经典分子遗传学描述了从基因到蛋白质的信息传递过程,即中心法则[1],但是这一学说并不能完全解释所有的遗传现象。为了进一步解释这些非经典遗传学的遗传现象,1957年研究人员提出了一个新的概念——表观遗传学。表观遗传学是研究在DNA序列不发生改变的情况下,通过对基因进行可逆性修饰,产生可遗传的基因表达改变,导致表型变异的现象。表观遗传调控机制涉及到DNA甲基化、组蛋白修饰、非编码RNA几个方面,是当前生命科学研究中的一个热点[2]。在真核生物中,核小体是组成染色质的基本单位,由DNA包裹在组蛋白八聚体(由两个组蛋白H2A,H2B,H3和H4组成)周围形成[3]。组蛋白翻译后修饰有很多类型,包括甲基化(me)、乙酰化(ac)、丙酰化(pr)、丁酰化(bt)、巴豆酰化(cr)、甲酰化(fo)、磷酸化(ph)、泛素化(ub)、SUMO化、ADP核糖化和生物素化(bio)等。这些修饰发生在组蛋白不同氨基酸类型或组蛋白不同位点上,并可以成组或成簇地分布于染色质不同区段,可影响组蛋白与DNA结合能力从而改变染色质的状态,也可以影响转录因子与DNA序列的结合,对基因表达调控具有类似DNA遗传密码的作用,故被称为“组蛋白密码”(图 1)[4-5]。
在众多组蛋白修饰中,组蛋白的甲基化修饰有着重要的调控作用,并且其修饰方式更加复杂。组蛋白甲基化不仅能够发生在组蛋白的不同位点上,同时在同一位点还能产生不同程度的甲基化修饰水平。如赖氨酸残基可以发生单甲基化(Kme1)、二甲基化(Kme2)或三甲基化(Kme3)修饰,而精氨酸残基则可以发生单甲基化修饰(Rme1)、对称二甲基化修饰(Rme2s)或非对称二甲基化(Rme2a)修饰[6]。本文将重点综述植物赖氨酸残基甲基化的建立与去除过程,并探讨在植物生长发育、非生物胁迫及植物免疫等方面的作用和可遗传性。
1 组蛋白甲基化组蛋白的甲基化主要发生在组蛋白H3、H4的N端赖氨酸(K)和精氨酸(R)残基上,并不改变组蛋白的电荷,是由组蛋白甲基转移酶(Histone methyltransferase,HMT)将S-腺苷甲硫氨酸上的甲基转移到靶蛋白赖氨酸残基末端的胍基上而产生的修饰。果蝇中的Su(var)3-9蛋白是被发现的第一个组蛋白甲基转移酶,具有保守SET结构域[7],哺乳动物中的SUV39H1和SUV39H2。以及酵母中Clr4都是Su(var)3-9的类似物。以上这4种酶对H3K9甲基化具有特异的催化活性[8],而哺乳动物中另一种甲基转移酶G9a不仅可以催化H3K9甲基化,还可以催化H3K27甲基化。目前为止,已发现了数十种赖氨酸甲基转移酶(Histone lysine methyltransferases,HKMTs)。其中HKMTS分为SET结构域家族和非SET结构域家族。目前研究比较深入的是SET结构域家族,Ng等[9]将SET结构域家族分为7个种类:(1)E(z)同源物;(2)ASH1同源物;(3)trithorax同源物;(4)含有SET和PHD结构域的蛋白;(5)Su(var)同源物;(6)含有中断的SET结构域的蛋白;(7)RBCMT和其他SET相关的蛋白。
在模式植物拟南芥(Arabidopsis thaliana)中共发现47种SET结构域蛋白,水稻和玉米中目前为止分别发现37种和35种SET结构蛋白,不同的SET蛋白具有不同的作用。植物的SET家族Ⅰ蛋白作为H3K27甲基转移酶,使H3K27发生甲基化,家族Ⅱ在拟南芥中有着H3K36甲基转移酶活性,家族Ⅲ在激活基因表达方面发挥作用,家族Ⅳ是一类含有一个PHD finger和在C端有一个SET结构域的蛋白,大部分的家族Ⅴ蛋白跟H3K9甲基化相关,家族Ⅵ在拟南芥、玉米和水稻中都存在同源基因,表明这一类型的家族存在于植物分化为单子叶植物和双子叶植物之前。与前6个家族不同,家族Ⅶ能够甲基化非组蛋白蛋白质,目前在玉米中还未发现家族Ⅶ[9]。
2 组蛋白甲基化的建立与去除组蛋白修饰是一个动态的过程。为此,生物体进化出一系列的酶来完成特定组蛋白修饰的建立与去除。通常将能够特异性识别组蛋白修饰位点的蛋白或结构域称作“阅读器”(Reader),如Chromo[10],WD40重复[11]等;将能够产生组蛋白修饰位点的酶称为“书写器”(Writer),如组蛋白磷酸化酶,组蛋白甲基转移酶等;将能去除组蛋白修饰的酶称为“擦除器”(Eraser),如组蛋白去磷酸化酶,组蛋白去甲基化酶等。组蛋白赖氨酸甲基化的建立与去除过程机制比较明确(图 2)。
2.1 组蛋白赖氨酸甲基化的建立组蛋白赖氨酸的甲基化修饰通过改变组蛋白N端的不同位点赖氨酸的甲基化状态或相同位点赖氨酸的甲基化数量来介导基因在转录水平的沉默和染色质的开放程度[12]。目前,对植物组蛋白赖氨酸甲基化修饰的研究主要集中在H3的第4、9、27和36位的赖氨酸残基上[13]。
在拟南芥中,目前一共发现了7个H3K4me的“书写器”,3个H3K9me的“书写器”,5个H3K27me的“书写器”,6个H3K36me的“书写器”(表 1)。在H3K4me的“书写器”中,有一些能够向H3K4添加多个甲基如SDG2(SET DOMAIN GROUP2)[14]和SDG25/ATXR7(ARABIDOPSIS TRITHORAX-RELATED 7)[15],或者能够靶向不同的氨基酸如SDG26:H3K4me3和H3K36me3[16]、SDG4:H3K4me2/3和H3K36me3[17]。虽然ATX1和ATX2相似度很高,但是ATX1特异靶向H3K4me3,而ATX2靶向H3K4me2[18]。SDG2主要是与H3K4me3有关[19]。ATX3、ATX4和ATX5具有相似的结构域和表达模式,当ATX3、ATX4和ATX5突变后会造成全基因组水平的H3K4me2和H3K4me3的水平显著降低和上千个相关基因的异位表达。axt3/atx4/atx5三突与atx2单突的杂交后代会有一些巨大的表型改变[20]。在水稻中,目前共发现了1个H3K4me的“书写器”,3个H3K9me的“书写器”,8个H3K27me的“书写器”,2个H3K36me的“书写器”。SDG701蛋白结合染色质以促进H3K4me3并增强水稻成花素基因Hd3a(Heading date 3a)和RFT1(Rice Flowering Locus T 1)的表达,促进水稻在长日或短日光周期下开花[21]。
目前拟南芥中鉴定出的Su(var)3-9的家族蛋白从SUVH1到SUVH9共有9个,其中SUVH4是KYP。kpyptonite突变导致组蛋白H3K9甲基化的减少,DNA甲基化的损失和基因沉默的减少。在kpyptonite突变体中,H3K9me2几乎全部丢失,而H3K9me1甲基化只有轻微的丢失,这表明KPYPTONITE蛋白可以向H3K9位点添加一甲基化和二甲基化,而不能添加三甲基化[22]。同时SUVH5和SUVH6也具有H3K9me1和H3K9me2的甲基转移酶活性[23-24]。水稻中共发现12个Su(var)3-9的家族蛋白,其中SDG710、SDG714和SDG727三个蛋白具有H3K9me2和H3K9me3的甲基转移酶活性,但是对这3个基因在水稻的过表达和RNAi株系中均未观察到明显的表型变化[25]。
H3K27的甲基化酶主要与PRC2(Polycomb repressive complex 2)复合体有关。PRC2复合体在果蝇中包含4个核心蛋白:(1)Zeste增强子;(2)Zeste抑制物;(3)额外的性梳;(4)p55[26]。在拟南芥中,CUPLYLEAF(CLF),SWINGER(SWN)和MEDEA(MEA)是PRC2复合体Zeste增强子的3个含有SET结构域的同源蛋白,这3个酶主要催化H3K27的三甲基化[12]。虽然通过免疫染色的结果发现,PRC2也能促进H3K27me2在常染色质中的积累,但是H3K27me2的主要甲基化转移酶还没有发现[27]。ATXR5和ATRX6是拟南芥DNA复制过程中的异染色质区域的H3K27me1主要的甲基化转移酶[28]。水稻中,OsCLF和OsiEZ1是Zeste增强子的同源蛋白,OsEMF2a和OsEMF2b是Zeste抑制物的同源蛋白,OsFIE1和OsFIE2是额外性梳的同源蛋白,这6个酶催化H3K27的三甲基化[29]。OsVIL2和OsVIL3可能是水稻PRC2复合体组成部分,通过与水稻的开花抑制物OsLF的启动子区域结合,并通过向其添加H3K27me3修饰,抑制OsLF的表达,使水稻开花时间提前[30]。
在植物中,多个含有SET结构域的蛋白质负责编写H3K36的甲基化。SDG4和SDG26特异催化H3K36的三甲基化[16-17],而SDG25特异靶向H3K36me2[31]。SDG8既能催化H3K36的二甲基化,又能催化其三甲基化[32]。Kumpf等[33]发现ASHR3是H3K36me1和H3K36me2的甲基转移酶。ATXR2是一个H3K36me3的甲基转移酶,能与LBD(LATERAL ORGAN BOUNDARIES DOMAIN)基因的启动子结合,导致LBD启动子上的H3K36me3增加,从而促进愈伤组织的诱导发育[34]。SDG724通过调节水稻MADS50和RFT1基因上H3K36me2和H3K36me3的水平来促进水稻开花[35]。SDG725是水稻H3K36me2和H3K36me3的甲基转移酶,它的表达下调会引起水稻的矮化、节间缩短、叶片直立、种子变小[36]。
