 2[72]。进一步研究表明,STOP1/ALMT1是缺P诱导主根伸长抑制所必需的[48]。缺P能上调ALMT1的表达,且外源添加苹果酸可回复almt1stop1突变体根系缺P的不敏感表型[48]。在缺P条件下,STOP1通过调控ALMT1向根际分泌苹果酸,而LPR1将Fe2+氧化为Fe3+,苹果酸通过与Fe3+螯合促进Fe在根尖分生组织中积累,并激活ROS爆发(图 2[48]。积累的ROS可诱导细胞壁僵硬和增厚来抑制细胞伸长[48],也可诱导胼胝质沉积来阻碍SHORT-ROOT(SHR)转录因子的细胞间移动,最终导致根尖分生组织衰竭和主根生长抑制(图 2[48, 72]。另外,苹果酸-Fe3+螯合物可在蓝光下发生光芬顿反应(Fenton reaction)产生游离的Fe2+,Fe2+进一步与质外体中受LPR1调控的过氧化氢(H2O2)结合产生羟基自由基(·OH)和Fe3+,从而抑制主根生长(图 2[73]。由于缺P诱导的侧根发生增强与主根生长抑制是同时发生的[74]。因此,ALMT1可通过增加总根表面积来扩大P向根表扩散,最终增加根系对P的吸收。

(依据参考文献[47-48, 73-74, 80, 83-85, 88, 96-97, 100-102]绘制) 图 2 缺P(紫线)和Al毒(黑线)诱导主根生长抑制机制模型
2.3 STAR1/ALS3的多效性调控

ALS3和STAR1(Sensitive to Al rhizotoxicity1)是缺P反应导致根生长变化的另一组抗Al基因[75-76]。Larsen等[77]发现拟南芥als3突变体的Al敏感与Al吸收增强无关。图位克隆发现,ALS3是一个定位于根皮层、叶鞘和韧皮部细胞质膜的ABC转运蛋白[75],推测ALS3可能以一种特定的方式将Al从敏感组织移除,从而赋予了植株抗Al性。通常,ABC转运蛋白包含一个核苷酸(ATP)结合结构域和一个跨膜(TM)结构域,而ALS3和同源的细菌金属抗性蛋白ybbM都不具有ATP结合域(ABC转运活性所必需)。有意思的是,拟南芥另一个仅含ATP结构域而缺乏TM结构域的ABC转运子AtSTAR1也参与Al的抗性[76]。在水稻中,AtSTAR1的直系同源蛋白OsSTAR1(含有ATP结构域)与OsSTAR2(ALS3直系同源蛋白,含有TM结构域)被证实通过形成ABC转运复合体向细胞壁转运UDP-葡萄糖来修饰细胞壁从而赋予Al抗性[78]。推测拟南芥AtSTAR1也可能与ALS3(提供TM结构域)形成AtSTAR1/ALS3复合体来介导Al耐性[76]。然而,Dong等[79]研究却认为,AtSTAR1和ALS3的复合体定位于液泡膜上,且没有UDP-葡萄糖和P的转运活性。由于外源UDP-葡萄糖能够恢复缺P条件下atstar1和als3突变体的根生长。因此,仍然有理由相信ATSTAR1/ALS3可通过调节细胞壁代谢来介导缺P和抗Al响应。最近研究证实,荞麦FeSTAR1和FeSTAR2能发生互作,通过转运UDP-葡萄糖参与细胞壁多糖代谢来影响荞麦的抗Al性[80-81]

有意思的是,STOP1/ALMT1和STAR1/ALS3介导的多效性调节有明显的共性,即这两种途径都涉及缺P响应与Fe稳态间的信号交互。在缺P条件下,LPR突变体根中Fe积累减少,对缺P不敏感[48, 72, 79]。然而,由于AtSTAR1/ALS3通路中有UDP-葡萄糖,可逆转Fe的过度积累,从而回复缺P条件下als3突变体的短根表型(图 2[79]。与atmt1stop1突变体不同,als3突变体在缺P条件下表现出主根生长抑制增强[79]。最新研究表明,ALS3/STAR1在STOP1/ALMT1和LPR1上游来控制缺P诱导的主根生长,而且ALS3/STAR1可以通过抑制STOP1蛋白在核中的积累来抑制STOP1/ALMT1途径(图 2[82]。进一步研究发现,这主要依赖于Fe能抑制缺P条件下RAE1(a F-box protein)介导的26S蛋白酶体对STOP1的降解(图 2[83]。