工作空间

文章信息

于明香, 宋水山
植物细胞中蛋白脂酰化修饰的生物学功能
生物技术通报, 2019, 35(8): 170-177

YU Ming-xiang, SONG Shui-shan
Biological Functions of Protein Fatty Acylation in Plant Cells
Biotechnology Bulletin, 2019, 35(8): 170-177

文章历史

收稿日期:2019-01-23

植物细胞中蛋白脂酰化修饰的生物学功能
于明香1, 宋水山1,2,3     
1. 河北工业大学化工学院,天津 300131;
2. 河北省科学院生物研究所,石家庄 050051;
3. 河北省主要农作物病害微生物控制工程技术 研究中心,石家庄 050051
摘要:蛋白脂肪酰化修饰是蛋白翻译修饰的重要形式,在细胞信号转导、生长发育和代谢等过程中发挥着重要的作用。N-肉豆蔻酰化和S-酰化是脂肪酰化修饰的两种主要形式,长链的脂肪酸被共价结合到蛋白质上,使蛋白结构发生变化,从而影响细胞的一系列生理作用。近年来,相比于真菌和动物细胞中蛋白脂肪酰化修饰的功能研究而言,植物蛋白质脂酰化修饰及其生物学功能的研究相对较少,且两者并不完全相同,引起了研究人员的广泛关注。研究发现,植物蛋白质N-肉豆蔻酰化和S-酰化修饰过程中分别需要相对应的豆蔻酰基转移酶和S-酰基转移酶来催化,通过对两种转移酶缺失的突变体的研究发现,这两种酰基转移酶的活性与植物种子萌发、花期长短及表型正常化有关;N-肉豆蔻酰化和S-酰化蛋白通过疏水性的酰基键插入膜上相应的位置,进行膜锚定;参与调控植物生长、信号转导及免疫应答等过程。综述了近年来N-肉豆蔻酰化和S-酰化在植物细胞生物学功能中的研究进展,并对植物G蛋白偶联受体(GPCRs)脂质修饰在感知细菌信号分子N-酰基高丝氨酸内脂(AHLs)过程中的作用进行了讨论,旨在为采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。
关键词脂肪酰化    N-肉豆蔻酰化    S-酰化    信号转导    N-高丝氨酸内脂    
Biological Functions of Protein Fatty Acylation in Plant Cells
YU Ming-xiang1, SONG Shui-shan1,2,3     
1. College of Chemical Engineering, Hebei University of Technology, Tianjin 300131;
2. Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050051;
3. Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, Shijiazhuang 050051
Abstract: Protein fatty acylation modification is an important form of protein translation modification, and plays an important role in cell signal transduction, growth and metabolism. N-myristoylation and S-acylation are the two major forms of fatty acylation. Long-chain fatty acids are covalently bound to proteins, which alter the structure of the protein and affect a range of physiological functions of the cell. In recent years, compared with the functional studies of protein fatty acylation in fungi and animal cells, the study of plant protein lipid acylation and its biological functions are relatively backward, and the two are not identical, causing researchers broad interests. Extensive studies have found that the plant protein N-myristoylation and S-acylation modification process requires the corresponding soybean acyltransferase and S-acyltransferase to catalyze, respectively. Through the study of two transferase-deficient mutants, these two acyltransferases were found to be involved in plant seed germination, flowering length and phenotypic normalization. N-myristoylation and S-acylated proteins were inserted into the membrane at the corresponding positions by hydrophobic acyl bonds for membrane anchoring; participating in the regulation of plant growth, signal transduction and immune response processes. This paper reviewed recent advances in the biological functions of N-myristoylation and S-acylation in plant cells and discusses the role of lipid-modification of plant G-protein coupled receptors (GPCRs) in the sensing of bacterial signaling molecules N-acylhomoserine lactones (AHLs), providing theoretical guidance for the use of genetic intervention techniques to improve crop production, quality and resistance.
Key words: fatty acylation    N-myristoylation    S-acylation    signal transduction    N-acylhomoserime lactones    

在生物体内,DNA通过转录翻译形成多肽,然后经过一定的共翻译或翻译后修饰过程形成成熟的蛋白质。蛋白质翻译后修饰方式有多种形式,如甲基化、磷酸化、糖基化等。脂质修饰,即一种蛋白质与脂质分子共价结合作为一种重要的翻译后修饰途径,其对细胞信号分子的膜锚定、蛋白转运、蛋白定位及蛋白互作具有重要意义。目前已知的主要脂质修饰类型包括胆固醇化、异戊烯化、糖基化和脂肪酰化;其中脂肪酰化主要由脂肪酸与蛋白质共价结合,增加蛋白质分子与膜的亲和性,从而刺激某些信号途径,影响蛋白质在细胞内的转运及膜定位。与蛋白脂肪酰化修饰在真菌和动物细胞中功能的研究相比,植物蛋白质脂酰化修饰及其生物学功能的研究相对落后,同时研究发现植物中蛋白脂酰化过程及其调控的生理过程并不与动物和酵母细胞中完全相同。N-豆蔻酰化和S-酰化是脂肪酰化的两种重要形式,在细胞膜定位、信号转导中起着重要的作用。本文将主要对植物蛋白脂肪酰化的特征及其在生物学功能方面进行综述,旨在为后续采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。