2.2 组蛋白赖氨酸甲基化的去除组蛋白赖氨酸甲基化的去除需要具有组蛋白去甲基酶活性的蛋白质。根据组蛋白赖氨酸去甲基酶的作用方式可以将其分为两类:赖氨酸特异性去甲基化酶1(Lsine-specific demethylase 1,LSD1)[37]和含有Jmjc结构域的去甲基化酶(Jmjc domain-containing histone demethylases,JHDM)[38]。目前,拟南芥中LSD1同源物可以分为4种类型,分别是FLD(FLOWERING LOCUS D)、LDL1(LSD1 LIKE1)、LDL2和LDL3[39],编码JHDM的基因共有21个,可分为KDM5(lysine demethylase 5)/JARID1、KDM3/JHDM2、KDM4/JHDM3、JHDM6和一类只含有Jmjc结构域的蛋白共5类[40]。与拟南芥相似,水稻中共发现5类JHDM基因,共20个。Qian等[41]根据玉米基因组共预测到19个JHDM,分别注释到JARID1、JHDM2和JHDM3这3类中。
在拟南芥中FLD、LDL1和LDL2通过降低FLC(FLOWERING LOCUS C)位点的H3K4me1/2的甲基化水平来调控FLC的表达水平,从而影响拟南芥开花时间[42-43]。JMJ14(JUMONJI C DOMAIN-CONTAINING PROTEIN 14),JMJ15可以去除H3K4的所有甲基化类型[44-45],JMJ18可以去除H3K4me2/3[46],这3种去甲基化酶共同参与调节拟南芥开花时间和雌配子体的发育。JMJ16与WRKY53和SAG201结合并通过降低这些位点的H3K4me3水平来抑制它们在拟南芥成熟叶中的过早表达[47]。JMJ17功能缺失会造成全基因组水平上的H3K4me3的增加,并激活大量干旱胁迫响应基因的表达。JMJ17直接与OST1(OPEN STOMATA 1)结合,通过去除H3K4me3甲基化来调节OST1的表达水平从而响应干旱胁迫[48]。JMJ703可以去除水稻中H3K4的所有甲基化类型,JMJ703的缺失会导致茎的细胞分裂率降低和植株大小改变,表明JMJ703在植物生长中发挥着重要作用[49]。
JMJ27是一种核蛋白,含有锌指基序和催化的JmjC结构域,具有保守的Fe(Ⅱ)和α-酮戊二酸结合位点,并显示出H3K9me1/2去甲基化酶活性。IBM1(Increase in BONSAI Methylation 1)具有H3K9me1/2的去甲基化酶活性,IBM1的突变诱导了RDR2(RNA-DEPENDENT RNA POLYMERASE 2)和DCL3(DICER-LIKE 3)中H3K9和DNA非CG位点的高甲基化,并抑制了它们的表达[50]。JMJ30具有特异的H3K9me3的去甲基化酶活性[51]。JMJ706能特异去除H3K9me2和H3K9me3,JMJ706功能缺失的突变体会导致水稻花形态和器官数量的改变[52]。
ELF6(JMJ11)和REF 6(JMJ12)是拟南芥中H3K27me3和H3K27me2的两个主要去甲基化酶,ELF6在促花光周期途径中起阻遏作用[53],而REF6则会抑制FLC的表达[54]。JMJ30和JMJ32通过调节FLC位点的组蛋白去甲基化,防止拟南芥在高温处理下过早开花[55]。JMJ13是一个H3K27me3的特异性去甲基化酶,在拟南芥中作为开花和光周期依赖的开花抑制物[56]。到目前为止,H3K27me1的去甲基化酶尚不清楚。
在植物中,H3K36me3的特异性去甲基化酶尚不清楚,PRC2复合体和H3K36me的直接联系也尚未建立。JMJ30通过H3K36me2的去甲基化,参与了拟南芥昼夜节律的控制和开花时间[55]。
3 组蛋白赖氨酸甲基化修饰在植物中的作用基因表达调控在植物生长发育过程中关键机制。由于植物的生长发育是在固定的位置,当植物受到不可避免的环境压力时,基因表达的动态调控就显得更加重要。特定基因的表达水平跟核小体上的一系列表观修饰相关,组蛋白修饰作为一种重要的表观修饰手段,在植物的生长发育和抗逆过程中发挥着重要作用。在植物中,H3K4me2 / 3在近端启动子和转录起始位点(Transcription start site,TSS)位点富集,而H3K4me1通常在转录区域富集[86]。H3K27me2/3在整个基因体中富集,在TSS附近具有略高的H3K27me3丰度[87]。与动物相反,H3K36me3占据基因的5′端,而H3K36me2更富集于转录基因的3′端。通常H3K4me3和H3K36me3跟基因的转录激活相关[88],而H3K9me3和H3K27me3跟抑制基因表达相关[87]。
3.1 组蛋白赖氨酸甲基化调控植物开花过程开花是植物生长发育过程中最重要的一个阶段,决定着植物的繁殖,这一过程既受到自身的内源性调节,也受到外界环境因素的影响。大部分的植物都需要经过春化作用才能完成开花,而春化途径与组蛋白赖氨酸甲基化修饰密切相关。FLC编码一个MADS-box转录因子[89],通过抑制开花激活因子FT(FLOWRING LOCUS T)和SOC1(SUPPRESSOR OF CO 1)的表达来影响植物的开花[90]。拟南芥在未春化前FLC的表达受到两个途径的综合调控[91]:(1)FRI(FRIGIDA)和相关的调节因子激活FLC:FRI编码一个含有卷曲螺旋结构域的蛋白[92],与FRL1,FES1,SUF4,FLX形成FRI-C复合体,通过招募染色体重塑因子SWR1复合体,组蛋白甲基转移酶EFS,ATX1和SDG25,导致FRI上H3K36me3,H3K4me3,H3乙酰化,H4乙酰化[93]等促进基因表达的修饰的富集,直接促进FLC的表达水平。(2)自主途径通路:COOLAIR是最早被证明具有生物学功能的长链非编码RNA,是FLC的非编码反义转录本。COOLAIR能够识别特定位点,并形成可变剪切。在拟南芥中COOLAIR的产物分为2类:(a)通过一个位于FLC第6个内含子中的一个近端剪切位点形成的剪切体。(b)通过一个位于FLC启动子中的一个远端剪切位点形成的剪切体。通过荧光原位杂交检测表明FLC的表达和COOLAIR的表达在每个位点是相互拮抗的[94]。这两个通路决定了FLC在未受到春化作用时的表达水平。在春化过程最开始的2周,VAL1蛋白和位于FLC第一个内含子中的两个B3顺势基序共同作用,招募组蛋白去乙酰化酶HDA19,导致FLC的表达下调[95]。同时,COOLAIR的表达显著上升,抑制FLC的表达[94]。在进一步的春化过程中,FLC位点上的各种与激活基因表达相关的修饰逐渐被H3K27me3替换[96]。在春化过程结束后,在LHP1的作用下,H3K27me3逐渐覆盖整个FLC位点,使FLC保持沉默状态。
水稻偏爱在短日照条件下开花,而在长日照条件下开花时间会被推迟[97]。在长日照下,水稻开花主要受到Hd1(Heading date 1),Ghd7(Grain yield and heading date 7)和OsCOL4三个基因的抑制,Ghd7只在长日照下起作用[98],OsCOL4既在长日照中发挥作用也在短日照中发挥作用[99],Hd1在长日照下抑制开花,在短日照下促进开花[100]。SNB(SUPERNUMERARY BRACT)和OsIDS1(Oryza sativa INDETERMINATE SPIKELET 1)在植物幼年时期抑制开花[101]。OsMADS50在长日照下优先诱导开花[102],OsId1(Oryza sativa INDETERMINATE 1)在长日或短日的条件下都促进开花[103]。这些调控因子通过调控Ehd1(Early heading date 1)来间接调控Hd3a(Heading date 3a)和RFT1(Rice FT 1)这两个开花基因的表达或者直接调控这两个开花基因。SDG725能够促进H3K36me2和H3K36me3在Ehd3、Ehd2、OsMAD50、Hd3a和RDT1等开花基因上的富集,敲除SDG725会造成水稻晚花[104]。OsEMF2b是PRC2在水稻中的同源基因,OsEMF2b的突变会导致水稻晚花,这表明H3K27me3在调控水稻开花过程中发挥作用[105]。
3.2 组蛋白赖氨酸甲基化在植物生根中的作用多梳蛋白家族(Polycomb group,PcG)蛋白和三胸蛋白家族(Trithorax group,trxG)蛋白是两种进化保守的蛋白,是细胞分化的决定性调控因子,维持着细胞增殖和细胞分化之间的平衡[106]。拟南芥中PcG蛋白由PRC1和PRC2构成,其中PRC2的核心结构域是H3K27me3的甲基转移酶。PRC2在植物根的发育中起着重要作用。CLF的功能缺失会增加分生组织的活化,导致根的伸长。REF6是拟南芥中H3K27me3的去甲基化酶,REF6的功能缺失会直接导致PIN1/3/7(PIN-FORMED 1/3/7)上的H3K27me3水平升高,从而促进侧根的生长。通过对clf ref6双突变体的遗传分析明在侧根的形成过程中CLF和REF6具有拮抗作用[107]。ATX1和SDG2都是拟南芥中具有H3K4甲基转移酶活性的酶,在atx1和sdg2突变体中分生区形成异常和有丝分裂活性的降低会影响根的生长[108]。