另外,在缺P条件下,als3突变体中STOP1的过度积累依赖于Fe和Al3+,表明Fe2/3+和Al3+可以以类似的方式增加STOP1的稳定性及在细胞核中的积累,以激活ALMT1的表达[84]。结果表明,STAR1/ALS3介导的抗Al性与P吸收间可能存在拮抗作用。综上所述,ALMT1/STOP1和STAR1/ALS3诱导的根发育变化似乎是一个特异性的缺P反应,而以Fe稳态为中心的生理学机制可能是由ALMT1/STOP1和STAR1/ALS3介导不同的抗Al途径来调控缺P条件下根尖分生组织的重塑来实现的。

2.4 缺P和Al毒胁迫中的激素互作

研究报道生长素、乙烯、独脚金内脂和茉莉酸等植物激素在调控环境变化引起的根尖分生组织活性中发挥重要作用。研究表明,Al毒和P有效性可影响生长素的合成和运输,导致生长素分布和根系生长发生改变[85-87]。拟南芥lpr突变体主根对缺P响应的不敏感是通过生长素调控实现的[88-90]。而且,lpr1-1 lpr2-1双突变体也表现出在Al毒下增强主根的伸长[91],表明缺P和Al毒导致的主根生长变化可能由共同的生长素调控途径所介导[90]。同时,生长素受体(Transport inhibitor response 1,TIR1)和生长素响应因子(Auxin response factor,ARF)也参与缺P诱导的侧根的发生和形成调控[92]。随着Al浓度的增加,tir1-1单突变体和arf7-1 arf19-1双突变体对侧根密度刺激和主根生长的抑制减弱,表明缺P和Al胁迫介导的侧根发育也存在共同的生长素信号通路[92]

乙烯参与缺P诱导的主根生长抑制、侧根伸长促进和根毛形成[93-94]。Al胁迫同样可激活主根的乙烯信号反应,如Al诱导的根抑制在乙烯信号突变体etr1-3ein2-1中被减弱(图 2[87]。在拟南芥中,Al诱导主根生长素在根尖过渡区(分生区向伸长区的过渡区)的合成依赖于乙烯信号,并由两个参与色氨酸依赖的生长素合成关键酶家族基因YUCCAYUC)和TAA所介导,最终导致主根生长抑制(图 2[95-96]。这些研究表明,依赖于乙烯信号的生长素合成在介导Al诱导的主根生长抑制中起着关键作用。然而,玉米生长素运出载体P-糖蛋白(Auxin efflux carrier P-glycoprotein,ZMPGP1)缺陷型突变体则显示较高的根尖过渡区生长素积累和Al抗性[97]。这一发现似乎与先前的结论相悖,生长素从过渡区向伸长区运输的减少是导致Al诱导玉米根伸长抑制的原因之一[85]。需要进一步试验证据来解释这种矛盾是由于物种或试验条件的差异,还是其他原因造成的。另外,在参与乙烯生物合成的12个ACS基因中,ACS2和ACS6均受到缺P和Al毒高度上调。同样,这两种胁迫也增强ACO1ACO2的表达,表明ACS和ACO可能是导致拟南芥缺P和Al毒下乙烯爆发的原因之一[87, 98]

另一方面,Al胁迫诱导生长素在根尖过渡区的积累,会引起细胞分裂素的积累,导致主根生长抑制,表明生长素和细胞分裂素在这一过程中具有协同作用[99]。其中,细胞分裂素合成依赖于腺苷磷酸异戊烯转移酶(Isopentenyl transferase,IPT)。在生长素合成增强的yuc1D突变体中,Al诱导的IPT上调和细胞分裂素合成显著增强,而在arf7/19双突变体中这一过程则显著降低,表明这是一个生长素依赖的过程(图 2[99]。另外,茉莉酸也被报道与缺P相关[100]。在茉莉酸信号突变体coi1-34中,缺P诱导的主根抑制被部分解除。因此,COI1介导的茉莉酸信号参与缺P条件下下主根的生长抑制(图 2[100]。而在Al胁迫下,茉莉酸信号被乙烯所调控,并通过调控微管聚合和ALMT1介导的苹果酸分泌来抑制主根生长(图 2[101]

2.5 细胞壁相关激酶参与植物P吸收和Al耐性调控