1 植物蛋白豆蔻酰化及其生物学功能 1.1 蛋白N-豆蔻酰化修饰过程

蛋白质的豆蔻酰化是脂肪酰化的一种重要形式。蛋白质N-豆蔻酰化最初发现于环AMP依赖性蛋白激酶[1]和钙调神经磷酸酶B[2]。N-豆蔻酰化可发生于真核细胞蛋白翻译和翻译后修饰过程中,这种修饰增加了目标蛋白的亲脂性,促进其与细胞膜相互作用,从而调控其亚细胞定位,在细胞生理学中起到了重要作用[3]

在共翻译过程中,N-豆蔻酰化是由甲硫氨酸氨肽酶水解肽链N-末端的甲硫氨酸,使得2号位的甘氨酸裸露出来,N-豆蔻酰转移酶(N-Myristoyltransferase,NMT)[4]将含有14个饱和碳的豆蔻酸与裸露的甘氨酸的α-氨基共价结合形成酰胺键。此过程为不可逆过程。

另外,Zha等[5]发现在细胞凋亡过程中促凋亡蛋白——BH3结构域凋亡诱导蛋白(BH3-interacting domain death agonist,BID)被半胱天冬酶作用后暴露出内部的甘氨酸残基,进而该甘氨酸残基与含有14个饱和碳的豆蔻酸发生豆蔻酰化。因此,豆蔻酰化也可以发生在蛋白质翻译后修饰过程中[6-7]

近年来对于蛋白豆蔻酰化基序的研究越来越多,公认的NMT识别序列为MGXXX,即N端第2位氨基酸为Gly,其余位置为任意氨基酸。但随着研究的深入,发现其他位置的氨基酸豆蔻酰化蛋白的功能也有一定的影响。Johnson等[8]报道除N端2号位Gly残基是蛋白豆蔻酰化必需的之外,6号位还要求为Ser或Thr,即M1G2X3X4X5S/T6X7X8,以确保NMT与其底物结合。Sebastian等[9]提出蛋白豆蔻酰化的3个基序区域,包括区域1:2号位到6号位氨基酸残基用于底物识别;区域2:7号位到10号位氨基酸残基与NMT表面相互作用;区域3:11号位到17号位氨基酸残基具有亲水性作用。然而有证据表明植物中决定蛋白豆蔻酰化的保守基序与动物和酵母细胞中的稍有不同[10]。Yamauchi等[11]报道除2号位甘氨酸是豆蔻酰化的必需残基外,植物蛋白N-豆蔻酰化的基序中3、6和7号位的氨基酸种类及其组合在豆蔻酰化中发挥作用,6号位的Ser和7号位的Lys残基会影响3号位的氨基酸的选择性,3、6、7号位氨基酸的组合形式影响豆蔻酰化蛋白的膜结合特性。

在植物拟南芥中已经分离出两种编码NMT蛋白的cDNAs,AtNMT1(At5g57020)和AtNMT2(At2g44170),在遗传学上已经证实NMT1的功能[12]。NMT1和NMT2都是GNAT(GCN5-乙酰转移酶)超家族的成员[13]。有证据表明在拟南芥中NMT1是主要的N-末端肉豆蔻酰基转移酶。相比NMT2而言,其mRNA表达水平相对较高。Pierre等[14]研究发现NMT1突变体植株表现出致死性状,AtNMT1敲除突变植株表现出矮化现象,AtNMT2缺失突变体延迟开花时间。尽管NMT2与NMT1有80%的同源性,但它们具有不同底物特异性。Renna等[15]鉴定得到一株NMT1的隐性突变体stingy,研究表明突变体中ADP-核糖基化因子Arf蛋白亚细胞定位发生异常。其表型并无异常,表明该酶的部分缺失不会影响整个酶活;而nmt1突变体的表型则异常,主要与蛋白激酶SnRK1豆蔻酰化复合物在膜上丢失有关。以上研究表明NMT1具有植物正常发育所需的NMT活性。

Podell和Gribskov等[16]预测出植物拟南芥蛋白质组有319种蛋白质能够被豆蔻酰化修饰,其中包括蛋白激酶(大多数为已知的钙依赖性蛋白激酶CDPK/CPK)、磷酸酶、硫氧还原蛋白[17]、GTP结合蛋白[18]、转录因子及其他未知的蛋白质。