3.3 组蛋白赖氨酸甲基化在植物抗逆中的作用拟南芥中H3K4me3通常在TSS下游300 bp的位置富集,同时大部分与ABA相关的基因都存在H3K4me3的修饰。拟南芥中ATX1催化NCED3(9-cis-epoxycarotenoid dioxygenase)基因区域的H3K4发生三甲基化,H3K4me3招募相关蛋白复合体与ATX1共同作用,导致NCED3蛋白大量表达,合成大量ABA,由此启动ABA响应通路,从而适应干旱环境[109]。Sani等[110]发现H3K27me3在植物的盐胁迫响应中发挥作用。他们发现事先利用Na+处理过的植物比没有事先用Na+处理过的植物更加耐盐。同时,通过全基因组ChIP-seq(Chromatin Immune Precipitation by sequencing)分析发现在事先经过盐处理的样品中H3K27me3有明显的变化,而H3K4me2、H3K4me3和H3K9me2则无明显变化。HKT1基因编码一个高亲和能力的K+转运蛋白,控制根茎的Na+的浓度,H3K27me3的缺失会造成HKT1基因的活化,使其表达量急剧上升从而使植物耐盐能力增强[110]。Asr2是在番茄中发现的一个与抗旱相关的甲基化表观等位基因,当番茄短暂的暴露在缺水环境下时,调控Asr2的区域的CHH甲基化位点由142个变为65个。在正常条件番茄根中远端调节Ars2的区域有H3K27me3的富集,而其编码区有较高水平的H3K9me2。在受到干旱胁迫时,H3K27me3的水平并没有发生变化,而其编码区的H3K9me2丢失。这表明,在番茄中H3K9me2与CHH甲基化共同作用,负调控Ars2基因的表达,使番茄适应干旱环境。通过全基因组ChIP-seq发现,大豆在盐胁迫条件下,根中的大多数基因失活与启动子或编码区的H3K27me3的从头建立相关,这表明H3K27me3修饰与大豆根中盐诱导性基因的激活或失活相关[111]。
3.4 组蛋白赖氨酸甲基化在植物抗病中的作用组蛋白的翻译后修饰可调节基因表达影响多种生物学功能,在拟南芥中,SDG依赖的CCR2(CAROTENOID ISOMERASE2)和CRE3(ECERIFERUM 3)是植物免疫所必须的,SDG8和SDG25通过调节H3K4me和H3K36me的水平来调控这两个基因。CCR2催化类胡萝卜素的生物合成,而CER3参与表皮蜡质的合成。sdg8和sdg25突变体表现出对灰葡萄孢的敏感性增强,并在使用拟南芥内源肽1预处理之前和预处理之后真菌的生长相对野生型都有所增加。用来自细菌鞭毛蛋白的保守部分的合成肽对植物进行预处理,野生型植株显著提高了对Pst DC3000的毒力菌株和对非病原性Pst DC3000 hrcC菌株的抗性,相比之下,sdg8和sdg25的单突变体和双突变体都失去了这种抗性[112]。研究发现,当拟南芥遇到病菌侵害时,组蛋白甲基转移酶SDG8(SET domain group 8)启动子活性大大增强,导致茉莉酸(Jasmonic acid,JA)和乙烯(Ethylene,ET)防御病菌侵染信号通路的MKK3(Mitogen-activated protein kinase kinase 3)、MKK5(Mitogen-activated protein kinase kinase 5)等上游抵御基因的H3K36me3水平大大上升,从而诱导这些抵御基因大量表达,继而启动下游抵御基因的表达,以对抗病菌的侵害[113]。
4 组蛋白赖氨酸甲基化的遗传性质组蛋白修饰在相应酶的作用下堆积在组蛋白上,从而影响启动子的功能。在多细胞生物中,细胞特异性由启动子建立,其可通过其序列特异性的DNA结合活性激活或抑制基因的转录。细胞分裂过程中不同基因表达谱的准确传递对于保持细胞谱系的特性是必不可少的。因此,表观遗传学过程的一个关键特征是,在启动子作用减弱后,这些有用的染色质修饰必须在后续细胞世代中能够稳定遗传[114]。
组蛋白赖氨酸甲基化通常与DNA甲基化相互联系,植物中CHG甲基化的维持过程中H3K9me2发挥着重要作用,CHG甲基化由CMT3(CHROMOMETHYLASE 3)或CMT2维持,CHG甲基化招募H3K9me2的特异性甲基转移酶SUVH4,SUVH5,SUVH6,使组蛋白发生甲基化,同时H3K9me2会促进CMT3和CMT2的功能,从而形成H3K9me2和CHG甲基化的循环的识别结构[115]。在RNA-directed DNA methylation(RdDM)途径中,SAWADEE HOMEODOMAIN HOMOLOGUE 1(SHH1)识别并结合H3K9me,从而招募RNA POLYMERASE Ⅳ(Pol Ⅳ)产生单链的RNA转录本,启动RdDM途径[116]。通过对花对称变异[117],番茄的果实成熟[118],拟南芥叶片衰老[119]等表观等位基因的研究证明了DNA甲基化的可遗传性,这表明H3K9甲基化的在植物中的可遗传性是比较确定的。
许多动物是由进化保守的HOX基因复合体所控制的不同的身体片段组成的,在胚胎发生早期,每个节段的细胞都可激活某些HOX基因,而使其他基因沉默,这是一个典型的表观遗传记忆永久性调控基因表达和沉默的例子,利用果蝇HOX基因Ubx(Ultrabithorax)的lacZ报告系统发现,H3K27me3一旦富集在受抑制的果蝇的HOX基因上,那么H3K27me3就与这个基因的遗传相关联,并且能够在世代遗传过程中保持受抑制的状态。这种长期的记忆取决于每个复制周期后H3K27me3的有效富集,这一过程需要反应原件(Polycomb response element,PRE)招募PRC2,这段过程表明H3K27me3是表观遗传记忆的决定因素,PRE和PRC2的共同作用是H3K27me3在跨代遗传中发挥功能的必要条件[120]。PRC2能够抑制秀丽隐杆线虫生殖细胞中的X染色体,并且这种抑制作用能够通过精子和卵母细胞传递给胚胎。通过生成一些带有H3K27me和不带有H3K27me的染色体的胚胎,表明在没有PRC2的情况下,H3K27me通过几轮细胞分裂而传递给子代染色单体。在具有PRC2的胚胎中,H3K27me在胚胎发生持续过程中以嵌合的模式存在。这些结果表明,H3K27me和PRC2分别在表观遗传学的世代遗传和发育过程中保持了抑制状态的传递[121]。Inoue等[122]利用不同细胞的杂交实验,鉴定了一个新的依赖于H3K27me3的印记基因Smoc1,同时,发现依赖于H3K27me3的印记在植入胚胎前大多是不能遗传的,但是在胚胎外细胞中有一部分基因是可遗传的。目前,植物中对于H3K27me3可遗传性的研究主要集中在FLOWERING LOCUS C(FLC)位点上。FLC是拟南芥中响应春化作用的一个主要位点,在受到寒冷刺激后,FLC位点上的H3K4me3,H3K36me3和组蛋白H2B泛素化等促进基因表达的组蛋白修饰被H3K27me3替代,从而抑制FLC的表达。当恢复到温暖环境中时,在LHP1(LIKE HETERO-CHROMATIN PROTEIN 1)的作用下H3K27me3会逐渐覆盖整个FLC位点,并且H3K27me3的这种修饰状态能够在细胞分裂中维持,从而使FLC在细胞分裂中保持沉默[123]。通过在检测拟南芥lhp1、vin3和vrn2等突变体根分生组织中FLC的表达情况,Yang等[124]发现FLC表观修饰记忆在细胞分裂过程中处于一种亚稳定的遗传状态,同时LHP1不是维持这种亚稳定的表观修饰所必须的。
Reinberg等[114]提出H3K9me3和H3K27me3这一类具有抑制基因表达作用的组蛋白修饰是能够遗传的。原因在于H3K9me3和H3K27me3的reader和writer与一些蛋白相互作用形成复合体,在形成新的修饰的过程中需要识别已有的相同修饰。这样的修饰机制可能决定了这一类组蛋白修饰的遗传性质,同时,这种能够抑制基因表达的组蛋白修饰能够遗传的另一个原因是,抑制基因的不适当的转录活性在多细胞生物的进化过程中是必须的,如果基因的激活过程是一个正反馈通路,那么细胞的分化过程中的可变的刺激转化为永久性的错误的概率将会增大,对生物体具有潜在的威胁。反之,当生物认为某些基因的活化对自身产生威胁时,具有抑制作用的组蛋白修饰将会使相应的基因保持沉默状态(图 3)。
当基因的启动子区域存在H3K27me3或H3K9me2等抑制基因活性的组蛋白赖氨酸甲基化修饰时,基因表达被抑制,产生表型Ⅰ(表观等位基因型DepiDepi)。当基因启动子区域没有组蛋白赖氨酸甲基化修饰时,基因正常表达产生表型Ⅱ(表观等位基因型depidepi)。杂交后得到具有表型Ⅲ(表观等位基因型Depidepi)的F1代植株,F1自交得到表型Ⅰ、表型Ⅱ、表型Ⅲ三种表型的F2代植株,且其分离比为1:2:1。这种复合孟德尔分离定律的抑制性组蛋白赖氨酸甲基化引起的表型差异,我们认为这种组蛋白是具有遗传性的。
5 展望组蛋白赖氨酸甲基化作为表观遗传修饰的重要组成部分,通过不同位点或不同程度的甲基化修饰来调控相应基因的表达水平从而影响植物的生长发育,在植物的环境适应方面有着重要意义。组蛋白赖氨酸甲基化在拟南芥和水稻的开花过程中发挥着重要作用,通过不同功能的组蛋白赖氨酸修饰动态调控不同温度不同日照长度下的开花过程。组蛋白赖氨酸甲基化在植物抗逆过程中也起着重要作用,H3K4me3能够促进ABA的大量合成,使拟南芥适应干旱环境。在番茄中H3K9me2与CHH甲基化共同作用,负调控Ars2基因的表达,响应干旱胁迫。H3K27me3则与大豆根细胞响应盐胁迫有关。H3K4me和H3K36me通过调节植物体类胡罗卜素的合成以及植物表皮蜡质的合成,来提高植物对病菌的抵抗能力。
但是,目前植物组蛋白赖氨酸甲基化还有很多问题有待深入解决。例如,组蛋白赖氨酸甲基化在植物中遗传性质目前还不是很清楚,虽然FLC位点的研究证明了H3K27me3在有丝分裂中存在一定的可遗传性,但是目前还没有证据表明组蛋白赖氨酸甲基化在减数分裂过程也具有可遗传性。不同形状的组蛋白赖氨酸甲基化修饰峰是否有不同功能目前也还不清楚。另外,组蛋白赖氨酸甲基化的修饰位点的生物信息学鉴定还没有一个表现很好的经过广泛验证的通用方法。随着组蛋白赖氨酸甲基化研究的深入,必将为分子生物学、遗传学和进化生物学的发展提供新的思路。
