工作空间

文章信息

刘纪爱, 束爱萍, 刘光荣, 李祖章, 刘增兵, 高峥
施肥影响土壤性状和微生物组的研究进展
生物技术通报, 2019, 35(9): 21-28

LIU Ji-ai, SHU Ai-ping, LIU Guang-rong, LI Zu-zhang, LIU Zeng-bing, GAO Zheng
Research Progress on Effect of Fertilization on Soil Properties and Microbiome
Biotechnology Bulletin, 2019, 35(9): 21-28

文章历史

收稿日期:2019-06-27

施肥影响土壤性状和微生物组的研究进展
刘纪爱1,2, 束爱萍1, 刘光荣1, 李祖章1, 刘增兵1, 高峥2     
1. 江西省农业科学院土壤肥料与资源环境研究所 国家红壤改良工程技术研究中心,南昌 330200;
2. 山东农业大学生命科学学院 作物国家重点实验室,泰安 271000
摘要:主要介绍了土壤微生物组的研究方法,综述了施肥对土壤性状(物理性状、养分、酶活性)和土壤微生物组的影响,总结了土壤微生物丰度、多样性以及群落结构和组成对施肥的响应规律,简单概述了现阶段施肥影响土壤微生物组研究的不足,并且展望了未来的研究趋势,旨为农业生产的合理施肥提供一定依据。
关键词施肥    土壤性质    土壤微生物组    
Research Progress on Effect of Fertilization on Soil Properties and Microbiome
LIU Ji-ai1,2, SHU Ai-ping1, LIU Guang-rong1, LI Zu-zhang1, LIU Zeng-bing1, GAO Zheng2     
1. Institute of Soil and Fertilizer & Resource and Environment, China/National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 330200;
2. School of Life Science, Shandong Agricultural University, State Key Laboratory of Crop Biology, Tai'an 271000
Abstract: This paper mainly introduces the detection techniques of soil microbiome, reviews the effects of different fertilization treatments on soil properties (physical properties, nutrients, and enzyme activities) and soil microbiome, and summarizes the responses of soil microbial abundance, diversity and community structure and composition to fertilization. Then the paper also briefly overviews the shortcomings in the study of soil microbiome affected by fertilization at present and prospects the future research trends, aiming at providing a basis for rational fertilization of agricultural production.
Key words: fertilization    soil properties    soil microbiome    

施肥是提高土壤肥力和作物产量的有效途径。通过大量施加肥料以达到粮食高产的效果是目前我国农业生产常用手段,但不断增加的化肥施用量和过高的化肥施用强度给环境带来了巨大的压力,导致严重的土壤退化和环境污染[1]。自20世纪80年代以来中国一直在大力推荐有机肥的应用,有机肥可通过改变土壤物理性状、养分、酶活性及微生物组群落结构,来降低或消除因长期单施或过施无机肥对土壤理化性状和微生物生态产生的负面影响,被认为是增加土壤有机质和提高土壤肥力的有效途径[2-3]。目前的研究表明,无机和有机肥料的组合比单独的无机或有机肥料更促进可持续的作物生产、提高谷物产量[4-5]。尤其在测土配方施肥行动及到2020年化肥使用量零增长行动的大背景下,有机无机配施将是我国今后肥料施用发展的必然趋势。

微生物组在土壤生态系统中起着举足轻重的作用,影响着大量至关重要的生态系统过程,包括土壤能量流动和元素循环、土壤有机质的矿化分解及一些作物生长必需营养的供给,其生物量、多样性和活动是陆地生态系统土壤质量、生产力和可持续性的敏感指标[6-8]。微生物组包括微生物(细菌、古细菌、低等或高等真核生物和病毒)及其基因组(基因),以及其周围环境在内的全部,包括环境中的所有生物和微生物因素[9]。土地利用类型、季节、植被、长期或短期施肥处理均会对细菌、真菌、古菌等不同种类微生物的丰度、多样性及群落结构产生不同影响,通常来讲,施用有机肥处理土壤细菌的丰富度和多样性指数高于施用无机肥处理,并且不同施肥处理间细菌群落结构也存在差异[8, 10-11]。土壤微生物组对不同施肥处理的响应和变化可以通过传统的微生物检测手段及现代的扩增子高通量测序和宏组学技术进行揭示。

