工作空间

文章信息

王洋洋, 隋鹤鸣, 赵善江, 许慧韬, 郝海生, 庞云渭, 赵学明, 朱化彬
牛超数排卵技术研究进展
生物技术通报, 2019, 35(11): 208-216

WANG Yang-yang, SUI He-ming, ZHAO Shan-jiang, XU Hui-tao, HAO Hai-sheng, PANG Yun-wei, ZHAO Xue-ming, ZHU Hua-bin
Advances in Superovulation of the Cow
Biotechnology Bulletin, 2019, 35(11): 208-216

文章历史

收稿日期:2019-05-14

牛超数排卵技术研究进展
王洋洋1, 隋鹤鸣1,2, 赵善江1, 许慧韬1, 郝海生1, 庞云渭1, 赵学明1, 朱化彬1     
1. 中国农业科学院北京畜牧兽医研究所,北京 100193;
2. 吉林大学动物医学院,长春 130062
摘要:超数排卵是获得牛胚胎移植研究与应用所需可移植胚胎的重要途径。由于影响供体牛超数排卵的因素众多、复杂,几十年来供体牛每次超数排卵所获得的平均可移植胚胎数几乎没有增加,因此,如何提高超排效果成为研究热点。综述了近年来牛超排的最新研究进展,以期为牛超排效果的改善和胚胎移植效率的提高提供参考。
关键词超数排卵    FSH    AMH    生殖激素    供体牛    
Advances in Superovulation of the Cow
WANG Yang-yang1, SUI He-ming1,2, ZHAO Shan-jiang1, XU Hui-tao1, HAO Hai-sheng1, PANG Yun-wei1, ZHAO Xue-ming1, ZHU Hua-bin1     
1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193;
2. College of Veterinery Medicine, Jilin University, Changchun 130062
Abstract: Superovulation with exogenous gonadotropin is still the main way to produce transferable embryos in vivo for bovine embryo transfer industry. Although many researches have been carried out to study and refine this technique, but the efficiency of donor cow`s superovulationdid not increase during the last seven decades, because the superovulation result was influenced by multitudinous and intricate factors. This article reviewed the new advances in superovulation of donor cows, aiming to find useful information for increasing efficiency of bovine superovulation and transferable embryos.
Key words: superovulation    FSH    AMH    reproductive hormone    donor cow    

家畜胚胎移植技术(Embryo transfer,ET),尤其是牛胚胎移植技术经过几十年的研究日趋成熟,并在生产中得到了广泛应用,成为家畜育种和快速扩繁的重要技术手段[1-4]

目前,供体母牛超数排卵(简称超排)后第7天非手术采集获得的胚胎仍然是移植所需胚胎的重要来源[5]。虽然众多研究人员曾对牛超排方法及其影响因素展开深入研究,并取得了较大进展[6-7],但是牛胚胎移植成功近70年来,供体牛每次超排获得的平均可用胚胎数几乎没有增加[8],而且约有1/3的供体母牛对超排反应较差[9-10],约64%的供体牛生产的可移植胚胎数低于平均值[11],甚至有15%左右的供体牛不能提供可移植胚胎[12-13]。超排反应的不确定性增加了牛体内胚胎的生产成本,限制了牛胚胎移植技术在生产中进一步的广泛应用[14-16]

因此,近年来为了提高超排效果,降低牛体内胚胎生产成本,许多研究者开展了牛超排处理程序与影响因素的研究,并取得了较好的进展。本文简介了牛超排方法与主要影响因素,重点综述了牛超排最新研究进展,以期为牛超排效果的改善和胚胎移植效率的提高提供参考。

1 牛超数排卵及其影响因素 1.1 牛超数排卵

超数排卵是在母牛发情周期的一定时间给予外源促性腺激素如促卵泡素(Follicle stimulating hormone,FSH)处理,从而使供体母牛卵巢上有多枚卵泡能够发育成熟并排卵,在人工授精后一定时间内通过非手术采集而获得多枚胚胎的技术[17-19]。虽然初情期后母牛卵巢上腔前卵泡的生长不需要促性腺激素的支持,在卵巢旁分泌和自分泌作用的调控下即可由静止原始卵泡库自发进入生长卵泡库,但是当卵泡发育至有腔卵泡阶段及其随后的发育进程则依赖于血液中足够的促性腺激素(FSH和LH)的支持[20-23],缺少FSH的支持,卵泡就无法继续发育而发生闭锁退化。因此,如果在适宜的发情状态下对母牛注射外源FSH,以弥补牛外周血中因FSH浓度下降导致的内源性FSH不足,就可使母牛卵巢上多枚有腔卵泡都能得到充分的FSH的支持,从而得以继续生长发育、形成优势卵泡并排卵[24],从而起到超数排卵的作用。

牛超数排卵成功的前提是:(1)外源FSH可支持供体牛卵巢上多枚卵泡发育、成熟并排卵;(2)外源FSH处理不影响卵母细胞质量以及发育和受精能力;(3)外源FSH处理不降低供体牛生殖道的机能,特别是输卵管支持卵母细胞受精、早期胚胎发育和运行胚胎的能力。