[1] |
Connor JM. Principles of genetics[M]. John Wiley & Sons Inc, 1997.
|
[2] |
Holliday R. Epigenetics:an overview[J]. Developmental Genetics, 1994, 15(6): 453-457. DOI:10.1002/dvg.1020150602 |
[3] |
Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome[J]. Cell, 1999, 98(3): 285-294. DOI:10.1016/S0092-8674(00)81958-3 |
[4] |
Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080. DOI:10.1126/science.1063127 |
[5] |
Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41. DOI:10.1038/47412 |
[6] |
Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nature Reviews Molecular Cell Biology, 2007, 8(4): 307-318. |
[7] |
Rea S, Eisenhaber F, O'carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Phys Rev B Condens Matter, 2000, 406(6796): 2408-2417. |
[8] |
Miska EA, Zegerman P, Partridge JC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature, 2001, 410(6824): 120-124. DOI:10.1038/35065138 |
[9] |
Ng WK, Wang T, Chandrasekharan MB, et al. Plant SET domain-containing proteins:Structure, function and regulation[J]. Biophysica et Biophysica Acta, 2007, 1769(5): 316-329. |
[10] |
Collins RE, Northrop JP, Horton JR, et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules[J]. Nature Structural & Molecular Biology, 2008, 15(3): 245-250. |
[11] |
Neer EJ, Schmidt CJ, Nambudripad R, et al. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature, 1994, 371(6500): 812-812. |
[12] |
Liu C, Lu F, Cui X, et al. Histone methylation in higher plants[J]. Annual Review of Plant Biology, 2010, 61(61): 395-420. |
[13] |
lii RJL, Nishioka K, Reinberg D. Histone lysine methylation:a signature for chromatin function[J]. Trends in Genetics, 2003, 19(11): 629-639. DOI:10.1016/j.tig.2003.09.007 |
[14] |
Berr A, Mccallum EJ, Menard R, et al. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development[J]. The Plant Cell, 2010, 22(10): 3232-3248. DOI:10.1105/tpc.110.079962 |
[15] |
Tamada Y, Yun JY, Amasino WRM, et al. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C[J]. The Plant Cell, 2009, 21(10): 3257-3269. DOI:10.1105/tpc.109.070060 |
[16] |
Berr A, Shafiq S, Pinon V, et al. The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway[J]. The Plant Journal, 2015, 81(2): 316-328. DOI:10.1111/tpj.12729 |
[17] |
Cartagena JA, Matsunaga S, Seki M, et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen[J]. Developmental Biology, 2008, 315(2): 355-368. DOI:10.1016/j.ydbio.2007.12.016 |
[18] |
Saleh A, Alvarez-Veneqas R, Yilmaz M, et al. The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions[J]. The Palnt Cell, 2008, 20(3): 568-579. |
[19] |
Guo L, Yu Y, Law JA, et al. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis[J]. Proc Natl Acad Sci USA, 2010, 107(43): 18557-18562. DOI:10.1073/pnas.1010478107 |
[20] |
Chen L, Luo J, Cui Z, et al. ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development[J]. Plant Physiology, 2017, 174(3): 1795-1806. |
[21] |
Liu K, Yu Y, Dong A, et al. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development[J]. New Phytologist, 2017, 215(2): 609-623. DOI:10.1111/nph.14596 |
[22] |
Jackson JP, Johnson L, Jasencakova Z, et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana[J]. Chromosoma (Berlin), 2004, 112(6): 308-315. |
[23] |
Ebbs ML, Bartee L, Bender J, et al. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases[J]. Molecular and Cellular Biology, 2005, 25(23): 10507-10515. DOI:10.1128/MCB.25.23.10507-10515.2005 |
[24] |
Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase[J]. Plant Cell, 2006, 18(5): 1166-1176. DOI:10.1105/tpc.106.041400 |
[25] |
Qin FJ, Sun QW, Huang LM, et al. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression[J]. Molecular Plant, 2010, 3(4): 773-782. DOI:10.1093/mp/ssq030 |
[26] |
Müller J, Hart CM, Francis NJ, et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex[J]. Cell, 2002, 111(2): 197-208. DOI:10.1016/S0092-8674(02)00976-5 |
[27] |
Lindroth AM, David S, Zuzana J, et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3[J]. The EMBO Journal, 2004, 23(21): 4286-4296. DOI:10.1038/sj.emboj.7600428 |