1.2 蛋白N-豆蔻酰化的生物学功能

蛋白豆蔻酰化是一种重要的脂质修饰,在细胞内具有重要的生物学功能。豆蔻酰化的非受体蛋白酪氨酸激酶、G蛋白、钙结合蛋白[19]等可介导蛋白的亚细胞定位,参与蛋白质与蛋白质间和蛋白质与膜间的相互作用[20-21]。一些参与信号转导途径的豆蔻酰化蛋白通过定位于膜上,感知传递信号,从而激活随后的一系列的细胞反应[22]。如Ding等[23]发现EGR2(Clade-E growth-regulating 2)豆蔻酰化后膜定位进而感应冷激活OST1蛋白激酶,有助于植物冷适应。Vaandrager等[24]证明了环GMP依赖的蛋白激酶Ⅱ(cGKⅡ)可被豆蔻酰化,并在cGMP介导的信号转导途径中发挥重要作用。豆蔻酰基化会由于配基的结合、pH的改变、磷酸化、蛋白质水解、膜定位的逆转而发生改变。

豆蔻酰化修饰可以将蛋白锚定在膜上,生物体通过怎样的方式调控豆蔻酰化蛋白转位呢?近年来,文献中报道了一种“豆蔻酰基开关”模型,即蛋白质结合“配体”后构象发生变化,导致先前在疏水区螯合的豆蔻酰基部分暴露于胞质中,使蛋白锚定在膜上[25]。GTP与ADP核糖基化因子(ADP-ribosylation factor,ARF)蛋白结合,豆蔻酰基部分暴露出来并将其靶向膜。还存在一种“豆蔻酰基静电开关”调控模型,即豆蔻酰化调节蛋白表面正电荷的强度进而调节豆蔻酰化蛋白与膜的亲和力[26]。Seykora等[27]指出MARCKS蛋白磷酸化,可减少膜结合蛋白表面的正电荷,引起相应的静电引力减小,不足以支撑豆蔻酰化MARCKS蛋白的膜结合,导致蛋白质从膜上脱落。这种调节方式还存在于c-Abl[28]、c-Src激酶[29]、SH2和SH3结构域[30]等中。

N-豆蔻酰化蛋白还参与植物生长、抗病、盐胁迫和细胞内吞作用的调控。Grebe和Ueda等[31]发现一个参与红细胞浆质甾醇运输的Rab GTPase;邵军丽等[32]发现水稻细胞中豆蔻酰化的Rab5b定位于前液泡区,即晚期内吞体,并在内吞及分泌过程中发挥功能;Ishitani等[33]预测并证明拟南芥耐盐基因SOS3需要N-豆蔻酰化和钙离子结合,再与SOS2特异性结合,共同调控SOS1的表达,从而耐受高浓度的盐胁迫;Belda-Palazon等[34]揭示了ABA和盐胁迫作用下抑制RGLG1豆蔻酰化,介导PP2CA泛素化降解,激活ABA信号通路;Asai等[35]研究发现StCDPK5的N-豆蔻酰化使其定位于细胞特定位置,促使StRBOHB和StCDPK5互作,激活ROS产生,调控植物生长发育。Ren等[36]研究发现在BSK3-2豆蔻酰化位点缺失的突变体G2R中,BSK3膜定位功能缺失,且油菜内酯(Brassinosteroid,BR)反应降低,表明了BSK3豆蔻酰化参与BR信号的转导。Mei等[37]研究发现在细胞核中,番茄叶卷曲云南病毒(TLCYnV)C4与NbSKh磷酸化,促进与病毒蛋白的豆蔻酰化,有利于与输出蛋白-α(XPO I)互作,促进C4/ NbSKh复合物的核输出及膜定位,引起植物叶片及根部致病。Yang等[38]和Gou等[39]研究表明拟南芥中Ca2+依赖性磷脂结合蛋白AtBON1、AtBON2、AtBON3参与植物免疫和气孔闭合的调节过程,其调节作用与N-豆蔻酰化修饰有关。

N-豆蔻酰化是一种弱膜锚,有时需要像S-酰化这样的强膜锚才能实现蛋白稳定的附着于膜上,因此多数N-豆蔻酰化蛋白也具有S-酰化修饰。有证据表明,有些N-豆蔻酰化是S-酰化的先决条件。如Traverso等[17]发现大多数豆蔻酰化蛋白在内质网上被S-酰化,随后被运输到细胞内其它场所发挥重要作用。Batistič等[40]发现CBL1需要通过N-豆蔻酰化与内质网结合,然后进行S-酰化促进其向细胞质膜的运输。