1 土壤微生物组的研究方法

土壤微生物组的揭示依赖于有效而恰当的微生物检测手段和研究方法。传统的土壤微生物研究方法包括微生物纯培养技术、磷脂脂肪酸(Phospholipid fatty acids,PLFA),以及基于核酸分子的克隆文库等方法。土壤中大约有107种细菌物种,通过纯培养的手段仅能够检测到其中的1%-10%,难以全面揭示微生物的组成[12]。磷脂脂肪酸分析是一种灵敏而快捷检测土壤中微生物群落生物量和结构的方法,但磷脂脂肪酸不能表征特定的微生物群落,无法给予系统发育信息[13]。克隆文库的构建可以获取不同微生物的系统发育信息,但因其操作流程繁冗、工作量大、测序深度及覆盖度较低,逐步被取代。

扩增子高通量测序和宏组学技术凭借其数据量大、避开培养过程、囊括信息全面等优点为土壤微生物组的研究揭开了新篇章。16S rRNA基因的高通量测序和系统发育分析为微生物群落的现代研究奠定了基础[14]。包括宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学在内的宏组学技术分别在DNA、RNA、蛋白质、代谢水平上来反映土壤微生物组成及群落结构,不同水平上的测序手段存在其各自的利弊,详细信息见表 1。珂博和张彤团队在近期联合多维宏组学(宏基因组、宏转录组及目标性代谢组学)解析了混合微生物群落内细菌间协同代谢关系[15]。除此之外,高通量基因芯片GeoChip也用于分析微生物群落的功能多样性、组成、结构、代谢潜力/活性和动态[16]

表 1 土壤微生物组研究方法的特征对比
2 施肥对土壤性状的影响 2.1 施肥对土壤物理性状的影响

土壤质量是土壤物理、化学和生物学性状的综合表现,良好的土壤条件可以为作物生长提供良好的生态环境。无机肥的施加对土壤团聚性、土壤容重并不会产生负面影响[20-21]。适当施加有机肥可以降低土壤容重、提高土壤的孔隙度、提高土壤大团聚体含量,促进良好土壤物理结构的形成,改善土壤质量,有利于农作物生长[22-23]。Sihi等[24]发现,长期施加有机肥的印度北部水稻土壤容重指标较常规NPK施肥处理土壤容重低。Williams等[25]的研究中,有机耕作土壤的土壤团聚体平均重量直径和孔隙度增加,具有更强的吸水能力和更低的密实度。Chaudhary和Suja等[20, 26]也报道了类似的结果。

2.2 施肥对土壤养分的影响

施肥是维持土壤肥力的重要管理措施,其最直接的作用是改变土壤的理化指标和养分含量。短期施加无机肥可以显著影响退化羊草草原土壤速效氮、速效钾等速效养分的含量,但对土壤全氮、有机质等指标没有明显的改变[27]。Bei等[28]在对华北平原石灰性土壤的研究中指出,有机肥替代的短期施加不仅会显著影响土壤速效氮、速效钾含量,也会显著提高土壤有机质和全氮含量。长期NPK的施加会显著提高土壤含水量、可获得性磷、阳离子交换量等指标,而长期有机肥处理对土壤有机碳、总氮、可获得性磷、可获得性钾含量等指标的影响更显著[29-31]。需要特别注意的是,越来越多的研究证明,长期施加无机肥会导致土壤pH降低,引起土壤酸化,有机肥替代可以提高深层土壤的肥效和耐酸性,减缓因单独施加无机肥产生的土壤酸化趋势[32-35]

2.3 施肥对土壤酶活性的影响

土壤酶活性也是土壤质量的指标之一,是土壤系统生化功能的关键组成部分[36]。土壤酶活性能够直接敏感地响应施肥处理和土壤环境的变化,与施加无机肥相比,有机肥的添加可以提高土壤脲酶、蔗糖酶、过氧化氢酶、酸和碱性磷酸酶活性等土壤酶活性[37-39]。沈冰涛等[40]研究有机肥替代无机肥对小麦产量及土壤养分和酶活性的影响发现,适当比例有机肥替代无机肥处理既能保证作物产量,又能一定程度的提高土壤肥力和酶活性(过氧化氢酶、蔗糖酶和磷酸酶活性)。Wu等[41]指出施用有机肥和有机-无机肥可显著提高丘陵果园地区土壤过氧化氢酶、蔗糖酶、脲酶和酸性磷酸酶的活性。