[28] |
Jacob Y, Stroud H, Leblanc C, et al. Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases[J]. Nature, 2010, 466(7309): 987-991. DOI:10.1038/nature09290 |
[29] |
Luo M, Platten D, Chaudhury A, et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes[J]. Molecular Palnt, 2009, 2(4): 711-723. DOI:10.1093/mp/ssp036 |
[30] |
Wang J, Hu J, Qian Q, et al. LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF[J]. Molecular Plant, 2013, 6(2): 514-527. DOI:10.1093/mp/sss096 |
[31] |
Berr A, Xu L, Gao J, et al. SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering[J]. Plant Physiology, 2009, 151(3): 1476-1485. |
[32] |
Xu L, Zhao Z, Dong A, et al. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana[J]. Molecular and Cellular Biology, 2008, 28(4): 1348-1360. DOI:10.1128/MCB.01607-07 |
[33] |
Kumpf R, Thorstensen T, Rahman MA, et al. The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root[J]. Plant Physiology, 2014, 166(2): 632-643. |
[34] |
Lee K, Park OS, Seo PJ. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation[J]. Science Signaling, 2017, 10(507): eaan0316. DOI:10.1126/scisignal.aan0316 |
[35] |
Sun C, Fang J, Zhao T, et al. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. The Plant Cell, 2012, 24(8): 3235-3247. DOI:10.1105/tpc.112.101436 |
[36] |
Sui P, Jin J, Ye S, et al. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice[J]. The Plant Journal, 2012, 70(2): 340-347. DOI:10.1111/j.1365-313X.2011.04873.x |
[37] |
Shi Y, Lan FC, Mulligan P, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119(7): 941-953. DOI:10.1016/j.cell.2004.12.012 |
[38] |
Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature, 2006, 439(7078): 811. DOI:10.1038/nature04433 |
[39] |
Spedaletti V, Polticelli F, Capodaglio V, et al. Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana[J]. Biochemistry, 2008, 47(17): 4936-4947. DOI:10.1021/bi701969k |
[40] |
Lu F, Li G, Cui X, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice[J]. Journal of Integrative Plant Biology, 2008, 50(7): 886-896. DOI:10.1111/j.1744-7909.2008.00692.x |
[41] |
Qian Y, Chen C, Jiang L, et al. Genome-wide identification, classification and expression analysis of the JmjC domain-containing histone demethylase gene family in maize[J]. BMC Genomics, 2019, 20(1): 256. DOI:10.1186/s12864-019-5633-1 |
[42] |
Jiang D, Gu X, He Y. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis[J]. The Plant Cell, 2009, 21(6): 1733-1746. DOI:10.1105/tpc.109.067967 |
[43] |
Liu F, Quesada V, Crevillén P, et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC[J]. Molecular Cell, 2007, 28(3): 398-407. DOI:10.1016/j.molcel.2007.10.018 |
[44] |
Lu F, Cui X, Zhang S, et al. JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis[J]. Cell Research, 2010, 20(3): 387. DOI:10.1038/cr.2010.27 |
[45] |
Yang H, Mo H, Fan D, et al. Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis[J]. Plant Cell Reports, 2012, 31(7): 1297-1308. DOI:10.1007/s00299-012-1249-5 |
[46] |
Yang H, Han Z, Cao Y, et al. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression[J]. PLoS Genetics, 2012, 8(4): e1002664. DOI:10.1371/journal.pgen.1002664 |
[47] |
Liu P, Zhang S, Zhou B, et al. The Histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis[J]. The Plant Cell, 2019, 31(2): 430-443. DOI:10.1105/tpc.18.00693 |
[48] |
Huang S, Zhang A, Jin JB, et al. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response[J]. New Phytologist, 2019, 223(3): 1372-1387. DOI:10.1111/nph.15874 |
[49] |
Chen Q, Chen X, Wang Q, et al. Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice[J]. PLoS Genet, 2013, 9(1): e1003239. DOI:10.1371/journal.pgen.1003239 |
[50] |
Fan D, Dai Y, Wang X, et al. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis[J]. Nuleic Acids Research, 2012, 40(18): 8905-8916. DOI:10.1093/nar/gks647 |
[51] |
Lee K, Park OS, Seo PJ. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. The Plant Journal, 2018, 95(6): 961-975. DOI:10.1111/tpj.14002 |
[52] |