2 蛋白质S-酰化及其生物学功能 2.1 S-酰化修饰过程

蛋白质S-酰化是脂肪酰化的另一种重要形式,又称棕榈酰化,是通过S-酰基转移酶(Protein S-acyltransferase,PATs)将含有16个或18个碳原子的长链饱和脂肪酸特异性共价结合到肽链半胱氨酸残基上的过程[41-42]。不同于N-豆蔻酰化过程,S-酰化的修饰过程是可逆的[43]。S-酰化可以通过酰基——蛋白质硫酯酶(Acyl-protein thioesterase,APT)和棕榈酰基蛋白质硫酯酶(Palmitoyl-protein thioesterase,PPT)的作用逆转[44-45]

真核生物中,根据蛋白质结构的差异可将S-酰基转移酶分为3类:DHHC-CRD类棕榈酰基转移酶、MBOAT类棕榈酰基转移酶及Longindomai类棕榈酰基转移酶。其中,DHHC-CRD类棕榈酰基转移酶是真核生物中成员最多,最为重要,也是研究最多的家族。

植物体内有一个负责S-酰化反应的蛋白质家族,即蛋白S-酰基转移酶(PATs),其特征为在富含半胱氨酸的结构域内,具有4-6个跨膜结构域和一个DHHC氨基酸基序[46]。拟南芥中存在多种PATs,大多数定位于细胞质膜上,并发挥着重要的作用,其中的一些已被证明具有酰基化转移酶活性[27],如DHHC PAT Pfa3,PAT10等。目前已经报道了两种PAT突变植株,在表型上具有很大的差异。Schiefelbein等[47]和Ryan等[48]发现了PAT的突变体tip1(At5g20350)根毛较宽、较短,影响植物正常萌发和生长。Qi等[49]和Zhou等[50]报道另一个PAT的突变体pat10(At3g51390)较野生型植株生长缓慢,莲座叶小、花序茎和雄蕊短,花粉层缺陷,影响种子发育。pat10对盐敏感。同时,pat10突变体中与钙信号相关的蛋白CBL2、3、6不能定位于液泡膜上,这与用棕榈酰化抑制剂2-BP处理的结果一致,说明CBL2、3、6是PAT10的作用底物。PAT13和PAT14同源性很高,定位于高尔基体,文献报道指出这两个蛋白可能通过参与调控水杨酸的代谢,进而调控植物叶片的衰老[51-52]

APT和PPT在蛋白S-酰化的可逆性转换中起着关键性作用。APT位于细胞质,而PPT定位于溶酶体,两者都可以逆转S-酰化,但其修饰的底物完全不同[53]。尽管在植物基因组中存在许多与真菌和厚生动物APT和PPT酶有一定同源关系的蛋白,但对于它们的研究尚不成熟,有待进一步加强。

2.2 S-酰化的生物学功能

蛋白S-酰化修饰不仅参与细胞信号转导过程,也参与植物免疫应答过程。Maielhoffer等[54]研究发现通过N-豆蔻酰化和S-酰化双重修饰钙调磷酸酶B蛋白CBL1、CBL9(Calcineurin b-like protein,CBL1、CBL9)锚定在质膜上,进而与CBL相互作用蛋白激酶23(CBL-interacting protein kinase,CIPK23)相互作用,从而参与调控内向整流钾通道AKT1和阴离子通道SLAC1的活性。Ishitani等[33]和Held等[55]揭示了CBL4的N-肉豆蔻酰化和S-酰化对于调控Na+/H+逆向转运蛋白SOS1和钾通道AKT2是必不可少的。然而,Batistič等[40]研究发现CBL2并未通过N-豆蔻酰化,而是通过三重S-酰化,定位于液泡膜上,进而参与调控对ABA的响应。

Liu等[56]发现异源三聚体G蛋白AGG1、AGG2参与由FLS2(Flagellin-sensitive 2)、EFR(Elongation factor-tu receptor)和CERK1(Chitin elicitor receptor kinase 1)介导的病原体相关分子模式触发的免疫应答PTI(Pattern-triggered immunity)信号转导过程。目前已经有证据证实FLS2的830和831位的Cys上发生S-酰化修饰,并参与调控植物免疫应答过程[57]。Zeng等[58]提出Gγ不依赖功能性Gα靶向质膜,而是依赖于S-酰化使其有效的靶向质膜,表明脂质修饰在蛋白膜定位中起着至关重要的作用。

RIN4蛋白是拟南芥反应的负调控因子,是植物免疫系统的一部分,用于检测各种细菌Ⅲ型分泌效应蛋白的存在。RIN4的膜结合需要在3个半胱氨酸残基位点上进行S-酰基化修饰。非S-酰化的RIN4易降解。RIN4的S-酰化可以抑制其自身降解。RIN4通过S-酰化和膜结合S-酰化调控PTI,说明了蛋白S-酰化对其功能发挥的重要性[59]