超排期间供体牛血液中FSH必须维持一定的浓度才能保证超排效果。因此,利用外源FSH超排处理供体牛时,根据其半衰期长短而采取不同的给药方式是维持供体牛血液中外源FSH浓度的保障。马绒毛膜促性腺激素(Equine chorionic gonadotrophin,eCG),过去亦称孕马血清促性腺激素(Pregnant mare serum gonadotrophin,PMSG),是最早用于牛超数排卵的促性腺激素之一。20世纪中期许多研究者,特别是美国的哈弗士和艾弗里等详细地研究了eCG处理对供体牛发育卵泡数量、卵泡排卵和卵母细胞受精、胚胎质量的影响,建立了eCG超排供体牛的基本方法,并取得了较好的超排效果[19, 25-27]。由于eCG半衰期较长,因而用eCG对供体牛超排时只需要一次注射就能起到超排的作用[28],但是用eCG超排的方案存在如下问题:一是由于eCG同时具有FSH和LH的活性,导致供体牛对eCG超排处理的反应差异大,效果不稳定;二是由于eCG半衰期长(40 h左右),在注射后的较长时间内可对卵巢造成持续性刺激,从而容易造成大卵泡不排卵或未排卵卵泡黄体化;三是造成供体牛生殖内分泌紊乱,雌激素分泌过多,形成不利于早期胚胎发育的生殖道内环境;四是长时间的促性腺激素刺激可促使卵母细胞提前成熟,从而影响卵母细胞受精或受精卵发育[29]

相比之下,FSH对牛的作用效果更加温和,FSH也成为超排时使用最为普遍的促性腺激素。由于FSH含糖量较低,其在供体牛体内的半衰期只有5 h左右[30]。因此,超排时需要每天2次连续4 d注射FSH,才能保证供体牛血液中维持超排所需的FSH浓度,研究表明此方案可获得较好的超排效果[10, 31-33]。目前,全世界广泛使用的FSH超排供体牛的方法是连续4 d每天2次递减注射FSH法[27],可分为两种基本的处理程序:方法1,在供体牛自然发情或前列腺素(Prostaglandin,PG)同期处理发情后一定时间内(发情后8-13 d)任意一天开始注射FSH,上下午各注射1次,连续注射4 d,第3天上下午注射FSH同时注射PG,第5天上午(早晨)观察供体牛发情,第5天晚上人工授精(Artificial insemination,AI)配种,间隔12 h第2次配种,第12天上午采集胚胎;方法2是在供体牛发情周期的任意一天埋植孕酮制剂(Controlledinternaldrug release,CIDR),埋植后第5-7天的任意一天开始上午、下午各注射1次FSH并在第7天撤栓,其余处理与方法1相同。

1.2 影响牛超数排卵效果的因素

虽然影响牛超排效果的因素众多而复杂,但可分为供体牛自身因素和外部因素。供体牛自身因素主要包括超排时牛年龄与胎次、生产性能、发情状态和卵巢机能[34-36]、体况和疾病等[37-38];外部因素主要包括供体牛饲料营养与饲养方式[39-41]、激素种类与来源和注射方法与剂量[42-43]、温度与季节、超排处理程序、采卵方法和冲卵操作人员技术水平等[44-47]

虽然许多研究人员试图寻找供体牛对外源FSH超排处理反应差异的分子基础,但是超排效果与供体牛遗传基础(基因型)的相关性较低,重复力也较低[48-49],因此,目前试图通过遗传因素选择超排效果好的供体牛还存在巨大困难。

2 超数排卵研究最新进展

连续4 d共8次注射外源FSH超排供体牛的方法可取得较好的超排效果,但是这种超排处理程序也存在下列问题:(1)工作量大;(2)供体牛应激大,影响超排效果;(3)供体牛需要相对集中饲养。因此,简化超排处理程序对提高供体牛超排效果和降低胚胎生产成本具有重要的实际意义[50]。近20年来,为提高牛的超排效率,许多研究者针对牛超排方案的改进进行研究,并取得了一定进展[51-52]

2.1 FSH一次注射法

虽然很早就有研究者试图对牛进行FSH一次注射以简化超排程序,但是取得的效果并不理想[53]。后来有研究者将FSH皮下一次性注射到体况良好的肉牛供体获得了较好的超排效果[54],但是皮下一次注射FSH方法对体况较差的肉牛和荷斯坦牛的超排效果较差[50, 53, 55],改为肌肉一次注射也不能达到预期的超排效果[50],这可能是因为体况较差肉牛和荷斯坦供体牛注射部位脂肪组织较少,皮下一次性注射可能将FSH注射到肌肉中,不能有效保证FSH被缓慢吸收进入血液,从而影响超排效果。如果选择短针头(~12 mm)或者皮下脂肪较多部位(如肩部)注射FSH,即可避免将FSH注射到肌肉中,并且可取得较好的超排效果[50, 55]

有试验研究了两次注射FSH超排荷斯坦供体牛的方法,即第一天注射总剂量75%的FSH,48 h后注射剩余25%剂量的FSH,超排效果优于一次注射FSH,但是不如4 d共8次FSH注射法[55]

如果将FSH溶解在某些物质溶液——缓释剂中,在注射供体牛后FSH可缓慢释放,就可以在更长时间内使供体牛血液中FSH维持在一定的浓度,从而达到超排的作用。作为FSH的缓释剂必须具备以下特性:(1)机体内可降解;(2)在机体组织不发生反应;(3)使用方便。目前,牛超排常用的FSH缓释剂包括氢氧化铝凝胶溶液(Al-gel)、透明质酸溶液(Hyaluronan,HA)和聚乙烯吡咯烷酮溶液(Polyvinylpyrrolidone,PVP)等。