3 施肥对土壤微生物组的影响 3.1 施肥对土壤微生物丰度和多样性的影响

除了土壤理化和酶活性指标,土壤微生物也可以对土壤环境的改变做出快速响应。土壤细菌对于维持土壤肥力和土壤生态系统功能至关重要,并且通常对肥料投入敏感[42]。Hu等[43]使用基于16S rRNA基因的定量PCR(qPCR)方法估算长期不同施肥处理的细菌丰度,结果显示NPK处理和未施肥对照之间没有显著差异,有机肥的替代或单纯有机肥的施加均使细菌丰度比对照显著提高。Sun等[32]的研究中也得到了类似的结果,并且他们指出NPK加牲畜粪便的细菌丰度比NPK加小麦秸秆高得多。关于细菌多样性对施肥处理的响应,许多研究都得到了一致的结论:长期NPK施肥会导致土壤细菌丰富度和多样性降低,有机肥替代或者单独有机肥处理的细菌丰富度和多样性升高,甚至显著高于NPK处理及不施肥对照[43-46]。值得一提的是,无机肥导致细菌丰度和多样性降低的趋势在短期施肥中就可以被发现[47]

土壤中的细菌和真菌通常占土壤微生物总量的90%以上,它们是土壤有机质分解和养分动态的主要调节剂[48]。Bei等和Guo等[28, 47]的研究均显示,短期无机肥和有机肥处理之间,真菌ITS基因拷贝没有显著差异。长期NPK处理也会导致土壤真菌多样性指标均显著下降,有机肥的添加使真菌丰富度和多样性提高[49-51]。Wang等[52]的研究中也提出不同的施肥方式改变了真菌类群的丰度,并按其营养策略分组,与矿物肥料处理相比,土壤有机输入增加了土壤真菌α-多样性。

一些古菌,特别是氨氧化古菌(Ammonia-oxidizing archaea,AOA)也会对不同施肥方式作出响应,但其对施肥处理敏感性低于氨氧化细菌(Ammonia-oxidizing bacteria,AOB),即使AOA的数量比AOB高数百倍[53-54]。不同无机肥、有机肥短期处理下,AOA的丰度和多样性无显著差异[55-56]。长期无机肥或有机肥处理对AOA的丰度的影响较小,并且无机肥和有机肥的联用并不会引起AOA丰富度和α多样性显著变化[57-58]。原生生物是施用氮肥最易感的微生物组分,氮肥通过改变不同的非生物特性和细菌和真菌群落间接地减少了原生生物的多样性[59]。有机肥处理会使土壤形成根本不同的原生生物群落结构,并且增强最丰富的原生生物分类群的相对丰度,进而使得整体多样性降低[60-61]

3.2 施肥对土壤微生物群落结构的影响

不同施肥措施和施肥周期对土壤微生物群落结构的影响程度存在一定差异,这种影响差异除了土壤因素外,还受到植物类型的影响[62-63]。不同无机和有机长期处理的土壤中的细菌群落组成彼此分开,表现出微生物群落结构的显著差异,而短期施肥处理则对微生物群落产生轻微的影响[28-29, 46]。目前无机和有机肥料的研究中,各类土壤样本中主要的细菌门包括:Proteobacteria、Acidobacteria、Chloroflexi、Actinobacteria等,并且它们相对丰度的总和占细菌群落的70%以上[2, 8, 45]。Ramirez等[42]在N富集对北美生态系统微生物活动和群落组成变化的研究中发现,N添加使Actinobacteria和Firmicutes的相对丰度分别增加,同时减少了Acidobacteria、Verrucomicrobia、Cyanobacteria、Planctomycetes和Deltaproteobacteria等5个门的丰度。Cui等[45]的研究表明NPK肥料的长期施用显著增加了红壤性水稻土壤的Nitrospirae的丰度,而粪肥增加了Proteobacteria、Chloroflexi和Firmicutes的丰度,但在粪肥和化学NPK联合施用的处理中检测到最丰富的Actinobacteria和Planctomycetes。此外,有机肥的施加可以显著富集细菌微生物组成中的Firmicutes。Kumar等[46]在水稻土中连续施用无机和有机肥料47年,发现有机肥和无机肥配施处理的Firmicutes的OTU比例明显高于无机肥处理。Tu等[64]在7年、9年和10年的人工林中均发现,有机肥增加了Firmicutes的比例,而对照和无机肥料处理中没有此效果,并且他们也提出芽孢杆菌是最丰富的Firmicutes类,可能代表对有机肥施肥反应最明显的细菌类型,可作为提高土壤肥力和实现可持续发展的高效细菌。