细胞壁相关激酶(Wall-associated protein kinases,WAKs)是受体类激酶(Receptor-like kinases,RLKs)/Pelle超家族中的一个亚家族。WAKs家族蛋白通常由富含半胱氨酸(Cysteine-rich,Cys-rich)的半乳糖醛酸结合域(Galacturonan binding domain,GUB_Wak)、表皮生长因子(Pidermal growth factor,EGF)重复序列、TM结构域,以及胞质丝氨酸/苏氨酸激酶域(Serine/threonine kinase domain)所构成,可跨越质膜并延伸至细胞壁[102]。Sivaguru等[103]发现Al能快速诱导拟南芥AtWAK1的表达,且过表达AtWAK1植株抗Al性增强。同样,在拟南芥中过表达饭豆NAC转录因子VuNAR1可正调控WAK1的表达来降低细胞壁果胶含量,从而提高抗Al性[104]。通过关联作图法,Hufnagel等[105]发现高粱中的水稻丝氨酸/苏氨酸受体激酶OsPSTOL1(Phosphorus-starvation tolerance 1)[106]直系同源蛋白SbPSTOL1参与了根表面积的增加,从而提高了低P土壤中高粱P的吸收和籽粒产量。SbPSTOL1和WAK蛋白(如AtWAK1)结构间的相似性表明它们的抗Al功能具有相关性[103, 105]。最近的研究表明,GUB_Wak结构域中的氨基酸可与细胞壁中的果胶和低聚半乳糖醛酸共价结合[107-108]。因此,SbPSTOL1可能与WAKs一样,作为一种受体在细胞应答缺P的信号级联激活中发挥作用。考虑到SbPSTOL1在促进高粱根系生长和P吸收中均发挥作用,这类蛋白可能同时具有抗Al和增强P吸收的功能。

3 总结与展望

良好的根发育和根系构型是植物抵御酸性土壤Al毒和缺P胁迫所必需的。有机酸作为酸性土壤中植物抵御Al毒和缺P的关键物质,既在根际和细胞内螯合Al,又在根际和细胞内活化和释放P。因此,植物内外部机制在进化过程中协同促进了有机酸的合成和分泌(图 1)。最近对STOP1/ALMT1和STAR1/ALS3介导的多效性调控研究从分子层面给我们提供了一些交互的实质信息,也证实了两种胁迫确实存在一些协同调控的中枢和检查点(如根发育)(图 2)。然而,这些调控更多是基于对抗Al基因的认识拓展到缺P上的。已知的P信号途径,比如参与根系生长和P吸收转运的PHR、SPX、PHO和PHF等核心组分[7]是否也与参与耐Al调控(特别是有机酸分泌调控)还需进一步研究。

缺P和Al毒都可抑制主根生长并促进侧根生长。而植物激素,特别是生长素和乙烯在调节根系响应2种胁迫中有着重要作用(图 2)。然而,由于不同物种间生长素转运蛋白基因的表达模式不同,且激素在促进或抑制根生长阈值上存在差异,导致不同物种间的根系发育变化在响应缺P和Al毒上也不尽相同。进一步研究激素是如何调节关键基因来提高抗Al性和P利用率就尤为重要。例如,水稻抗Al转录因子ART1调节至少30个与Al的内外解毒有关的基因[42]。但激素是否也参与ART1调控的Al信号途径中尚不清楚。此外,Al毒和缺P引发根系有机酸的分泌是二者之间共有的一种机制,激素是如何调节有机酸转运蛋白基因也缺乏了解。

在酸性土壤中,研究主要集中在抗Al基因对作物生产力的影响,但这些基因对作物P利用率的多效性影响应得进一步关注。此外,对缺P和Al毒互作调控的认识大多来自拟南芥,而将基础研究结果转化为在育种上来创制作物新品种的研究还比较少。通过作物品种内存在的遗传变异去鉴定抗Al基因,无疑是最适合培育酸性土壤中高产作物的分子工具。随着技术的进步,设计和培育出具有理想根系的“智能”作物将成为可能,实现酸性土壤中既能提高P利用率,又能抵抗Al毒,从根本上减少P肥消耗和实现农业的可持续发展。

参考文献
[1]
Von Uexkull HR, Mutert E. Global extent, development and economic impact of acid soils[J]. Plant Soil, 1995, 171(1): 1-15.