研究表明,将一定剂量的FSH溶解在30%的PVP溶液中超排日本黑牛、荷斯坦奶牛和泰国本地牛,都取得了与4 d共8次注射FSH超排方法相似的效果[56-58]

Kimura等[59]研究了氢氧化铝凝胶(Al-gel)作为FSH缓释剂对供体牛进行一次注射的超排方法。试验结果表明,30 mg FSH溶解在Al-gel中一次注射超排日本黑牛,与对照组4 d共8次注射超排供体牛的效果类似,表明氢氧化铝凝胶可作为FSH佐剂超排供体牛。Al-gel是许多疫苗的佐剂[60-61],多应用于注射类药物中。但肌肉注射Al-gel易引起注射部位的组织硬化,限制了其在牛超排工作中的应用。

目前使用较多的FSH缓释剂是透明质酸。透明质酸是一类生物大分子聚合物,含有2 000-2 500个重复单位的D-葡萄糖醛酸和N-乙酰葡糖胺双糖多聚合物,广泛存在于动物机体内如家畜生殖道中,其在动物组织内可生物降解,不参加生物反应[62],HA分子在水溶液中呈三维网状结构,其水溶液具有一定的黏度,是FSH和其它药物的良好佐剂[63-64]

有试验以透明质酸溶液溶解的FSH对供体牛进行超排处理。结果表明,用2%的透明质酸溶液溶解的FSH对牛进行一次性肌肉注射处理所得胚胎总数和可用胚胎数与4 d共8次注射超排方法相似。用1%的透明质酸溶液溶解的FSH对牛进行皮下一次性注射处理,发现FSH吸收较快,外周血液中不能持续维持超排需要的FSH浓度,从而使很多卵泡不能发育到排卵阶段,仅在处理开始时发育状态良好,在后期便闭锁退化[65-67]。Tribulo等[68]研究了以西门塔尔牛、婆罗格斯牛和安格斯杂交牛为供体牛,用1%的HA溶解的FSH对其进行间隔48 h两次注射的超排方案,即第一次注射总剂量的67%,48 h后注射其余的33%。结果表明该法获得了与常规超排方法相一致的结果[69-70]。而Palomino等[71]将FSH溶解在0.5%的HA溶液中分3次间隔36 h注射超排美洲森林野牛也取得了较好的超排效果。

虽然2%的HA溶解的FSH超排效果较好,但是FSH较难溶解在2%的HA中,这给超排时现场溶解FSH的操作带来不便。相比之下,FSH更容易溶解在1%或0.5%的HA中。以1%或0.5%的HA溶解的FSH,两次注射(间隔48 h)或者3次注射(间隔36 h)对牛超排处理,既减少了FSH的注射次数,又保证了供体牛的超排效果,是较理想的FSH缓释超排方案[72]。另外,不同浓度HA缓释的FSH 1次注射超排肉牛能取得较好的结果,但是同样方法对泌乳荷斯坦牛的超排效果并不理想。这可能是因为泌乳母牛代谢旺盛,血液流经肝脏的速度快,因而FSH代谢也较快[72],需要适当增加FSH的注射次数才可能保证超排效果,但还需要进一步试验验证。

2.2 重组长效FSH

由于垂体提取的天然FSH分子中所含糖基链较短,因而FSH在体内的半衰期较短。通过基因重组技术,设计改造FSH结构,增加FSH分子的糖基长度以生产长效重组FSH(rFSH),延长其在动物机体内半衰期,则在家畜繁殖和人类辅助生殖中具有广阔的应用前景[73-75]。与用常规FSH的超排方案相比,用长效重组FSH制剂超排供体牛时可减少注射次数,节省人力和减少供体牛应激,因而很早就有人利用重组牛源FSH(rbFSH)对牛进行超排处理,并获得较好的超排效果。Carvalho等[76]研究了重组FSH超排12-15月龄的荷斯坦供体牛,结果表明,一次性注射长效rbFSH对供体牛超排的效果与4 d共8次注射FSH的超排结果相似,且高剂量注射rbFSH的牛超排效果更好,但不同类型的rbFSH制剂的超排效果差别很大[73]。因此,体外重组长效FSH在应用前,还需要深入研究:(1)不同类型重组FSH的超排方案;(2)重组FSH的适宜注射剂量;(3)重组FSH在母牛体内的代谢规律。

2.3 供体牛选择 2.3.1 AMH与供体选择

超排前能够选择超排效果好的供体牛,则可有效提高胚胎生产效率和降低胚胎生产成本。虽然目前还未发现供体牛对外源FSH反应差异的有效遗传标记,但有些激素如抗缪勒管激素(Anti-müllerian hormone,AMH)与供牛超排效果具有一定的相关性。AMH是由雄性动物睾丸支持细胞和雌性动物卵泡颗粒细胞分泌的糖蛋白质激素,属于转化生长因子β家族[77-78]。初情期后母畜卵巢中发育的原始卵泡和早期有腔卵泡颗粒细胞分泌AMH,而闭锁卵泡和优势卵泡AMH含量则很低。因此,外周血中AMH的浓度,反映了家畜卵巢活性、发育卵泡数量和卵泡质量等状况[79-82],可作为母牛有腔卵泡库、繁殖性能和胚胎生产的内分泌标记[83-86]