同细菌群落一样,土壤真菌群落组成在无机和有机施肥方式之间可以明显分开,但其对土壤养分状况变化的敏感度低于细菌[8, 65]。多数研究中,Ascomycota门在真菌群落中占主导地位,占总序列的60%以上[2, 8, 65]。与不施肥处理相比,有机肥的应用能够显著增加增加主导真菌Ascomycota的相对丰度,但在无机肥处理下其丰度降低[50-51, 66]。除此之外,NPK应用显著增加了已知致病性状的真菌类群的丰度,如Chaetothyriales目,Chaetothyriaceae和Pleosporaceae科,以及CorynesporaBipolarisCyphellophora种;相反,在有机肥施加的处理中则抑制了可能的致病性真菌生长,并增加真菌的生物多样性,从而提高土壤和作物的健康状况[49, 51, 67-68]。AOA和AOB对不同施肥处理的响应也有差异,与NPK相比,有机肥的应用增加了AOB丰度,但降低了AOA丰度[55, 69]。有机肥能够强烈改变原核生物的组成,提高原核多样性,改善长期施肥下原核生物的群落结构[34, 70]

3.3 施肥条件下土壤性质和土壤微生物的耦合

土壤微生物群落的生长、活动和功能多样性受到各种土壤理化的影响,包括土壤pH、总氮(TN)、有机碳(SOC)含量及土壤酶活性。在施肥条件下,pH是改变细菌、真菌、古菌及原生生物等微生物落群落的主要驱动因素,TN、SOC、酶活性等因素也是不同种类微生物群落组成的重要贡献者[2, 53, 71-72]。无机肥长期施加下,细菌多样性在中性土壤中最高,在酸性土壤中较低,并且在pH低于5的土壤中,细菌群落组成的差异最为明显[73]。Ma等[51]在探究中国黑土地上真菌群落组成对长期化学和有机肥施用的响应时发现,土壤有机质和pH值是真菌群落组成的两个最重要的贡献者。Zhang等[74]的研究中,随着不同施肥处理土壤pH的降低,AOA与AOB丰度的比例大大增加,表明红壤水稻土的pH值是影响AOA和AOB丰度和群落结构的重要因素。施用氮磷钾肥加猪粪可以提高土壤pH值,改善土壤有机碳含量和聚集,提高原核多样性,改善27年施肥后原核生物的群落结构[34]。不同施肥处理引起的碳、氮水平改变,影响土壤微生物的群落结构和多样性。Zhang等[75]在短期N添加后,人工林土壤SOC、TN和总磷(TP)的含量和元素比率发生了变化,进而引起微生物群落分布受到N添加的限制。Wang等[76]对中国东北黑土长期施肥的研究中指出,土壤NH4+、TN和TC分别解释了不同有机无机肥处理间21%、19%和18%的尿素分解微生物丰富变化,并且他们也提出粪肥应用是尿素分解微生物群落的主要驱动力。与此同时,微生物自身活动会改变土壤团粒的直径和结构,进而改变土壤物理性状;另一方面,微生物会参与土壤有机质和矿物质的分解,参与土壤中碳、氮、磷等多种元素的循环,改变土壤化学特征[77]。在微生物协助下,有机肥的分解历程中会产生包含有多种酸性功能团的腐殖酸,是一类弱酸,其凭借酸基和胺基质子化来增强土壤的酸碱缓冲能力,缓解因单纯施加无机肥引起的土壤酸化问题[78]。因此施肥条件下土壤理化性质与微生物两者绝不是割裂开的,两者相互耦合,相辅相成,共同促进作物和植物的生长。

4 不足和展望

虽然前人关于不同施肥处理对土壤理化性质、酶活性以及微生物群落结构的影响进行了大量的研究,但是在新方法的采用、稀有微生物的研究、微生物组的综合分析及微生物功能的探究等方面仍然缺少深入的阐述,亟待开展相关的研究。

4.1 新方法的采用与多组学融合

除上文中提到的微生物检测方法,单细胞测序技术、第三代测序技术等新方法也应该引入土壤微生物组的研究。任何一种单独检测手段都有其优缺点,因此以后的研究需要将多种检测方法结合(如培养与测序结合、多种组学的联合使用),优势互助,消除单一技术的弊端,才能更加全面地了解不同施肥方式对微生物组的影响,并且随着测序等检测技术以及生物信息学的发展,检测成本会逐步降低,数据库会越来越完善。

4.2 稀有微生物的研究

稀有物种代表了大量的遗传多样性,并且在生态系统中发挥重要的关键生态功能[79]。目前土壤微生物的相关研究大多集中于相对丰度较高的优势微生物,但稀有微生物的种类远多于优势微生物,能够对土壤环境的变化和施肥处理做出敏感的响应,因此确定稀有微生物在不同施肥处理下的波动、了解调控稀有微生物的因素至关重要。