[2]
Ma JF, Chen ZC, Shen RF. Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant Soil, 2014, 381(1/2): 1-12.
[3]
Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annu Rev Plant Biol, 2004, 55: 459-493. DOI:10.1146/annurev.arplant.55.031903.141655
[4]
Zheng SJ. Crop production on acidic soils:overcoming aluminium toxicity and phosphorus deficiency[J]. Ann Bot, 2010, 106(1): 183-184. DOI:10.1093/aob/mcq134
[5]
Ma JF. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J]. Int Rev Cytol, 2007, 264: 225-252. DOI:10.1016/S0074-7696(07)64005-4
[6]
Cheng L, Bucciarelli B, Shen J, et al. Update on white lupin cluster root acclimation to phosphorus deficiency[J]. Plantm Physiol, 2011, 156(3): 1025-1032.
[7]
Puga MI, Rojas-Triana M, De Lorenzo L, et al. Novel signals in the regulation of Pi starvation responses in plants:facts and promises[J]. Curr Opin Plant Biol, 2017, 39: 40-49. DOI:10.1016/j.pbi.2017.05.007
[8]
Kochian LV, Pineros MA, Liu J, et al. Plant adaptation to acid soils:the molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 2015, 66: 571-598. DOI:10.1146/annurev-arplant-043014-114822
[9]
Yang JL, Fan W, Zheng SJ. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots[J]. J Zhejlang Univ-Sci B, 2019, 20(6): 513-527. DOI:10.1631/jzus.B1900188
[10]
Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. Plant J, 2004, 37(5): 645-653. DOI:10.1111/j.1365-313X.2003.01991.x
[11]
Ryan PR, Raman H, Gupta S, et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots[J]. Plant Physiol, 2009, 149(1): 340-351.
[12]
Tovkach A, Ryan PR, Richardson AE, et al. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices[J]. Plant Physiol, 2013, 161(2): 880-892.
[13]
Collins NC, Shirley NJ, Saeed M, et al. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye(Secale cereale L.)[J]. Genetics, 2008, 179(1): 669*-682.
[14]
Yokosho K, Naoki Yamaji N, Ma JF. Isolation and characterisation of two MATE genes in rye[J]. Funct Plant Biol, 2010, 179(1): 669-682.
[15]
Hoekenga OA, Maron LG, Piñeros MA, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(25): 9738-9743. DOI:10.1073/pnas.0602868103
[16]
Liu J, Magalhaes JV, Shaff J, et al. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. Plant J, 2009, 57(3): 389-399. DOI:10.1111/j.1365-313X.2008.03696.x
[17]
Zhang L, Wu X, Wang J, et al. BoALMT1, an Al-induced malate transporter in cabbage, enhances aluminum tolerance in Arabidopsis thaliana[J]. Front Plant Sci, 2017, 8: 2156.
[18]
Wu X, Li R, Shi J, et al. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana[J]. Plant Cell Physiol, 2014, 55(8): 1426-1436. DOI:10.1093/pcp/pcu067
[19]
Lei GJ, Yokosho K, Yamaji N, et al. Two MATE transporters with different subcellular localization are involved in Al tolerance in buckwheat[J]. Plant Cell Physiol, 2017, 58(12): 2179-2189. DOI:10.1093/pcp/pcx152
[20]
Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat:Ⅰ. Al-induced specific secretion of oxalic acid from root tips[J]. Plant Physiol, 1998, 117(3): 745-751.