AMH可作为选择荷斯坦供体牛的生物标记。Rico等详细研究了母牛血液中AMH浓度与超排效果之间的关系发现,AMH浓度与超排时供体牛卵巢直径3-7 mm大小的卵泡数量呈正相关,而这些卵泡正是超排时对外源FSH敏感、能够发育成熟并排卵的卵泡,随后他们还发现经FSH处理的牛在发情时,其血液中AMH浓度低的供体牛卵巢上大卵泡数量就少;并且采集胚胎时血液中AMH浓度低的供体牛,采集获得的胚胎和受精卵也很少[87-88]。Verstegen等[81]也发现,母牛在2月龄左右时其外周血AMH浓度达峰值,此后随着牛的老化才开始下降,AMH浓度平均可保持4月左右的稳定值,外周血AMH浓度高的牛超排获得的胚胎数更多。Souza等[88]发现供体牛在发情周期的不同时间点其血液中AHM含量相差不大,随着AMH浓度的升高,供体牛黄体数、获得卵数/胚胎和可用胚胎数均增加。高浓度AMH组的供体牛黄体数和获得胚胎总数是低浓度AMH组牛的2倍,但AMH与卵母细胞的受精率没有相关性。Monniaux等[85]研究也发现,供体母牛血液AMH浓度高的供体母牛头均获得胚胎数和可用胚胎数高于AMH浓度低的供体牛。毕江华等[89]分析了重复超排的荷斯坦供体牛血液中AMH浓度与超排效果之间的关系,结果发现在胚胎采集时,血液AMH浓度高的供体牛其超排效果优于AMH浓度低的牛。但该研究试验牛只数量较少,时间跨度较大,具体效果仍需进一步试验验证。

AMH也可作为选择肉牛供体的生物标记。Hirayama等[90]详细研究了不同月龄的日本黑牛血液中AMH的变化及其与牛超排效果的关系。结果发现,青年牛10或11月龄前后血液AMH浓度与13-18月龄时的超排效果呈正相关,因此认为11月龄青年牛血液中AMH可作为供体牛早期选择的生物标记,但是经3次超排后的供体牛血液中AMH浓度显著降低,其与超排效果的相关性也降低[90]。Nabenishi等[91]研究也发现,日本黑牛供体血液中AMH浓度相对稳定,在人工授精时AMH浓度高的牛超排所得胚胎总数、可移植胚胎数皆更多。

2.3.2 重复超排与供体选择

虽然超排效果与供体牛的遗传相关性不大,但是超排反应良好的供体牛,再次超排时效果往往也较好,因而也可以作为供体选择的依据[48]。Ireland等[92]研究表明,超排时卵巢上发育卵泡数量多的供体母牛超排效果好于卵泡数少的供体,并具有很高的重复性。

2.4 吸除优势卵泡

虽然超排时供体牛卵巢上众多的有腔卵泡是超排效果的保证[90, 92],然而因优势大卵泡可抑制早期有腔卵泡的生长发育,促进直径6 mm以下卵泡的闭锁[93],所以超排处理开始时,如果母牛卵巢上存在优势卵泡会降低供体牛的超排效果[92, 94]。因此,超排时通过超声波检查卵巢上优势卵泡的存在并吸除优势卵泡,就可解除优势卵泡对其他有腔卵泡发育的抑制作用,并开始新的卵泡发育波,从而可提高超排效果[95-97]

但是,吸除优势卵泡需要特殊设备——B超仪和吸卵设备,以及操作熟练的技术人员,因而在实际生产现场的广泛应用存在一定的困难。

3 趋势与发展

供体牛超数排卵效果不稳定性和不可有效预测性仍然是影响牛体内胚胎生产的重要因素,因此,未来仍然需要在以下几个方面继续研究和完善:(1)建立选择供体牛的有效方法。目前AMH可作为供体母牛选择的生物标记,但是还需要建立快速定量测定AMH的有效方法,包括统一度量衡单位。同时,还应继续寻找可预测牛超排效果的遗传标记和生物标记;(2)优化超排程序。虽然传统的4 d共8次注射FSH方法的超排效果较稳定,但是费时费力,效率也并未提高。研究建立利用重组FSH超排供体牛的方法并降低其成本可能是优化供体牛超排方法的有效途径;(3)解析营养与环境因素对牛超排效果的影响及其机制。营养和环境(包括疾病)对供体牛繁殖机能的影响是不言而喻的,但是营养和环境对超排牛卵泡发育与排卵、胚胎发育与质量等的具体影响及其机制还有待深入研究。