3 展望

植物异源三聚体G蛋白参与响应多种植物激素的信号转导途径,并在植物生长发育过程中起着重要的作用[60]。拟南芥基因组中仅有一个编码G蛋白α亚基的基因GPA1一个编码G蛋白β亚基的基因AGB1和3个编码G蛋白γ亚基的基因AGG1AGG2AGG3,另外还有一个编码G蛋白信号转导调控蛋白的基因AαRGS1[61-62]。α-亚基AtGPA1也具有双重脂肪酰化作用,Adjobo-Herman等[63]提出AtGPA1AtAGG2编码的亚基的脂肪酰化是在质膜上定位和形成异源三聚体所必需的。在拟南芥可能的GPCRs中,GCR1和GCR2研究较为深入。Pandey等[64]采用多种方法证实GCR1与GPA1相互作用,并参与ABA调控植物根生长和气孔开合过程。有研究表明GCR-GPA1调控拟南芥中蓝光和ABA的信号转导,并且GCR1可能是蓝光和ABA的共同受体[65]。Liu等[66]报道GCR2是植物激素ABA的膜受体。但随后有报道指出,GCR2不是ABA的受体[67],也不是跨膜蛋白,生物信息学方法推测它可能不具有典型的7个跨膜结构,但其参与多钟植物激素和环境刺激因子的信号转导途径[68]

Johston等[69]报道指出植物GCR2与哺乳动物细胞中的羊毛硫氨酸合成酶(Lanthionine synthetase,LanC)具有高度序列同源性。原核生物中的LanC负责合成抗菌肽,而真核生物中LanC功能尚不十分清楚。最初动物细胞中的LANCL1和LANCL2被认为是G蛋白偶联受体GPCR,但随后报道指出LanC蛋白是膜结合蛋白。Sturla等[70]报道LANCL2是动物细胞中ABA信号转导通路中的关键组分。随后又发现ABA可以直接结合到重组的人类LANCL2上,进而证明LANCL2是ABA的受体。Fresia等[71]发现LANCL2依赖于N-肉豆蔻酰化定位于细胞质膜和细胞器膜,并与G蛋白互作引起核转位从而介导信号分子ABA的传递。

N-酰基高丝氨酸内酯(N-acyl-homoserine lactone,AHL)是革兰氏阴性细菌依赖其群体密度调控群体行为的细胞间通讯的信号分子。近年来研究表明,AHL不仅可以通过细菌群体感应(Quorum sensing,QS)机制调节细菌多种生物学功能[72-73],而且可以被寄主植物感知,参与植物-细菌的跨界通讯。本实验室前期研究表明,GCR1、GCR2和CPA1参与细菌AHL对拟南芥主根生长的调控及跨膜信号转导过程[74-75]。通过构建的表达GCR2-GFP融合基因的转基因拟南芥进行初步研究发现,AHLs处理后,随着处理时间的延长GCR2在细胞膜和细胞质的定位分布发生显著变化。那么在真核生物中GCR2这类蛋白家族是否也具有这种脂肪酰化修饰作用,参与感知和传递细菌AHL信号,并调控拟南芥主根生长,是我们目前研究的重点。通过解析G蛋白偶联受体、异源三聚体G蛋白的脂肪酰化在植物-微生物相互作用及跨界通讯中的分子机制,将进一步丰富植物蛋白脂肪酰化的生物学功能。研究结果将为采用遗传干预技术提高农作物生产、优质及抗逆提供理论指导。