4.3 微生物组的综合分析

土壤微生物对土壤肥力至关重要,目前大多数关于施肥对土壤微生物组的研究集中于细菌和/或真菌群落上,原生生物、古菌等微生物在土壤生态系统中也起到举足轻重的作用,其对有机肥和无机肥的不同响应研究需要被重视。不同有机-无机施肥处理下绝非是单一类型微生物的变化,微生物组的综合分析才能更为全面地揭示复杂的土壤微生态。

4.4 微生物功能的探究

微生物组成及其功能多样性对于生态系统稳态的维持和修复起着至关重要的作用[80]。前人的研究更多的集中在施肥处理如何影响土壤微生物组成,对其影响土壤微生物功能尚缺少充分的阐述。不同类型的微生物在土壤微生物网络中发挥着各自的功能,各司其职,不同功能的微生物协同调控才能使肥料养分得以高效利用。微生物功能的探究能让我们进一步了解不同施肥处理下土壤的运作机制,指导农业生产合理施肥和可持续发展。

综上,无机肥可增加土壤速效养分含量,提高土壤肥力;有机肥可改良土壤物理结构,提高土壤肥力储蓄,改善土壤微生物组的丰度和多样性及菌群结构,有机-无机肥配施将是保证农业作物可持续发展的重要举措。不同的作物种类、不同的土地利用类型、不同来源和成分的有机无机肥也决定最佳配施比例并不唯一,因此测土配方施肥、有机-无机精准配施将是未来农业生产的科学施肥方式。