[21]
Ye J, Wang X, Hu T, et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. Plant Cell, 2017, 29(9): 2249-2268. DOI:10.1105/tpc.17.00211
[22]
Yang JL, Zhang L, Zheng SJ. Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators[J]. J Integr Plant Biol, 2008, 50(9): 1103-1107. DOI:10.1111/j.1744-7909.2008.00687.x
[23]
Ligaba A, Katsuhara M, Ryan PR, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J]. Plant Physiol, 2006, 142(3): 1294-1303.
[24]
Chen ZC, Yokosho K, Kashino M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus[J]. Plant J, 2013, 76(1): 10-23.
[25]
Furukawa J, Yamaji N, Wang H, et al. An aluminum-activated citrate transporter in barley[J]. Plant Cell Physiol, 2007, 48(8): 1081-1091. DOI:10.1093/pcp/pcm091
[26]
Maron LG, Piñeros MA, Guimarães CT, et al. Two functionally distinct members of the MATE(multi-drug and toxic compound extrusion)family of transporters potentially underlie two major aluminum tolerance QTLs in maize[J]. Plant J, 2010, 61(5): 728-740. DOI:10.1111/j.1365-313X.2009.04103.x
[27]
Yokosho K, Yamaji N, Ma JF. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant J, 2011, 68(6): 1061-1069. DOI:10.1111/j.1365-313X.2011.04757.x
[28]
Yokosho K, Yamaji N, Fujii-Kashino M, et al. Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice[J]. Plant Cell Physiol, 2016, 57(5): 967-985.
[29]
Qiu W, Wang N, Dai J, et al. AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts[J]. J Exp Bot, 2016, 70(10): 2873-2886.
[30]
Magalhaes JV, Liu J, Guimarães CT, et al. A gene in the multidrug and toxic compound extrusion(MATE)family confers aluminum tolerance in sorghum[J]. Nat Genet, 2007, 39(9): 1156-1161. DOI:10.1038/ng2074
[31]
Yang XY, Yang JL, Zhou Y, et al. A de novo synthesis citrate tran-sporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean(Vigna umbellata)root apex[J]. Plant Cell Environ, 2011, 34(12): 2138-2148. DOI:10.1111/j.1365-3040.2011.02410.x
[32]
Liu MY, Lou HQ, Chen WW, et al. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress[J]. Plant Cell Environ, 2018, 41(4): 809-822.
[33]
Ma Q, Yi R, Li L, et al. GsMATE encoding a multidrug and toxic compound extrusion transporter enhances aluminum tolerance in Arabidopsis thaliana[J]. BMC Plant Biol, 2018, 18(1): 212.
[34]
Ma Z, Miyasaka SC. Oxalate exudation by taro in response to Al[J]. Plant Physiol, 1998, 118(3): 861-865.
[35]
Yang JL, Zheng SJ, He YF, et al. Aluminium resistance requires resistance to acid stress:a case study with spinach that exudes oxalate rapidly when exposed to Al stress[J]. J Exp Bot, 2005, 56(414): 1197-1203. DOI:10.1093/jxb/eri113
[36]
Liang CY, Piñeros MA, Tian J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiol, 2013, 161(3): 1347-1361.
[37]
Peng W, Wu W, Peng J, et al. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. J Integr Plant Biol, 2018, 60(3): 216-231. DOI:10.1111/jipb.12604
[38]
申建波, 张福锁, 毛达如. 磷胁迫下大豆根分泌有机酸的动态变化[J]. 中国农业大学学报, 1998, 3(增刊): 44-48.
[39]
Lipton DS, Blanchar RW, Blevins DG. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings[J]. Plant Physiol, 1987, 85(2): 315-317.
[40]
Shen H, Yan X, Zhao M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates[J]. Environ Exp Bot, 2002, 48(1): 1-9. DOI:10.1016/S0098-8472(02)00009-6
[41]
Johnson JF, Allan DL, Vance CP. Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus[J]. Plant Physiol, 1994, 104(2): 657-665.