参考文献
[1]
Betteridge KJ. An history look at embryo transfer[J]. J Reprod Fertil, 1981, 62(1): 1-13. DOI:10.1530/jrf.0.0620001
[2]
Betteridge KJ. A history of farm animal embryo transfer and some associated techniques[J]. Anim Reprod Sci, 2003, 79(3-4): 203-244. DOI:10.1016/S0378-4320(03)00166-0
[3]
Hasle JF. The current status and future of commercial embryo transfer in cattle[J]. Anim Reprod Sci, 2003, 79(3): 245-263.
[4]
Hasler JF. Forty years of embryo transfer in cattle:A review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces[J]. Theriogenology, 2014, 81(1): 152-169. DOI:10.1016/j.theriogenology.2013.09.010
[5]
Pryor JH, Looney CR. Practical applications of new research information in the practice of bovine embryo transfer[J]. Reprod Fertil Dev, 2010, 22(1): 145-150. DOI:10.1071/RD09223
[6]
Kanitz W, Becker F, Schneider F. Superovulation in cattle:practical aspects of gonadotrophin treatment and insemination[J]. Reprod Nutr Dev, 2002, 42(6): 587-599. DOI:10.1051/rnd:2002045
[7]
Bó GA, Mapletoft RJ. Historical perspectives and recent research on superovulation in cattle[J]. Theriogenology, 2014, 81(1): 38-48. DOI:10.1016/j.theriogenology.2013.09.020
[8]
Hasler JF. Bovine embryo transfer: are efficiencies improving? Proceedings, applied reproductive strategies in beef cattle[C]. Sioux, Falls, SD, 2012: 319-338.
[9]
Lerner SP, Thayne WV, Baker RD, et al. Age, dose of FSH and other factors affecting superovulation in Holstein cows[J]. J Animal Sci, 1986, 63(1): 176-183. DOI:10.2527/jas1986.631176x
[10]
Palubinskas G, Zilaitis V, Juozaitiene V, et al. Superovulatory response in relation to the size and side of ovary location in high yielding dairy cows on the first day of treatment protocol[J]. Veterinarski Arhiv, 2016, 86(1): 65-76.
[11]
Mapletoft RJ, Steward KB, Adams GP. Recent advances in the superovulation in cattle[J]. Reprod Nutr Dev, 2002, 42(6): 601-611. DOI:10.1051/rnd:2002046
[12]
Greve T, Callesen H, Hyttel P, et al. The effects of exogenous gonadotropins on the oocyte and embryo quality in cattle[J]. Theriogenology, 1995, 43(1): 41-50. DOI:10.1016/0093-691X(94)00013-K
[13]
Mapletoft RJ, Bó GA. Superovulation in Cattle[M]. 1st. Canada: Bovine Reproduction, 2015.
[14]
Bó GA, Mapletoft RJ. Innovative strategies for superovulation in cattle[J]. Anim Reprod, 2013, 10(3): 174-179.
[15]
Stroud B, Hasler JF. Dissecting why superovulation and embryo transfer usually work on some farms but not on others[J]. Theriogenology, 2006, 65(1): 65-76. DOI:10.1016/j.theriogenology.2005.10.007
[16]
Bó GA, Guerrero DC, Adams GP. Alternative approaches to setting up donor cows for superstimulation[J]. Theriogenology, 2008, 69(1): 81-87. DOI:10.1016/j.theriogenology.2007.09.005
[17]
Gomez VE, Ginther OJ, Araujo ER, et al. Hormonal mechanisms regulating follicular wave dynamics I:Comparison of follicle growth profiles under different physiological conditions in heifers[J]. Theriogenology, 2019, 123(1): 194-201.
[18]
Rowson LEA, Dowling DF. A apparatus for the extraction of fertilized eggs from the living cow[J]. Vet Rec, 1949, 61: 191.
[19]
Rowson LEA. Methods of inducing multiple ovulation in cattle[J]. J Endocrinol, 1951, 7(3): 260-270. DOI:10.1677/joe.0.0070260
[20]
Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles[J]. Trends Endocrinol Metab, 2010, 21(2): 96-103. DOI:10.1016/j.tem.2009.10.001
[21]
田允波, 曾书琴, 陈学进, 等. 哺乳动物原始卵泡生长启动的调控[J]. 农业生物技术学报, 2006, 14(4): 618-624. DOI:10.3969/j.issn.1674-7968.2006.04.034
[22]
Monniaux D, Huet C, Besnard N, et al. Follicular growth and ovarian dynamic in manmals[J]. J Reprod Fertil, 1997, 51(suppl): 3-23.
[23]
Monniaux D, Clément F, Dalbiés-Tran R, et al. The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles:what is the link?[J]. Biol Reprod, 2014, 90(4): 85.
[24]
Ginther OJ. The theory of follicle selection in cattle[J]. Domestic Animal Endocrinology, 2016, 57(1): 85-99.
[25]
Murphy BD, Martinuk SD. Equine chorionic gonadotropin[J]. Endocr Rev, 1991, 12(1): 27-44. DOI:10.1210/edrv-12-1-27
[26]
Willett EL, Buckner PJ, McShan WH. Refractoriness of cows repeatedly superovulation with gonadotropins[J]. J Dairy Sci, 1953, 36(10): 1083-1088. DOI:10.3168/jds.S0022-0302(53)91601-4
[27]
Avery TL, Fahning ML, Graham EF. Investigations associated with the transplantation of bovine ova Ⅱ superovulation[J]. J Reprod Fertil, 1962, 3(2): 212-217. DOI:10.1530/jrf.0.0030212
[28]
Fátima, L A, Baruselli PS, Gimenes LU, et al. Global gene expression in the bovine corpus luteum is altered after stimulatory and superovulatory treatments[J]. Reproduction, Fertility and Development, 2013, 25(7): 998-1011. DOI:10.1071/RD12155