参考文献
[1]
史常亮, 郭焱, 朱俊峰. 中国粮食生产中化肥过量施用评价及影响因素研究[J]. 农业现代化研究, 2016, 37(4): 671-679.
[2]
Yang Y, Wang P, Zeng Z. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic-inorganic fertilization strategies[J]. Agronomy, 2019, 9(1): 14. DOI:10.3390/agronomy9010014
[3]
Wei M, Hu G, Wang H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a fluvo-aquic soil in northern China[J]. European Journal of Soil Biology, 2017, 82: 27-34. DOI:10.1016/j.ejsobi.2017.08.002
[4]
Qiao Y, Liu Q, Gao Z, et al. Impacts of long-term fertilization on bacterial community structure, soil microbial biomass, and grain yields in red paddy soil in China[J]. Applied Ecology and Environmental Research, 2019, 17(2): 3353-3370. DOI:10.15666/aeer/1702_33533370
[5]
Baldantoni D, Morra L, Saviello G, et al. Nutrient and toxic element soil concentrations during repeated mineral and compost fertilization treatments in a mediterranean agricultural soil[J]. Environmental Science and Pollution Research, 2016, 23(24): 25169-25179. DOI:10.1007/s11356-016-7748-0
[6]
邢鹏飞, 高圣超, 马鸣超, 等. 有机肥替代部分无机肥对华北农田土壤理化特性, 酶活性及作物产量的影响[J]. 中国土壤与肥料, 2016, 3: 98-104.
[7]
Li C, Yan K, Tang L, et al. Change in deep soil microbial communities due to long-term fertilization[J]. Soil Biology and Biochemistry, 2014, 75: 264-272. DOI:10.1016/j.soilbio.2014.04.023
[8]
Wang J, Song Y, Ma T, et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil[J]. Applied Soil Ecology, 2017, 112: 42-50. DOI:10.1016/j.apsoil.2017.01.005
[9]
Marchesi JR, Ravel J. The vocabulary of microbiome research:a proposal[J]. BioMed Central, 2015, 3: 31.
[10]
Yang YD, Ren YF, Wang XQ, et al. Ammonia-oxidizing archaea and bacteria responding differently to fertilizer type and irrigation frequency as revealed by Illumina Miseq sequencing[J]. Journal of Soils and Sediments, 2018, 18(3): 1029-1040. DOI:10.1007/s11368-017-1792-3
[11]
Júnior L, Vieira G, Noronha MF, et al. Land use and seasonal effects on the soil microbiome of a brazilian dry forest[J]. Frontiers in Microbiology, 2019, 10: 648. DOI:10.3389/fmicb.2019.00648
[12]
Kellenberger E. Exploring the unknown:The silent revolution of microbiology[J]. EMBO Reports, 2001, 2(1): 5-7. DOI:10.1093/embo-reports/kve014
[13]
Frostegård Å, et al. Use and misuse of plfa measurements in soils[J]. Soil Biol Biochem, 2011, 8: 1621-1625.
[14]
Zhou J, He Z, Yang Y, et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats[J]. MBio, 2015, 6(1). pii: e02288-14. https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC4324309/
[15]
Yu K, et al. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol a (bpa)-degrading microbial community[J]. Microbiome, 2019, 1: 16.
[16]
Tu Q, Yu H, He Z, et al. Geochip 4:a functional gene-array-based high-throughput environmental technology for microbial community analysis[J]. Mol Ecol Res, 2014, 14(5): 914-928.
[17]
贺惠, 等. 海洋沉积物中微生物基因组和提取方法的比较研究[J]. 中国海洋大学学报:自然科学版, 2017(6): 17-24.
[18]
潘彦羽, 王道胜, 代嫣然, 等. 土壤宏基因组学研究方法与应用[J]. 环境科学与技术, 2015, 38(12Q): 209-213.
[19]
Levy A, et al. Elucidating bacterial gene functions in the plant microbiome[J]. Cell Host Microbe, 2018, 4: 475-485.
[20]
Chaudhary S, Dheri G, Brar B. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 166: 59-66. DOI:10.1016/j.still.2016.10.005
[21]
Guo Z, et al. Long-term animal manure application promoted biological binding agents but not soil aggregation in a vertisol[J]. Soil Tillage Res, 2018, 180: 232-237. DOI:10.1016/j.still.2018.03.007
[22]
曲成闯, 等. 生物有机肥对潮土物理性状及微生物量碳、氮的影响[J]. 水土保持通报, 2018, 38(5): 70-76.
[23]
Sheoran HS, Kakar R, Kumar N, et al. Impact of organic and conventional farming practices on soil quality:A global review[J]. Appl Ecol Environ Res, 2019, 17(1): 951-968. DOI:10.15666/aeer/1701_951968
[24]
Sihi D, Dari B, Sharma DK, et al. Evaluation of soil health in organic vs. conventional farming of basmati rice in north India[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(3): 389-406. DOI:10.1002/jpln.201700128
[25]
Williams DM, Blanco-Canqui H, Francis CA, et al. Organic farming and soil physical properties:an assessment after 40 years[J]. Agronomy Journal, 2017, 109(2): 600-609. DOI:10.2134/agronj2016.06.0372
[26]
Suja G, Byju G, Jyothi AN, et al. Yield, quality and soil health under organic vs conventional farming in taro[J]. Scientia Horticulturae, 2017, 218: 334-343. DOI:10.1016/j.scienta.2017.02.006
[27]
秦燕, 刘文辉, 何峰, 等. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响[J]. 草业学报, 2019, 28(1): 5-14.
[28]
Bei S, Zhang Y, Li T, et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil[J]. Agric Ecosyst Environ, 2018, 260: 58-69. DOI:10.1016/j.agee.2018.03.014