[42]
Ishikawa S, Adu-Gyamfi JJ, Nakamura T, et al. Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-nutrient environments[J]. Plant and Soil, 2002, 245: 71-81. DOI:10.1023/A:1020659227650
[43]
Hoffland E, Findenegg GR, Nelemans JA. Solubilization of rock phosphate by rape:Ⅱ. Local root exudation of organic acids as a response to P-starvation[J]. Plant and Soil, 1989, 113: 161-165. DOI:10.1007/BF02280176
[44]
Li XF, Zuo HZ, Ling GZ, et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes[J]. Plant Soil, 2009, 325: 219-229. DOI:10.1007/s11104-009-9971-7
[45]
Kirk GJD, Santos EE, Findenegg GR. Phosphate solubilization by organic anion excretion from rice(Oryza sativa L.)growing in aerobic soil[J]. Plant and Soil, 1999, 211: 11-18. DOI:10.1023/A:1004539212083
[46]
Yang LT, Jiang HX, Qi YP, et al. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in citrus roots[J]. Mol Biol Rep, 2012, 39(5): 6353-6366.
[47]
Balzergue C, Dartevelle T, Godon C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nat Commun, 2017, 8: 15300. DOI:10.1038/ncomms15300
[48]
Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate[J]. Proc Natl Acad Sci USA, 2017, 114(17): E3563-E3572. DOI:10.1073/pnas.1701952114
[49]
Tan K, Keltjens WG. Interaction between aluminium and phosphorus in sorghum plants[J]. Plant and Soil, 1990, 124(1): 15-23. DOI:10.1007/BF00010926
[50]
Pellet DM, Papernik LA, Kochian LV. Multiple aluminum-resistance mechanisms in wheat(roles of root apical phosphate and malate exudation)[J]. Plant Physiol, 1996, 112(2): 591-597.
[51]
Dong D, Peng X, Yan X. Organic acid exudation induced by phosphorus deficiency and/or aluminum toxicity in two contrasting soybean genotypes[J]. Physiol Plantarum, 2004, 122(2): 190-199.
[52]
Ligaba A, Shen H, Shibata K, et al. The role of phosphorus in aluminum-induced citrate and malate exudation from rape(Brassica napus)[J]. Physiologia Plantarum, 2004, 120(4): 575-584.
[53]
Liao H, Wan H, Shaff J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiol, 2006, 141(2): 674-684.
[54]
Zheng SJ, Yang JL, He YF, et al. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat[J]. Plant Physiol, 2005, 138(1): 297-303.
[55]
Xia JX, Yamaji N, Kasai T, et al. Plasma membrane-localized transporter for aluminum in rice[J]. Proc Natl Acad Sci USA, 2010, 107(43): 18381-18385. DOI:10.1073/pnas.1004949107
[56]
Huang CF, Yamaji N, Chen Z, et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. Plant J, 2012, 69(5): 857-867. DOI:10.1111/j.1365-313X.2011.04837.x
[57]
Wang Y, Li R, Li D, et al. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2017, 114(19): 5047-5052. DOI:10.1073/pnas.1618557114
[58]
Xu L, Zhao H, Wan R, et al. Identification of vacuolar phosphate efflux transporters in land plants[J]. Nature Plants, 2019, 5(1): 84-94. DOI:10.1038/s41477-018-0334-3
[59]
Piñeros MA, Cancado GMA, Kochian LV. Novel properties of the wheat aluminum tolerance organic acid transporter(TaALMT1)revealed by electrophysiological characterization in Xenopus Oocytes:functional and structural implications[J]. Plant Physiol, 2008, 147(4): 2131-2146. DOI:10.1104/pp.108.119636
[60]
Zhang WH, Ryan PR, Sasaki T, et al. Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco(Nicotiana tabacum L.)cells[J]. Plant Physiol, 2008, 49(9): 1316-1330.
[61]
Furuichi T, Sasaki T, Tsuchiya Y, et al. An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat[J]. Plant J, 2010, 64(1): 47-55.
[62]
Ligaba A, Dreyer I, Margaryan A, et al. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1[J]. Plant J, 2013, 76(5): 766-780. DOI:10.1111/tpj.12332
[63]
Ramesh SA, Kamran M, Sullivan W, et al. Aluminum-activated malate transporters can facilitate GABA transport[J]. Plant Cell, 2018, 30(5): 1147-1164.