参考文献
[1]
Carr SA, Biemann K, Shoji S, et al. n-Tetradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle[J]. Proceedings of the National Academy of Sciences, 1982, 79(20): 6128-6131. DOI:10.1073/pnas.79.20.6128
[2]
Aitken A, Cohen P, Santikarn S, et al. Identification of the NH2-terminal blocking group of calcineurin B as myristic acid[J]. FEBS Letters, 1982, 150(2): 314-318. DOI:10.1016/0014-5793(82)80759-X
[3]
Benetka W, Mehlmer N, Maurer-Stroh S, et al. Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling[J]. Cell Cycle, 2008, 7(23): 3709-3719. DOI:10.4161/cc.7.23.7176
[4]
Towler DA, Eubanks SR, Towery DS, et al. Amino-terminal processing of proteins by N-myristoylation[J]. Journal of Biological Chemistry, 1987, 262(3): 1030-1036.
[5]
Zha J, Weiler S, Oh KJ, et al. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis[J]. Science, 2000, 290(5497): 1761-1765. DOI:10.1126/science.290.5497.1761
[6]
Martin DDO, Vilas GL, Prescher JA, et al. Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog[J]. The FASEB Journal, 2008, 22(3): 797-806. DOI:10.1096/fj.07-9198com
[7]
Vilas GL, Corvi MM, Plummer GJ, et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2(PAK2)potentiates late apoptotic events[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6542-6547. DOI:10.1073/pnas.0600824103
[8]
Johnson DR, Bhatnagar RS, Knoll LJ, et al. Genetic and biochemical studies of protein N-myristoylation[J]. Annual Review of Biochemistry, 1994, 63(1): 869-914. DOI:10.1146/annurev.bi.63.070194.004253
[9]
Maurer-Stroh S, Eisenhaber B, Eisenhaber F. N-terminal N-myristoylation of proteins:refinement of the sequence motif and its taxon-specific differences1[J]. Journal of Molecular Biology, 2002, 317(4): 523-540. DOI:10.1006/jmbi.2002.5425
[10]
Qi Q, Rajala RVS, Anderson W, et al. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2000, 275(13): 9673-9683. DOI:10.1074/jbc.275.13.9673
[11]
Yamauchi S, Fusada N, Hayashi H, et al. The consensus motif for N-myristoylation of plant proteins in a wheat germ cell-free translation system[J]. The FEBS Journal, 2010, 277(17): 3596-3607. DOI:10.1111/j.1742-4658.2010.07768.x
[12]
Selvakumar P, Lakshmikuttyamma A, Shrivastav A, et al. Potential role of N-myristoyltransferase in cancer[J]. Progress in Lipid Research, 2007, 46(1): 1-36. DOI:10.1016/j.plipres.2006.05.002
[13]
Dyda F, Klein DC, Hickman AB. GCN5-related N-acetyltransfer-ases:a structural overview[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29(1): 81-103. DOI:10.1146/annurev.biophys.29.1.81
[14]
Pierre M, Traverso JA, Boisson B, et al. N-myristoylation regulates the SnRK1 pathway in Arabidopsis[J]. The Plant Cell, 2007, 19(9): 2804-2821. DOI:10.1105/tpc.107.051870
[15]
Renna L, Stefano G, Majeran W, et al. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis[J]. The Plant Cell, 2013, 25(5): 1756-1773. DOI:10.1105/tpc.113.111393
[16]
Podell S, Gribskov M. Predicting N-terminal myristoylation sites in plant proteins[J]. BMC Genomics, 2004, 5(1): 37. DOI:10.1186/1471-2164-5-37
[17]
Traverso JA, Micalella C, Martinez A, et al. Roles of N-terminal fatty acid acylations in membrane compartment partitioning:Arabidopsis h-type thioredoxins as a case study[J]. The Plant Cell, 2013, 25(3): 1056-1077. DOI:10.1105/tpc.112.106849
[18]
Takemoto D, Rafiqi M, Hurley U, et al. N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance[J]. Molecular Plant-Microbe Interactions, 2012, 25(3): 379-392. DOI:10.1094/MPMI-11-10-0272
[19]
Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins[J]. Nature Chemical Biology, 2006, 2(11): 584. DOI:10.1038/nchembio834
[20]
McLaughlin S, Aderem A. The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions[J]. Trends in Biochemical Sciences, 1995, 20(7): 272-276. DOI:10.1016/S0968-0004(00)89042-8
[21]
Wright MH, Heal WP, Mann DJ, et al. Protein myristoylation in health and disease[J]. Journal of Chemical Biology, 2010, 3(1): 19-35. DOI:10.1007/s12154-009-0032-8
[22]
Mendoza D. Temperature sensing by membranes[J]. Annual Review of Microbiology, 2014, 68: 101-116. DOI:10.1146/annurev-micro-091313-103612
[23]
Ding Y, Lv J, Shi Y, et al. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis[J]. The EMBO Journal, 2018, e99819.
[24]
Vaandrager AB, Ehlert EME, Jarchau T, et al. N-terminal myristoylation is required for membrane localization of cGMP-dependent protein kinase type II[J]. Journal of Biological Chemistry, 1996, 271(12): 7025-7029. DOI:10.1074/jbc.271.12.7025