[29]
Guo Z, Han J, Li J, et al. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure[J]. PLoS One, 2019, 14(1): e0216006.
[30]
Sun R, Guo X, Wang D, et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 2015, 95: 171-178. DOI:10.1016/j.apsoil.2015.06.010
[31]
Czarnecki S, Düring RA. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany[J]. Soil, 2015, 1(1): 23-33. DOI:10.5194/soil-1-23-2015
[32]
Sun R, Zhang XX, Guo X, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9-18. DOI:10.1016/j.soilbio.2015.05.007
[33]
Grüter R, Costerousse B, Mayer J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Sci Total Environ, 2019, 669: 608-620. DOI:10.1016/j.scitotenv.2019.03.112
[34]
Ye G, Lin Y, Liu D, et al. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic ultisols[J]. Applied Soil Ecology, 2019, 133: 24-33. DOI:10.1016/j.apsoil.2018.09.008
[35]
Xie S, F, et al. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? a pilot study in a green tea garden in Shaoxing, Zhejiang Province, China[J]. Environ Sci Pollu Res, 2019, 26(3): 2464-2476. DOI:10.1007/s11356-018-3732-1
[36]
Liu CA, Zhou LM. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment[J]. Soil and Tillage Research, 2017, 172: 39-47. DOI:10.1016/j.still.2017.05.003
[37]
Igalavithana A, Lee S, Niazi N, et al. Assessment of soil health in urban agriculture:soil enzymes and microbial properties[J]. Sustainability, 2017, 9(2): 310. DOI:10.3390/su9020310
[38]
弓萌萌, 等. 不同有机肥施用量对苹果园土壤养分及酶活性的影响[J]. 西北林学院学报, 2019(3): 74-78. DOI:10.3969/j.issn.1001-7461.2019.03.11
[39]
Samuel AD, Bungau S, Tit DM, et al. Effects of long term application of organic and mineral fertilizers on soil enzymes[J]. Rev Chim Bucharest, 2018, 69(10): 2608-2612.
[40]
沈冰涛, 张孝倩, 陈红, 等. 有机肥替代化肥对小麦产量及土壤养分和酶活性的影响[J]. 长江大学学报:自然科学版, 2019, 16(5): 46-52, 7-8.
[41]
Wu C. Effects of fertilization based on soil microorganisms on the growth of xanthoceras sorbifolia and soil enzyme activity[J]. Rev Fac Agron LUZ, 2019, 36(4): 890-901.
[42]
Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918-1927. DOI:10.1111/j.1365-2486.2012.02639.x
[43]
Hu XJ, et al. Soil Bacterial communities under different long-term fertilization regimes in three locations across the black soil region of northeast China[J]. Pedosphere, 2018, 28(5): 751-763. DOI:10.1016/S1002-0160(18)60040-2
[44]
Wang Q, et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols[J]. Appl Soil Ecol, 2018, 125: 88-96. DOI:10.1016/j.apsoil.2017.12.007
[45]
Cui X, Zhang Y, Gao J, et al. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of central south China[J]. Scientific Reports, 2018, 8(1): 16554. DOI:10.1038/s41598-018-34685-0
[46]
Kumar U, Nayak AK, Shahid M, et al. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production[J]. Agric, Ecosyst Environ, 2018, 262: 65-75. DOI:10.1016/j.agee.2018.04.016
[47]
Guo J, Liu W, Zhu C, et al. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments[J]. Plant and Soil, 2018, 424(1-2): 335-349. DOI:10.1007/s11104-017-3547-8
[48]
Six J, Frey S, Thiet R, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555-569. DOI:10.2136/sssaj2004.0347
[49]
Lei X, Zhao L, Brookes PC, et al. Fungal communities and functions response to long-term fertilization in paddy soils[J]. Applied Soil Ecology, 2018, 130: 251-258. DOI:10.1016/j.apsoil.2018.06.008
[50]
Wang Y, Ji H, Hu Y, et al. Different selectivity in fungal communities between manure and mineral fertilizers:a study in an alkaline soil after 30 years fertilization[J]. Frontiers in Microbiology, 2018, 9: 2613. DOI:10.3389/fmicb.2018.02613
[51]
Ma M, Jiang X, Wang Q, et al. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols[J]. Microbiologyopen, 2018, 7(5): e00597. DOI:10.1002/mbo3.597
[52]
Wang J, Rhodes G, Huang Q, et al. Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system[J]. Biology and Fertility Soils, 2018, 54(6): 731-742. DOI:10.1007/s00374-018-1295-4
[53]
Zhang Q, Liang G, Myrold DD, et al. Variable responses of ammonia oxidizers across soil particle-size fractions affect nitrification in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2017, 105: 25-36. DOI:10.1016/j.soilbio.2016.11.005
[54]
Fan F, Yang Q, Li Z, et al. Impacts of organic and inorganic fertilizers on nitrification in a cold climate soil are linked to the bacterial ammonia oxidizer community[J]. Microbial Ecology, 2011, 62(4): 982-990. DOI:10.1007/s00248-011-9897-5
[55]