[64]
Ramesh SA, Tyerman SD, Xu B, et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters[J]. Nat Commun, 2015, 6: 7879. DOI:10.1038/ncomms8879
[65]
Furukawa J, Yamaji N, Wang H, et al. An aluminum-activated citrate transporter in barley[J]. Plant Cell Physiol, 2007, 48(8): 1081-1091. DOI:10.1093/pcp/pcm091
[66]
Yokosho K, Yamaji N, Fujii-Kashino M, et al. Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice[J]. Plant Cell Physiol, 2016, 57(5): 967-985.
[67]
Doshi R, McGrath AP, Piñeros M, et al. Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor[J]. Sci Rep, 2017, 7(1): 17996.
[68]
Delhaize E, Taylor P, Hocking PJ, et al. Transgenic barley(Hordeum vulgare L.)expressing the wheat aluminium resistance gene(TaALMT1)shows enhanced phosphorus nutrition and grain production when grown on an acid soil[J]. Plant Biotechnol J, 2009, 7(5): 391-400. DOI:10.1111/j.1467-7652.2009.00403.x
[69]
Sawaki Y, Iuchi S, Kobayashi Y, et al. STOP1 Regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities[J]. Plant Physiol, 2009, 150(1): 281-294.
[70]
Yamaji N, Huang CF, Nagao S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(10): 3339-3349. DOI:10.1105/tpc.109.070771
[71]
Chen ZC, Yamaji N, Motoyama R, et al. Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice[J]. Plant Physiol, 2012, 159(4): 1624-1633.
[72]
Müller J, Toev T, Heisters M, et al. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability[J]. Dev Cell, 2015, 33(2): 216-230. DOI:10.1016/j.devcel.2015.02.007
[73]
Zheng Z, Wang Z, Wang XY, et al. Blue light triggered-chemical reactions underlie phosphate deficiency-induced inhibition of root elongation of Arabidopsis seedlings grown in petri dishes[J]. Mol Plant, 2019, 12(11): 1515-1523. DOI:10.1016/j.molp.2019.08.001
[74]
Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana[J]. Plant Physiol, 2005, 46(1): 174-184.
[75]
Larsen PB, Geisler MJB, Jones CA, et al. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. Plant J, 2005, 41(3): 353-363.
[76]
Huang CF, Yamaji N, Ma JF. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis[J]. Plant Physiol, 2010, 153(4): 1669-1677.
[77]
Larsen PB, Kochian LV, Howell SH. Al inhibits both shoot development and root growth in als3, an Al-sensitive Arabidopsis mutant[J]. Plant Physiol, 1997, 114(4): 1207-1214.
[78]
Huang CF, Yamaji N, Mitani N, et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(2): 655-667.
[79]
Dong J, Piñeros MA, Li X, et al. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots[J]. Mol Plant, 2017, 10(2): 244-259. DOI:10.1016/j.molp.2016.11.001
[80]
Xu JM, Lou HQ, Jin JF, et al. A half-type ABC transporter FeSTAR1 regulates Al resistance possibly via UDP-glucose-based hemicellulose metabolism and Al binding[J]. Plant Soil, 2018, 423: 303-314.
[81]
Xu JM, Wang ZQ, Jin JF, et al. FeSTAR2 interacted by FeSTAR1 alters its subcellular location and regulates Al tolerance in buckwheat[J]. Plant Soil, 2019, 436(1): 489-501.
[82]
Wang XY, Wang Z, Zheng Z, et al. Genetic dissection of Fe-dependent signaling in root developmental responses to phosphate deficiency[J]. Plant Physiol, 2019, 179(1): 300-316.
[83]
Zhang Y, Zhang J, Guo JL, et al. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2019, 116(1): 319-327. DOI:10.1073/pnas.1814426116
[84]
Godon C, Mercier C, Wang XY, et al. Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells[J]. Plant J, 2019, 99(5): 937-949.
[85]
Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?[J]. Plant Physiol, 2000, 122(3): 945-956.