Sun Q, Zhou DX. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development[J]. Proceedings of the National Academy of Sciences, 2008, 105(36): 13679-13684. DOI:10.1073/pnas.0805901105 |
[53] |
Crevillén P, Yang H, Cui X, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528): 587. DOI:10.1038/nature13722 |
[54] |
Lu F, Cui X, Zhang S, et al. Arabidopsis REF6 is a histone H3 lysine 27 demethylase[J]. Nature Genetics, 2011, 43(7): 715-719. DOI:10.1038/ng.854 |
[55] |
Gan ES, Xu Y, Wong JY, et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis[J]. Nature Communications, 2014, 5(5): 5098. |
[56] |
Zheng S, Hu H, Ren H, et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nature Communications, 2019, 10(1): 1303. DOI:10.1038/s41467-019-09310-x |
[57] |
Liu Y, Huang Y. Uncovering the mechanistic basis for specific recognition of monomethylated H3K4 by the CW domain of Arabidopsis histone methyltransferase SDG8[J]. Journal of Biological Chemistry, 2018, 293(17): 6470-6481. DOI:10.1074/jbc.RA117.001390 |
[58] |
Chen Q, Chen X, Wang Q, et al. Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice[J]. PLoS Genetics, 2013, 9(1): e1003239. DOI:10.1371/journal.pgen.1003239 |
[59] |
Lee WY, Lee D, Chung WI, et al. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers[J]. The Plant Journal, 2009, 58(3): 511-524. DOI:10.1111/j.1365-313X.2009.03795.x |
[60] |
Lopez-Gonzalez L, Mouriz A, Narro-Diego L, et al. Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins[J]. The Plant Cell, 2014, 26(10): 3922-3938. DOI:10.1105/tpc.114.130781 |
[61] |
Zhao S, Zhang B, Yang M, et al. Systematic profiling of histone readers in Arabidopsis thaliana[J]. Cell Reports, 2018, 22(4): 1090-1102. DOI:10.1016/j.celrep.2017.12.099 |
[62] |
Ishihara H, Sugimoto K, Tarr PT, et al. Primed histone demethylation regulates shoot regenerative competency[J]. Nature Communications, 2019, 10(1): 1786. DOI:10.1038/s41467-019-09386-5 |
[63] |
Ko JH, Mitina I, Tamada Y, et al. Growth habit determination by the balance of histone methylation activities in Arabidopsis[J]. The EMBO Journal, 2010, 29(18): 3208-3215. DOI:10.1038/emboj.2010.198 |
[64] |
Molitor AM, Bu Z, Yu Y, et al. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes[J]. PLoS Genetics, 2014, 10(1): e1004091. DOI:10.1371/journal.pgen.1004091 |
[65] |
Yang ZL, Qian SM, Scheid RN, et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis[J]. Nature Genetics, 2018, 50(9): 1247. DOI:10.1038/s41588-018-0187-8 |
[66] |
Jiang D, Kong NC, Gu XF, et al. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development[J]. PLoS Genetics, 2011, 7(3): e1001330. DOI:10.1371/journal.pgen.1001330 |
[67] |
De lPSM, Gutierrez C. Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription[J]. Proceedings of the National Academy of Sciences, 2009, 106(6): 2065-2070. DOI:10.1073/pnas.0811093106 |
[68] |
Bu Z, Yu Y, Li Z, et al. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression[J]. PLoS Genetics, 2014, 10(9): e1004617. DOI:10.1371/journal.pgen.1004617 |
[69] |
Simon J, Kingston R. Occupying chromatin:polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put[J]. Molecular Cell, 2013, 49(5): 808-824. DOI:10.1016/j.molcel.2013.02.013 |
[70] |
Dutta A, Choudhary P, Caruana J, et al. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against, Pseudomonas syringae, and flowering time[J]. The Plant Journal, 2017, 91(6): 1015-1028. DOI:10.1111/tpj.13623 |
[71] |
Zhao S, Cheng L, Gao Y, et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation[J]. Cell Research, 2019, 29(1): 54. DOI:10.1038/s41422-018-0104-9 |
[72] |
Zhang C, Du X, Tang K, et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin[J]. Nature Communications, 2018, 9(1): 4547. DOI:10.1038/s41467-018-06965-w |
[73] |
Saze H, Shiraishi A, Miura A, et al. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana[J]. Science, 2008, 319(5862): 462-465. DOI:10.1126/science.1150987 |
[74] |
Goodrich J, Puangsomlee P, Martin M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44. DOI:10.1038/386044a0 |
[75] |