[29]
Monniaux D, Chupin D, Saumande J. Superovulatory responses of cattle[J]. Theriogenology, 1983, 19(1): 55-81. DOI:10.1016/0093-691X(83)90124-3
[30]
Moor RM, Kruip TAM, Green D. Intraovarian control of folliculogenesis:limits to superovulation?[J]. Theriogenology, 1984, 21(1): 103-116. DOI:10.1016/0093-691X(84)90310-8
[31]
Laster DB. Disappearance and uptake of[125I]FSH in the rat, rabbit, ewes and cows[J]. J Reprod Fertil, 1972, 30(3): 407-415. DOI:10.1530/jrf.0.0300407
[32]
Demoustier MM, Beckers JF, Zwalmen PVD, et al. Determination of porcine plasma follitropin levels during superovulation treatment in cows[J]. Theriogenology, 1988, 30(2): 379-386. DOI:10.1016/0093-691X(88)90185-9
[33]
Looney CR, Boutle BW, Archibald LF, et al. Comparison of once daily FSH and twice daily FSH injections for superovulatin in beef cattle[J]. Theriogenology, 1981, 15(1): 13-22. DOI:10.1016/S0093-691X(81)80014-3
[34]
Looney CR, Bondioli KR, Hill KG, et al. Superovulation of donor cows with bovine follicle-stimulating-hormone(bFSH)produced by recombinant DNA technology[J]. Theriogenol, 1988, 29(1): 271. DOI:10.1016/0093-691X(88)90099-4
[35]
Walsh JH, Mantovani R, Duby RT, et al. The effects of once or twice daily injections of p-FSH on superovulatory response in heifers[J]. Theriogenology, 1993, 40(2): 313-321. DOI:10.1016/0093-691X(93)90269-B
[36]
Humblot P, Holm P, Lonergan P, et al. Effect of stage of follicular growth during superovulation in development competence of bovine oocytes[J]. Theriogenology, 2005, 63(4): 1149-1166. DOI:10.1016/j.theriogenology.2004.06.002
[37]
Lopez H, Caraviello DZ, Satter LD, et al. Relationship between level of milk production and multiple ovulations in lactating dairy cows[J]. J Dairy Sci, 2005, 88(8): 2783-2793. DOI:10.3168/jds.S0022-0302(05)72958-1
[38]
Kohram H, Poorhamdollah M. Relationships between the ovarian status and superovulatory responses in dairy cattle[J]. Anim Reprod Sci, 2012, 131(3-4): 123-128. DOI:10.1016/j.anireprosci.2012.03.004
[39]
Yadav MC, Walton JS, Leslie KE. Timing of the onset and duration of ovulation beef heifers[J]. Theriogenology, 1986, 26(4): 409-521.
[40]
Kafi M, McGowan MR. Factors associated with variation in the superovulatory response of cattle[J]. Anim Reprod Sci, 1997, 48(2-4): 137-157. DOI:10.1016/S0378-4320(97)00033-X
[41]
Santos JE, Cerri RL, Sartori R. Nutritional management of the donor cow[J]. Theriogenology, 2008, 69(1): 88-97. DOI:10.1016/j.theriogenology.2007.09.010
[42]
Yaakub H, O'Callaghan D, Boland MP. Effect of type and quantity of concentrates on supplementation and embryo yield in beef heifers[J]. Theriogenology, 1999, 51(7): 1259-1266. DOI:10.1016/S0093-691X(99)00070-9
[43]
Kelly P, Duffy P, Roche JF, et al. Superovulation in cattle:effect of FSH type and method of administration on follicular growth, ovulatory response and edocrine patterns[J]. Anim Reprod Sci, 1997, 46(1-2): 1-14. DOI:10.1016/S0378-4320(96)01589-8
[44]
Newcomb R, Christie WB, Rowson LE. Non-surgical recovery of bovine embryos[J]. Vet Rec, 1978, 102(19): 414-417. DOI:10.1136/vr.102.19.414
[45]
Hay JH, Phelps DA, Hanks DR, et al. Sequential uterine horn versus simultaneous total uterine flush to recover bovine embryos nonsurgically[J]. Theriogenology, 1990, 33(2): 563-567. DOI:10.1016/0093-691X(90)90512-R
[46]
Sartori R, Suárez-Fernández CA, Monson RL, et al. Improvement in recovery of embryos/ova using a shallow uterine horn flushing technique in superovulated Holstein heifers[J]. Theriogenology, 2003, 60(7): 1319-1330. DOI:10.1016/S0093-691X(03)00147-X
[47]
Neto ASC, Sanches BV, Binelli M, et al. Improvement in embryo recovery using double uterine flushing[J]. Theriogenology, 2005, 63(5): 1249-1255. DOI:10.1016/j.theriogenology.2004.03.022
[48]
Tonhati H, Lǒbo RB, Oliveira HN. Repeatability and heritability response to superovulation in Holstein cows[J]. Theriogenology, 1999, 51(6): 1151-1156. DOI:10.1016/S0093-691X(99)80018-1
[49]
Jaton C, Koeck A, Sargolzaei M, et al. Genetic analysis of superovulatory response of Holstein cows in Canada[J]. J. Dairy Sci, 2016, 99(5): 3612-3623. DOI:10.3168/jds.2015-10349
[50]
Mapletoft RJ, Bó GA, Hockley DK, et al. Superovulatory response to a single subcutaneous injection of Folltropin-V in beef cattle[J]. Theriogenology, 1994, 42(6): 963-975. DOI:10.1016/0093-691X(94)90119-4
[51]
Bó GA, Guerrero DC, Tríbulo A, et al. New approaches to superovulation in the cow[J]. Reprod Fertil Dev, 2010, 22(1): 106-112. DOI:10.1071/RD09226
[52]
Mapletoft RJ, Bó GA. The evolution of improved and simplified superovulation protocols in cattle[J]. Reprod Fertil Dev, 2011, 24(1): 278-283.