[25]
McLaughlin S, Aderem A. The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions[J]. Trends in Biochemical Sciences, 1995, 20(7): 272-276. DOI:10.1016/S0968-0004(00)89042-8
[26]
许正平, 李伯良. 蛋白质的豆蔻酰化[J]. 生物化学与生物物理进展, 1998, 25(1): 5-6.
[27]
Seykora JT, Myat MM, Allen LAH, et al. Molecular determinants of the myristoyl-electrostatic switch of MARCKS[J]. Journal of Biological Chemistry, 1996, 271(31): 18797-18802. DOI:10.1074/jbc.271.31.18797
[28]
Izon DJ, Punt JA, Xu L, et al. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength[J]. Immunity, 2001, 14(3): 253-264. DOI:10.1016/S1074-7613(01)00107-8
[29]
Koutelou E, Sato S, Tomomori-Sato C, et al. Neuralized-like 1(Neurl1)targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1[J]. Journal of Biological Chemistry, 2008, 283(7): 3846-3853. DOI:10.1074/jbc.M706974200
[30]
Schmitt TM, Zúñiga-Pflücker JC. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro[J]. Immunity, 2002, 17(6): 749-756. DOI:10.1016/S1074-7613(02)00474-0
[31]
Grebe M, Xu J, Möbius W, et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes[J]. Current Biology, 2003, 13(16): 1378-1387. DOI:10.1016/S0960-9822(03)00538-4
[32]
邵军丽, 龙跃生, 徐增富. 水稻小G蛋白OsRab5b的亚细胞定位研究[J]. 生物技术通报, 2015, 31(9): 139-145.
[33]
Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell, 2000, 12(9): 1667-1677. DOI:10.1105/tpc.12.9.1667
[34]
Belda-Palazon B, Julian J, Coego A, et al. ABA inhibits myristoylation and induces shuttling of the RGLG 1 E3 ligase to promote nuclear degradation of PP2CA[J]. The Plant Journal, 2019. DOI:10.1111/tpj.14274
[35]
Asai S, Ichikawa T, Nomura H, et al. The variable domain of a plant calcium-dependent protein kinase(CDPK)confers subcellular localization and substrate recognition for NADPH oxidase[J]. Journal of Biological Chemistry, 2013, 288(20): 14332-14340. DOI:10.1074/jbc.M112.448910
[36]
Ren H, Willige BC, Jaillais Y, et al. BRASSINOSTEROID-SIGNALING KINASE 3, a plasma membrane-associated scaffold protein involved in early brassinosteroid signaling[J]. PLoS Genetics, 2019, 15(1): e1007904. DOI:10.1371/journal.pgen.1007904
[37]
Mei Y, Wang Y, Hu T, et al. Nucleocytoplasmic shuttling of geminivirus C4 protein Mediated by phosphorylation and myristoylation is critical for viral pathogenicity[J]. Molecular Plant, 2018, 11(12): 1466-1481. DOI:10.1016/j.molp.2018.10.004
[38]
Yang S, Yang H, Grisafi P, et al. The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis[J]. The Plant Journal, 2006, 45(2): 166-179. DOI:10.1111/j.1365-313X.2005.02585.x
[39]
Gou M, Zhang Z, Zhang N, et al. Opposing effects on two phases of defense responses from concerted actions of HEAT SHOCK COGNATE70 and BONZAI1 in Arabidopsis[J]. Plant Physiology, 2015, 169(3): 2304-2323.
[40]
Batistič O, Sorek N, Schültke S, et al. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis[J]. The Plant Cell, 2008, 20(5): 1346-1362. DOI:10.1105/tpc.108.058123
[41]
Hallak H, Muszbek L, Laposata M, et al. Covalent binding of arachidonate to G protein alpha subunits of human platelets[J]. Journal of Biological Chemistry, 1994, 269(7): 4713-4716.
[42]
Greaves J, Chamberlain LH. DHHC palmitoyl transferases:substrate interactions and(patho)physiology[J]. Trends in Biochemical Sciences, 2011, 36(5): 245-253. DOI:10.1016/j.tibs.2011.01.003
[43]
Conibear E, Davis NG. Palmitoylation and depalmitoylation dynamics at a glance[J]. Journal of Cell Science, 2010, 123(23): 4007-4010. DOI:10.1242/jcs.059287
[44]
Zeidman R, Jackson CS, Magee AI. Protein acyl thioesterases[J]. Molecular Membrane Biology, 2009, 26(1-2): 32-41. DOI:10.1080/09687680802629329
[45]
Tomatis VM, Trenchi A, Gomez GA, et al. Acyl-protein thioesterase 2 catalizes the deacylation of peripheral membrane-associated GAP-43[J]. PLoS One, 2010, 5(11): e15045. DOI:10.1371/journal.pone.0015045
[46]
Li Y, Lin J, Li L, et al. DHHC-cysteine-rich domain S-acyltransferase protein family in rice:organization, phylogenetic relationship and expression pattern during development and stress[J]. Plant Systematics and Evolution, 2016, 302(10): 1405-1417. DOI:10.1007/s00606-016-1339-x
[47]
Schiefelbein J, Galway M, Masucci J, et al. Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana[J]. Plant Physiology, 1993, 103(3): 979-985. DOI:10.1104/pp.103.3.979
[48]
Ryan E, Grierson CS, Cavell A, et al. TIP1 is required for both tip growth and non-tip growth in Arabidopsis[J]. The New Phytologist, 1998, 138(1): 49-58. DOI:10.1046/j.1469-8137.1998.00896.x