Wang D, Tyson MD, Jackson SS, et al. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13244-13249. DOI:10.1073/pnas.0605551103 |
[76] |
Grossniklaus, U. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis[J]. Science, 1998, 280(5362): 446-450. DOI:10.1126/science.280.5362.446 |
[77] |
Turck F, Roudier F, Farrona S, et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27[J]. PLoS Genetics, 2007, 3(6): e86. DOI:10.1371/journal.pgen.0030086 |
[78] |
Qian S, Lv X, Scheid RN, et al. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL[J]. Nature Communications, 2018, 9(1): 2425. DOI:10.1038/s41467-018-04836-y |
[79] |
Li ZC, Fu X, Wang YZ, et al. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants[J]. Nature Genetics, 2018, 50(9): 1254. DOI:10.1038/s41588-018-0190-0 |
[80] |
Liu Y, Min J. Structure and function of histone methylation-binding proteins in plants[J]. Biochemical Journal, 2016, 473(12): 1663-1680. DOI:10.1042/BCJ20160123 |
[81] |
Liu X, Zhou C, Zhao Y, et al. The rice enhancer of zeste[E(z)]genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time[J]. Frontiers in Plant Science, 2014, 5: 591. |
[82] |
Coursey T, Milutinovic M, Regedanz E, et al. Arabidopsis histone reader EMSY-LIKE 1 binds H3K36 and suppresses geminivirus infection[J]. Journal of Virology, 2018, 92(16): e00219-18. |
[83] |
Jin J, Shi J, Liu B, et al. MORF-RELATED GENE702, a reader protein of trimethylated histone H3 lysine 4 and histone H3 lysine 36, is involved in brassinosteroid-regulated growth and flowering time control in rice[J]. Plant Physiology, 2015, 168(4): 1275-1285. |
[84] |
Kumpf R, Thorstensen T, Rahman MA, et al. The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root[J]. Plant Physiology, 2014, 166(2): 632-643. |
[85] |
Yan Y, Shen L, Chen Y, et al. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis[J]. Developmental Cell, 2014, 30(4): 437-448. DOI:10.1016/j.devcel.2014.07.004 |
[86] |
Zhang X, Bernatavichute YV, Cokus S, et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana[J]. Genome Biology, 2009, 10(6): R62. DOI:10.1186/gb-2009-10-6-r62 |
[87] |
Makarevitch I, Eichten SR, Briskine R, et al. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27[J]. The Plant Cell, 2013, 25(3): 780-793. DOI:10.1105/tpc.112.106427 |
[88] |
Sequeira-Mendes J, Aragüez I, Peiró R, et al. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states[J]. The Plant Cell, 2014, 26(6): 2351-2366. DOI:10.1105/tpc.114.124578 |
[89] |
Alexandre CM, Hennig L. FLC or not FLC:the other side of vernalization[J]. Journal of Experimental Botany, 2008, 59(6): 1127-1135. DOI:10.1093/jxb/ern070 |
[90] |
Lee H, Suh SS, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18): 2366-2376. |
[91] |
Koornneef M, Alonso-Blanco C, Peeters AJM, et al. Genetic control of flowering time in Arabidopsis[J]. Annual Review of Plant Biology, 1998, 49(1): 345-370. DOI:10.1146/annurev.arplant.49.1.345 |
[92] |
Johanson U, West J, Lister C, et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time[J]. Science, 2000, 290(5490): 344-347. DOI:10.1126/science.290.5490.344 |
[93] |
Hon GC, Hawkins RD, Ren B. Predictive chromatin signatures in the mammalian genome[J]. Human Molecular Genetics, 2009, 18(R2): R195-R201. DOI:10.1093/hmg/ddp409 |
[94] |
Rosa S, Duncan S, Dean C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression[J]. Nature Communications, 2016, 7: 13031. DOI:10.1038/ncomms13031 |
[95] |
Qüesta JI, Song J, Geraldo N, et al. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization[J]. Science, 2016, 353(6298): 485-488. DOI:10.1126/science.aaf7354 |
[96] |
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343. DOI:10.1038/nature09784 |
[97] |
Lee S, An G. Diversified mechanisms for regulating flowering time in a short-day plant rice[J]. Journal of Plant Biology, 2007, 50(3): 241-248. DOI:10.1007/BF03030651 |
[98] |
Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761. DOI:10.1038/ng.143 |
[99] |
Lee YS, Jeong DH, Lee DY, et al. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB[J]. The Plant Journal, 2010, 63(1): 18-30. |