[53]
Hill KG, McFarland CW, Rorie RW, et al. A single 50 mg injection of follicle stimulating hormone(FSH)for superovulation of embryo donor cattle[J]. Theriogenology, 1985, 23(1): 196. DOI:10.1016/0093-691X(85)90102-5
[54]
Hiraizumi S, Nishinomiya H, Oikawa T, et al. Superovulatory response in Japanese Black cows receiving a single subcutaneous porcine follicle stimulating hormone treatment or six intramuscular treatments over 3 days[J]. Theriogenology, 2015, 83(4): 466-473. DOI:10.1016/j.theriogenology.2014.09.012
[55]
Hockley DK, Bo GA, Palasz AT, et al. Superovulation with a single subcutaneous injection of Folltropin in cow:Effect of dose and site of injection[J]. Theriogenology, 1992, 37(1): 224. DOI:10.1016/0093-691X(92)90293-Z
[56]
Tríbulo A, Rogan D, Tríbulo H, et al. Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V[J]. Anim Reprod Sci, 2011, 129(1-2): 7-13. DOI:10.1016/j.anireprosci.2011.10.013
[57]
Lovie M, García A, Hackett A, et al. The effect of dose schedule and route of administration on superovulatory response to folltropin in Holstein cows[J]. Theriogenology, 1994, 41(1): 241. DOI:10.1016/S0093-691X(05)80151-7
[58]
Yamamoto M, Oow M, Kawaguchi M, et al. Superovulation in the cow with a single intramuscular injection of FSH disolved in polyvinylpyrrolidone[J]. Theriogenology, 1994, 41(3): 747-755. DOI:10.1016/0093-691X(94)90184-K
[59]
Kimura K. Superovulation with a single administration of FSH in aluminum hydroxide gel:a novel superovulation method for cattle[J]. Journal of Reproduction and Development, 2016, 62(5): 423-429.
[60]
Chasombat J, Sakhong D, Nagai T, et al. Superstimulation of follicular growth in Thai native heifers by a single administration of follicle stimulating hormone dissolved in polyvinylpyrrolidone[J]. J Reprod Dev, 2013, 59(2): 214-218.
[61]
Kimura K, Hirako M, Iwata H, et al. Successful superovulation of cattle by a single administration of FSH in aluminum hydroxide gel[J]. Theriogenology, 2007, 68(4): 633-639. DOI:10.1016/j.theriogenology.2007.02.016
[62]
Kimura K. Superovulation with a single administration of FSH in aluminum hudreoxide gel:a nove superovulation method for cattle[J]. J Reprod Dev, 2016, 62(5): 423-429. DOI:10.1262/jrd.2016-066
[63]
Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials:A review[J]. Biomaterials, 1996, 17(16): 1553-1561. DOI:10.1016/0142-9612(95)00307-X
[64]
Baylor NW, Egan W, Richman P. Aluminum salts in vaccines-US perspective[J]. Vaccine, 2002, 20(Suppl 3): S18-S23.
[65]
Linda LL, John FK, Lloyd LL, et al. Biomaterials-novel material from biological sources[J]. Carbohydra Polym, 1992, 19(4): 308. DOI:10.1016/0144-8617(92)90086-6
[66]
Larsen NE, Balazs EA. Drug delivery systems using hyaluronan and its derivatives[J]. Adv Drug Deliv Rev, 1991, 7(2): 279-293. DOI:10.1016/0169-409X(91)90007-Y
[67]
Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives[J]. J Control Release, 2010, 141(1): 2-12. DOI:10.1016/j.jconrel.2009.09.010
[68]
Tríbulo A, Tríbulo H, Tríbulo R, et al. 420 Superstimulation of angus donors with a single intramuscular injection of Folltropin?-V[J]. Reprod Fertil Dev, 2010, 22(1): 367.
[69]
Rogan D, Tríbulo A, Tríbulo H, et al. Dose titration for superstimulation of Brangus and Bonsmara donors with Folltropin?-V by a single intramuscular injection[J]. Reprod Fertil Dev, 2010, 22(1): 365.
[70]
Tríbulo A, Rogan D, Tríbulo H, et al. Superovulation of beef cattle with a split-single intramuscular administration of Folltropin-V in two concentrations of hyaluronan[J]. Theriogenology, 2012, 77(8): 1679-1685. DOI:10.1016/j.theriogenology.2011.12.013
[71]
Palomino JM, Cervantes MP, McCorkell RB, et al. Superovulation in wood bison(Bison bison athabascae):Effects of progesterone, treatment protocol and gonadotropin preparations for the induction of ovulation[J]. Anim Reprod Sci, 2016, 167(1): 31-39.
[72]
Bó GA, Rogan DR, Mapletoft RJ. Pursuit of a method for single administration of pFSH for superstimulation in cattle:What we have learned[J]. Theriogenology, 2018, 112: 26-33. DOI:10.1016/j.theriogenology.2017.09.034
[73]
Hesser MW, Morris JC, Gibbons JR. Advances in recombinant gonadotropin production for use in bovine superovulation[J]. Reprod Dom Anim, 2011, 46(5): 933-942. DOI:10.1111/j.1439-0531.2011.01767.x
[74]
Fry R. 200 The use of long-acting FSH-MAP5 in sheep-superovulation programs[J]. Reprod Fertil Dev, 2016, 29(1): 208-209.
[75]
Ben-Menahem, David. Preparation, characterization and application of long-acting FSH analogs for assisted reproduction[J]. Theriogenology, 2018, 112: 11-17. DOI:10.1016/j.theriogenology.2017.08.020
[76]