[86]
Doncheva S, Amenos M, Poschenrieder C, et al. Root cell patterning:a primary target for aluminium toxicity in maize[J]. J Exp Bot, 2005, 56(414): 1213-1220. DOI:10.1093/jxb/eri115
[87]
Sun P, Tian QY, Chen J, et al. Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin[J]. J Exp Bot, 2010, 61(2): 347-356. DOI:10.1093/jxb/erp306
[88]
Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency[J]. Plant Physiol, 2006, 140(3): 879-889.
[89]
Svistoonoff S, Creff A, Reymond M, et al. Root tip contact with low-phosphate media reprograms plant root architecture[J]. Nat Genet, 2007, 39(6): 792-796. DOI:10.1038/ng2041
[90]
Wang X, Du G, Wang X, et al. The Function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana[J]. Plant Cell Physiol, 2010, 51(3): 380-394.
[91]
Ruíz-Herrera LF, López-Bucio J. Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling in Arabidopsis seedlings[J]. Plant Soil, 2013, 371(1-2): 593-609. DOI:10.1007/s11104-013-1722-0
[92]
Pérez-Torres C A, López-Bucio J, Cruz-Ramírez A, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor[J]. Plant Cell, 2008, 20(12): 3258-3272. DOI:10.1105/tpc.108.058719
[93]
Nagarajan VK, Smith AP. Ethylene's role in phosphate starvation signaling:more than just a root growth regulator[J]. Plant Cell Physiol, 2012, 53(2): 277-286.
[94]
Song L, Yu H, Dong J, et al. The Molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation[J]. PLoS Genet, 2016, 12(7): e1006194. DOI:10.1371/journal.pgen.1006194
[95]
Liu G, Gao S, Tian H, et al. Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis[J]. PLoS Genet, 2016, 12(10): e1006360. DOI:10.1371/journal.pgen.1006360
[96]
Yang ZB, Geng X, He C, et al. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis[J]. Plant Cell, 2014, 26(7): 2889-2904. DOI:10.1105/tpc.114.127993
[97]
Zhang M, Lu X, Li C, et al. Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress[J]. Plant Physiol, 2018, 177(20): 819-832.
[98]
Lei M, Zhu C, Liu Y, et al. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis[J]. New Phytol, 2011, 189(4): 1084-1095. DOI:10.1111/j.1469-8137.2010.03555.x
[99]
Yang ZB, Liu G, Liu J, et al. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis[J]. EMBO Reports, 2017, 18(7): 1213-1230. DOI:10.15252/embr.201643806
[100]
Khan GA, Vogiatzaki E, Glauser G, et al. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory[J]. Plant Physiol, 2016, 171(1): 632-644.
[101]
Yang ZB, He C, Ma Y, et al. Jasmonic acid enhances Al-induced root-growth inhibition[J]. Plant Physiol, 2017, 173(2): 1420-1433.
[102]
Anderson CM, Wagner TA, Perret M, et al. WAKs:cell wall-associated kinases linking the cytoplasm to the extracellular matrix[J]. Plant Mol Biol, 2001, 47(1/2): 197-206. DOI:10.1023/A:1010691701578
[103]
Sivaguru M, Ezaki B, He ZH, et al. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis[J]. Plant Physiol, 2003, 132(4): 2256-2266. DOI:10.1104/pp.103.022129
[104]
Lou HQ, Fan W, Jin JF, et al. A NAC-type transcription factor confers aluminum resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin[J]. Plant Cell Environ, 2020, 43(2): 463-478.
[105]
Hufnagel B, De Sousa SM, Assis L, et al. Duplicate and conquer:multiple homologs of PHOSPHORUSSTARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils[J]. Plant Physiol, 2014, 166(2): 659-677.
[106]
Gamuyao R, Chin JH, Pariasca-tanaka J, et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency[J]. Nature, 2012, 488(7412): 535-539. DOI:10.1038/nature11346
[107]
Verica J, He Z. The cell wall-associated kinase(WAK)and WAK-like kinase gene family[J]. Plant Physiol, 2002, 129(2): 455-459.
[108]
Kohorn BD, Hoon D, Minkoff B, et al. Rapid oligo-galacturonide induced changes in protein phosphorylation in Arabidopsis[J]. Mol Cell Proteomics, 2016, 15(4): 1351-1359. DOI:10.1074/mcp.M115.055368