[100] |
Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Cell, 2000, 12(12): 2473-2483. DOI:10.1105/tpc.12.12.2473 |
[101] |
Lee YS, Lee DY, Cho LH, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens[J]. Rice, 2014, 7(1): 31. DOI:10.1186/s12284-014-0031-4 |
[102] |
Lee S, Kim J, Han JJ, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice[J]. The Plant Journal, 2004, 38(5): 754-764. DOI:10.1111/j.1365-313X.2004.02082.x |
[103] |
Park SJ, Kim SL, Lee S, et al. Rice Indeterminate 1(OsId1) is necessary for the expression of Ehd1(Early heading date 1) regardless of photoperiod[J]. The Plant Journal, 2008, 56(6): 1018-1029. DOI:10.1111/j.1365-313X.2008.03667.x |
[104] |
Sui P, Shi J, Gao X, et al. H3K36 methylation is involved in promoting rice flowering[J]. Molecular Plant, 2013, 6(3): 975-977. DOI:10.1093/mp/sss152 |
[105] |
Yang J, Lee S, Hang R, et al. OsVIL2 functions with PRC 2 to induce flowering by repressing OsLFL1 in rice[J]. The Plant Journal, 2013, 73(4): 566-578. DOI:10.1111/tpj.12057 |
[106] |
Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice[J]. Development, 2009, 136(21): 3531-3542. DOI:10.1242/dev.033902 |
[107] |
Wang X, Gao J, Gao S, et al. REF6 promotes lateral root formation through de-repression of PIN1/3/7 genes[J]. Journal of Integrative Plant Biology, 2019, 61(4): 383-387. DOI:10.1111/jipb.12726 |
[108] |
Yao X, Feng H, Yu Y, et al. SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development[J]. PLoS One, 2013, 8(2): e56537. DOI:10.1371/journal.pone.0056537 |
[109] |
Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways[J]. The Plant Journal, 2011, 66(5): 735-744. DOI:10.1111/j.1365-313X.2011.04534.x |
[110] |
Sani E, Herzyk P, Perrella G, et al. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome[J]. Genome Biology, 2013, 14(6): R59. DOI:10.1186/gb-2013-14-6-r59 |
[111] |
Sun L, Song G, Guo W, et al. Dynamic changes in genome-wide histone3 lysine27 trimethylation and gene expression of soybean roots in response to salt stress[J]. Front Plant Sci, 2019, 10: 1031. DOI:10.3389/fpls.2019.01031 |
[112] |
Lee S, Fu F, Xu S, et al. Global regulation of plant immunity by histone lysine methyl transferases[J]. The Plant Cell, 2016, 28(7): 1640-1661. |
[113] |
Berr A, Mccallum EJ, Alioua A, et al. Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi[J]. Plant Physiology, 2010, 154(3): 1403-1414. |
[114] |
Reinberg D, Vales LD. Chromatin domains rich in inheritance[J]. Science, 2018, 361(6397): 33-34. DOI:10.1126/science.aat7871 |
[115] |
Zhang H, Lang Z, Zhu JK. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 489. DOI:10.1038/s41580-018-0016-z |
[116] |
Du J, Johnson LM, Jacobsen SE, et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nature Reviews Molecular Cell Biology, 2015, 16(9): 519-532. DOI:10.1038/nrm4043 |
[117] |
Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749): 157. DOI:10.1038/43657 |
[118] |
Manning K, Poole M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nature Genetics, 2006, 38(8): 948-952. DOI:10.1038/ng1841 |
[119] |
He L, Wu W, Zinta G, et al. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions[J]. Nature Communications, 2018, 9(1): 460. DOI:10.1038/s41467-018-02839-3 |
[120] |
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene[J]. Science, 2017, 356(6333): eaai8236. DOI:10.1126/science.aai8236 |
[121] |
Gaydos LJ, Wang W, Strome S. H3K27me and PRC2 transmit a memory of repression across generations and during development[J]. Science, 2014, 345(6203): 1515-1518. DOI:10.1126/science.1255023 |
[122] |
Inoue A, Jiang L, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547(7664): 419. DOI:10.1038/nature23262 |
[123] |
Whittaker C, Dean C. The FLC Locus:A platform for discoveries in epigenetics and adaptation[J]. Annual Review of Cell and Developmental Biology, 2017, 33: 555-575. DOI:10.1146/annurev-cellbio-100616-060546 |
[124] |
Yang H, Berry S, Olsson TSG, et al. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis[J]. Science, 2017, 357(6356): 1142-1145. DOI:10.1126/science.aan1121 |