Carvalho PD, Hackbart KS, Bender RW, et al. Use of a single injection of long-acting recombinant bovine FSH to superovulate Holstein heifers:A preliminary study[J]. Theriogenology, 2014, 82(3): 481-489. DOI:10.1016/j.theriogenology.2014.05.011
[77]
Picard JY, Josso N. Purification of testicular anti-Mullerian hormone allowing direct visualisation of the pure glycoprotein and determination of yield and purification factor[J]. Mol Cell Endocrinol, 1984, 34(1): 23-29. DOI:10.1016/0303-7207(84)90155-2
[78]
Vigier B, Picard JY, Tran D, et al. Production of anti-Mullerian hormone:another homology between Sertoli and granulosa cells[J]. Endocrinology, 1984, 114(4): 1315-1320. DOI:10.1210/endo-114-4-1315
[79]
Ireland JLH, Scheetz DM, Jimenez KF, et al. Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle[J]. Biol Reprod, 2008, 79(6): 1219-1225. DOI:10.1095/biolreprod.108.071670
[80]
Ireland JJ, Zielak SAE, Jimenez KF, et al. Variation in the ovarian reserve is linked to alterations in intrafollicular estradiol production and ovarian biomarkers of follicular differentiation and oocyte quality in cattle[J]. Biol Reprod, 2009, 80(5): 954-964. DOI:10.1095/biolreprod.108.073791
[81]
Verstegen J, Rozner A. 87 Ovarian reserve, embryo production, and their correlation with anti-mullerian hormone(AMH)in Holstein cows[J]. Reprod Fertil Dev, 2014, 27(1): 136-137.
[82]
Mossa F, Jimenez KF, Scheetz DM, et al. Anti-Müllerian Hormone(AMH)and fertility management in agricultural species[J]. Reproduction, 2017, 154(1): R1-R11. DOI:10.1530/REP-17-0104
[83]
Batista EO, Macedo GG, Sala RV, et al. Plasma Antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus(Nelore)and Bos Taurus(Holstein)heifers[J]. Reprod Domest Anim, 2014, 49(3): 448-452. DOI:10.1111/rda.12304
[84]
Ribeiro ES, Bisinotto RS, Lima FS, et al. Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility[J]. J Dairy Sci, 2014, 97(11): 6888-6900. DOI:10.3168/jds.2014-7908
[85]
Monniaux D, Barbey S, Rico C, et al. Anti-Müllerian hormone:a predictive marker of embryo production in cattle?[J]. Reprod Fertil Dev, 2010, 22(7): 1083-1091. DOI:10.1071/RD09279
[86]
Rico C, Fabre S, Médigue C, et al. Anti-mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow[J]. Biology of Reproduction, 2009, 80(1): 50-59. DOI:10.1095/biolreprod.108.072157
[87]
Rico C, Drouilhet L, Salvetti P, et al. Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production:from the laboratory to the farm[J]. Reprod Fertil Dev, 2012, 24(7): 932-944. DOI:10.1071/RD11290
[88]
Souza AH, Carvalho PD, Rozner AE, et al. Relationship between circulating anti-Müllerian hormone(AMH)and superovulatory response of high-producing dairy cows[J]. J Dai Sci, 2015, 98(1): 169-178. DOI:10.3168/jds.2014-8182
[89]
毕江华, 冯春涛, 陈龙, 等. 抗缪勒管激素对预测牛超数排卵效果研究初探[J]. 中国奶牛, 2014(6): 16-19. DOI:10.3969/j.issn.1004-4264.2014.06.005
[90]
Hirayama H, Naito A, Fukuda S, et al. Long-term changes in plasma anti-Müllerian hormone concentration and the relationship with superovulatory response in Japanese Black cattle[J]. J Reprod Dev, 2017, 63(1): 95-100.
[91]
Nabenishi H, Kitahara G, Takagi S, et al. Relationship between plasma anti-Müllerian hormone concentrations during the rearing period and subsequent embryo productivity in Japanese black cattle[J]. Domest Anim Endocrinol, 2017, 60: 19-24. DOI:10.1016/j.domaniend.2017.01.002
[92]
Ireland JJ, Ward F, Jimenez-Krassel F, et al. Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle[J]. Human Reproduction, 2007, 22(6): 1687-1695. DOI:10.1093/humrep/dem071
[93]
Adams GP, Kot K, Smith CA, et al. Effect of the dominant follicle on regression of its subordinates in heifers[J]. Can J Anim SCI, 1993, 73(2): 267-275. DOI:10.4141/cjas93-029
[94]
Guilbault LA, Grasso F, Lussier JG, et al. Decreased superovulatory responses in heifers superovulated in the presence of a dominant follicle[J]. Reproduction, 1991, 91(1): 81-89. DOI:10.1530/jrf.0.0910081
[95]
Bungartz L, Niemann H. Assessment of the presence of a dominant follicle and selection of dairy cows suitable for superovulation by a single ultrasound examination[J]. J Reprod Fert, 1994, 101(3): 583-591. DOI:10.1530/jrf.0.1010583
[96]
Bergfelt DR, Bó GA, Mapletoft J, et al. Superovulatory response following ablation-induced follicular wave emergence at random stages of the oestrous cycle in cattle[J]. Anim Reprod Sci, 1997, 49(1): 1-12. DOI:10.1016/S0378-4320(97)00064-X
[97]
Kim IH, Son DS, Yeon SH, et al. Effect of dominant follicle removal before superovulation of follicular growth, ovulation and embryo production in Holstein cows[J]. Theriogenology, 2001, 55(4): 937-945. DOI:10.1016/S0093-691X(01)00455-1