[49]
Qi B, Doughty J, Hooley R. A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis[J]. New Phytologist, 2013, 200(2): 444-456. DOI:10.1111/nph.12385
[50]
Zhou LZ, Li S, Feng QN, et al. Protein S-ACYL transferase10 is critical for development and salt tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(3): 1093-1107. DOI:10.1105/tpc.112.108829
[51]
Lai J, Yu B, Cao Z, et al. Two homologous protein S-acyltransferases, PAT13 and PAT14, cooperatively regulate leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(20): 6345-6353. DOI:10.1093/jxb/erv347
[52]
Zhao XY, Wang JG, Song SJ, et al. Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling[J]. Scientific Reports, 2016, 6: 20309. DOI:10.1038/srep20309
[53]
Hornemann T. Palmitoylation and depalmitoylation defects[J]. Journal of Inherited Metabolic Disease, 2015, 38(1): 179-186. DOI:10.1007/s10545-014-9753-0
[54]
Maierhofer T, Diekmann M, Offenborn JN, et al. Site-and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid[J]. Science Signaling, 2014, 7(342): ra86-ra86. DOI:10.1126/scisignal.2005703
[55]
Held K, Pascaud F, Eckert C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Research, 2011, 21(7): 1116. DOI:10.1038/cr.2011.50
[56]
Liu J, Ding P, Sun T, et al. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases[J]. Plant Physiology, 2013, 161(4): 2146-2158. DOI:10.1104/pp.112.212431
[57]
Hemsley PA, Weimar T, Lilley K, et al. Palmitoylation in plants:new insights through proteomics[J]. Plant Signaling & Behavior, 2013, 8(8): e25209.
[58]
Zeng Q, Wang X, Running MP. Dual lipid modification of Arabidopsis Gγ-subunits is required for efficient plasma membrane targeting[J]. Plant Physiology, 2007, 143(3): 1119-1131. DOI:10.1104/pp.106.093583
[59]
Kim HS, Desveaux D, Singer AU, et al. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proceedings of the National Academy of Sciences, 2005, 102(18): 6496-6501. DOI:10.1073/pnas.0500792102
[60]
Assmann SM. Plant G proteins, phytohormones, and plasticity:three questions and a speculation[J]. Sci STKE, 2004, 2004(264): re20.
[61]
Jones AM, Assmann SM. Plants:the latest model system for G-protein research[J]. EMBO Reports, 2004, 5(6): 572-578. DOI:10.1038/sj.embor.7400174
[62]
Chen JG, Willard FS, Huang J, et al. A seven-transmembrane RGS protein that modulates plant cell proliferation[J]. Science, 2003, 301(5640): 1728-1731. DOI:10.1126/science.1087790
[63]
Adjobo-Hermans MJW, Goedhart J, Gadella TWJ. Plant G protein heterotrimers require dual lipidation motifs of Gα and Gγ and do not dissociate upon activation[J]. Journal of Cell Science, 2006, 119(24): 5087-5097. DOI:10.1242/jcs.03284
[64]
Pandey S, Assmann SM. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling[J]. The Plant Cell, 2004, 16(6): 1616-1632. DOI:10.1105/tpc.020321
[65]
Warpeha KM, Lateef SS, Lapik Y, et al. G-protein-coupled receptor 1, G-protein Gα-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis[J]. Plant Physiology, 2006, 140(3): 844-855. DOI:10.1104/pp.105.071282
[66]
Liu X, Yue Y, Li B, et al. AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science, 2007, 315(5819): 1712-1716. DOI:10.1126/science.1135882
[67]
Gao Y, Zeng Q, Guo J, et al. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis[J]. The Plant Journal, 2007, 52(6): 1001-1013. DOI:10.1111/j.1365-313X.2007.03291.x
[68]
牛亚利, 赵芊, 张肖晗, 等. 赤霉素信号在非生物胁迫中的作用及其调控机制研究进展[J]. 生物技术通报, 2015, 31(10): 31-37.
[69]
Johnston CA, Temple BR, Chen JG, et al. Comment on" AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid"[J]. Science, 2007, 318(5852): 914-914.
[70]
Sturla L, Fresia C, Guida L, et al. LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells[J]. Journal of Biological Chemistry, 2009, 284(41): 28045-28057. DOI:10.1074/jbc.M109.035329
[71]
Fresia C, Vigliarolo T, Guida L, et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2[J]. Scientific Reports, 2016, 6: 26658. DOI:10.1038/srep26658
[72]
宋水山. 酰基高丝氨酸内酯——细菌与真核生物之间信息交流的介导分子[J]. 自然科学进展, 2006, 16(8): 933-939. DOI:10.3321/j.issn:1002-008X.2006.08.003
[73]
宋水山, 贾振华, 邢志华, 等. 植物对细菌群体感应系统的反应[J]. 中国细胞生物学学报, 2005, 27(4): 427-430. DOI:10.3969/j.issn.1674-7666.2005.04.015
[74]
Liu F, Bian ZR, Jia ZH, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5): 677-683. DOI:10.1094/MPMI-10-11-0274
[75]
张哲, 张霞, 边子睿, 等. 3-羰基辛酰基高丝氨酸内酯诱导拟南芥根细胞Ca2+内流[J]. 植物生理学报, 2011, 47(9): 872-878.