Tao R, Wakelin SA, Liang Y, et al. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification[J]. Soil Biol Biochem, 2017, 114: 20-30. DOI:10.1016/j.soilbio.2017.06.027
[56]
Wang J, Ni L, Song Y, et al. Dynamic response of ammonia-oxidizers to four fertilization regimes across a wheat-rice rotation system[J]. Frontiers in Microbiology, 2017, 8: 630.
[57]
Lin Y, Ye G, Luo J, et al. Nitrosospira cluster 8a plays a predomi-nant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization[J]. Applied and Environmental Microbiology, 2018, 84(18). pii: e01031-18.
[58]
赵普生, 韩苗, 熊子怡, 等. 长期定位施肥对中性紫色土硝化作用及氨氧化微生物的影响[J]. 中国土壤与肥料, 2018, 277(5): 88-93.
[59]
Zhao ZB, He JZ, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7(1): 33. DOI:10.1186/s40168-019-0647-0
[60]
Xiong W, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. ISME J, 2018, 12(2): 634. DOI:10.1038/ismej.2017.171
[61]
Murase J, Hida A, Ogawa K, et al. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil[J]. Soil Biol Biochem, 2015, 80: 237-243. DOI:10.1016/j.soilbio.2014.10.015
[62]
Li M, Wang T, Li L, et al. Effects of long-term nitrogen fertilizer application on rhizosphere microorganisms under different soil types[J]. Pol J Environ Stud, 2019, 28(3): 1771-1784. DOI:10.15244/pjoes/89583
[63]
Vivanco L, Rascovan N, Austin AT. Plant, fungal, bacterial, and nitrogen interactions in the litter layer of a native Patagonian forest[J]. Peer J, 2018, 6: e4754. DOI:10.7717/peerj.4754
[64]
Tu J, Qiao J, Zhu Z, et al. Soil bacterial community responses to long-term fertilizer treatments in paulownia plantations in subtropical China[J]. Appl Soil Ecol, 2018, 124: 317-326. DOI:10.1016/j.apsoil.2017.09.036
[65]
Ai C, Zhang S, Zhang X, et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 2018, 319: 156-166. DOI:10.1016/j.geoderma.2018.01.010
[66]
Ding J, et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols[J]. Appl Soil Ecol, 2017, 111: 114-122. DOI:10.1016/j.apsoil.2016.12.003
[67]
Hu XJ, Liu JJ, Wei D, et al. Effects of over 30-year of different fertilization regimes on fungal community compositions in the black soils of northeast China[J]. Agriculture, Ecosystems and Environment, 2017, 248: 113-122. DOI:10.1016/j.agee.2017.07.031
[68]
Gleń-Karolczyk K, Boligłowa E, et al. Organic fertilization shapes the biodiversity of fungal communities associated with potato dry rot[J]. Appl Soil Ecol, 2018, 129: 43-51. DOI:10.1016/j.apsoil.2018.04.012
[69]
Fang Y, Wang F, Jia X, et al. Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil[J]. Journal of Soils and Sediments, 2019, 19(4): 1613-1623. DOI:10.1007/s11368-018-2154-5
[70]
Lin Y, Ye G, Kuzyakov Y, et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa[J]. Soil Biology and Biochemistry, 2019, 134: 187-196. DOI:10.1016/j.soilbio.2019.03.030
[71]
Morugán-Coronado A, García-Orenes F, et al. The effect of moisture on soil microbial properties and nitrogen cyclers in mediterranean sweet orange orchards under organic and inorganic fertilization[J]. Sci Total Environ, 2019, 655: 158-167. DOI:10.1016/j.scitotenv.2018.11.174
[72]
Wang Z, Liu Y, Zhao L, et al. Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem[J]. Peer J, 2019, 7: 1-21.
[73]
Geisseler D, Scow KM. Long-term effects of mineral fertilizers on soil microorganisms-a review[J]. Soil Biology and Biochemistry, 2014, 75: 54-63. DOI:10.1016/j.soilbio.2014.03.023
[74]
Zhang K, Chen L, Li Y, et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers[J]. Biology and Fertility of Soils, 2017, 53(1): 77-87. DOI:10.1007/s00374-016-1154-0
[75]
Zhang J, Ai Z, Liang C, et al. How microbes cope with short-term N addition in a pinus tabuliformis forest-ecological stoichiometry[J]. Geoderma, 2019, 337: 630-640. DOI:10.1016/j.geoderma.2018.10.017
[76]
Wang L, Luo X, Liao H, et al. Ureolytic microbial community is modulated by fertilization regimes and particle-size fractions in a black soil of northeastern China[J]. Soil Biology and Biochemistry, 2018, 116: 171-178. DOI:10.1016/j.soilbio.2017.10.012
[77]
Morris SJ, Blackwood CB. The ecology of the soil biota and their function[J]. Soil Microbiol, Ecol Biochem, 2015, 273-309.
[78]
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016(1): 175-181.
[79]
Jia X, Dini-Andreote F, Salles JF. Community assembly processes of the microbial rare biosphere[J]. Trends in Microbiology, 2018, 26(9): 738-747. DOI:10.1016/j.tim.2018.02.011
[80]
Escalas A, Troussellier M, Yuan T, et al. Functional diversity and redundancy across fish gut, sediment and water bacterial communities[J]. Environ Microbiol, 2017, 19(8): 3268-3282. DOI:10.1111/1462-2920.13822