工作空间

文章信息

黄俊骏, 刘文文, 郭亚如, 蒋天慧, 任晴, 王华华, 梁卫红
microRNA在植物生长发育中的研究进展
生物技术通报, 2019, 35(11): 141-149

HUANG Jun-jun, LIU Wen-wen, GUO Ya-ru, JIANG Tian-hui, REN Qing, WANG Hua-hua, LIANG Wei-hong
Research Progress of microRNA in Plant Development
Biotechnology Bulletin, 2019, 35(11): 141-149

文章历史

收稿日期:2019-06-17

microRNA在植物生长发育中的研究进展
黄俊骏, 刘文文, 郭亚如, 蒋天慧, 任晴, 王华华, 梁卫红     
河南师范大学生命科学学院,新乡 453007
摘要:microRNA(miRNA)是一类广泛存在于植物体内,长约20-25个核苷酸的内源性非编码小分子RNA,通过定向降解靶基因mRNA和抑制其翻译,从而在转录后水平控制靶向基因的表达来调控多种多样的生物功能,包括植物的生长发育、生殖和对逆境胁迫的响应。已有的研究表明,miRNA及其靶基因不仅在植物的时序转换中是一个关键调控因子,也在茎尖发育、叶形态建成、花器官发育和开花时间等过程中发挥着重要调控作用。重点介绍miRNA在调控植物生长发育过程以及发育可塑性过程中的研究进展,并对植物miRNA研究中有待进一步阐明的问题进行了探讨和展望,以期为深入解析miRNA在调节植物组织和器官模式中的功能,以及植物形态多样性中的作用和分子调控网络提供参考。
关键词植物    miRNA    调控    生长发育    
Research Progress of microRNA in Plant Development
HUANG Jun-jun, LIU Wen-wen, GUO Ya-ru, JIANG Tian-hui, REN Qing, WANG Hua-hua, LIANG Wei-hong     
College of Life Science, Henan Normal University, Xinxiang 453007
Abstract: microRNA(miRNA)is a type of endogenous non-coding small RNA that is widely present in plants and is about 20-25 nucleotides long. By degrading the target gene mRNA and inhibiting its translation, the expression of the targeted gene is controlled at the post-transcriptional level and thus a variety of biological functions, including plant growth and development, reproduction and stress response, were regulated. Previous studies have shown that miRNA and its target genes are not only a key regulator in plant timing transformation, but also play an important regulatory role in shoot tip development, leaf morphogenesis, floral organ development and flowering time. This review focuses on the latest research progress of miRNAs in regulating plant growth and development and developmental plasticity, and explores and prospects the need-to-be clarified issues in the studies of plant miRNAs, aiming to provide a reference for deeply analyzing miRNAs in regulating plant tissues and organ patterns, and the role of them in plant morphological diversity and molecular regulatory networks.
Key words: plant    miRNA    regulation    growth and development    

miRNA是一类内源性的非编码小RNA,通过miRNA基因的转录,DICER蛋白将初级miRNA转录本加工成成熟的miRNA,并加载成熟的miRNA进入ARGONAUTE蛋白,组装成沉默复合体(miRISC,miRNA-Induced Silencing Complex),靶向序列互补的基础上,miRISC负调控基因表达,从而调控植物的生长发育[1-2]

近年的研究表明,植物诸多生物学过程都受到miRNA的调控,包括细胞维持和分化、生长发育、信号转导及对环境因素胁迫的响应。植物由于受到其固着生长方式的限制,常常会受到包括极端温度、干旱、盐、重金属等不利环境因素的影响,植物miRNA表达量会随环境因素变化而改变,miRNA通过调控其相应靶基因的表达,使植物在生理及形态上产生对环境的适应性,如响应热激的miR160[3]、与低温胁迫和金属离子胁迫相关的miR393[4-5]、与干旱胁迫有关的miR165/166[6]、与养分吸收有关的miR408[7]、与盐胁迫相关的miR398[8],以及与免疫相关的miR6019/6020[9]等。作为重要的调节分子,miRNA同样也参与了生命过程中一系列的重要进程,而且在植物生长发育过程中扮演了重要角色。miR165/166已被证明参与了植物茎端分生组织、根部顶端分生组织的维持、调控花药和胚珠形态建成等多个方面[10-14];miR164在腋生分生组织的发育、植物叶片的衰老以及控制花瓣的数量等方面起重要作用[15-18];miR172在土豆块茎形成、豆科结瘤和花器官发育等过程中发挥着重要调控作用[19-25]。可以说,植物miRNA几乎参与调控植物所有重要的发育过程,包括叶的发育、器官极性、花的形态建成、开花时间等。同时,越来越多的证据表明,miRNA在植物的生长发育过程中起着重要的调控作用。本文主要介绍植物miRNA在植物生长发育方面的最新研究进展以及理解miRNA在植物发育可塑性中的作用,并对今后植物miRNA的研究做出了展望。

1 miRNA在植物生长发育中的功能 1.1 miRNA在分生组织中的作用

分生组织是产生和分化其他各种组织的基础。植物的发育依赖于茎端分生组织(Shoot apical meristem,SAM)的活性,而SAM则是尖端包含一群干细胞的特殊区域。在每个分生组织中,干细胞自我更新和器官/分生组织分化之间的动态平衡对于植株的正常发育十分重要。STM(Shoot meristemless)-WUS(Wuschel)-CLV(Clavata)通路是SAM中维持干细胞的基础机制[26-27]。在一定程度上,花分生组织中亦是如此。miRNA通过靶向调节STM-WUS-CLV信号通路中的多个蛋白,有利于SAM的发育及维持。

miR394在SAM表面的单细胞层-L1层中产生,通过向下扩散到组织中心(Organising centre,OC)。在OC中抑制LCRLeaf Curling Responsiveness)的表达[28],该蛋白能直接抑制SAM特异基因WUS的表达[29]。虽然L1层miR394的浓度高于OC层,但是miR394对LCR的抑制作用仅发生在OC中[28],表明miR394的精确浓度对其功能至关重。同时,miR394-LCR介导的干细胞调控过程中具有多样化的功能[30]

miR165和miR166是SAM维持中涉及的另一类重要的miRNA,亦是两个相差一个核苷酸的相关的miRNAs,通过AGO1和AGO10来调控HD-ZIP Ⅲ(Class Ⅲ Homeodomain-Leucine Zipper)转录物,调控分生组织发育及器官极性。由于miR165/166基因座和靶基因的多样性导致了它们在植物发育中复杂的调控作用。AGO1在整个顶点表达,招募miR165/166靶向切割HD-ZIP Ⅲ mRNA,阻止HD-ZIP Ⅲ的积累,从而阻止异位分生组织的发生[10]。AGO10特异性地隔离miR165/166对抗AGO1-miR165/166的沉默活性,从而实现局部富集HD-ZIP Ⅲ转录物,HD-ZIP Ⅲ转录因子REV(Revo-Luta)作为分生组织维持的正反馈机制促进AGO10的表达,从而促进SAM的发育[10-11]。AMP1(Altered Meristem Program 1)作为负反馈调控因子,通过限制HD-ZIP Ⅲ介导RAP2.6L(At5g13330)的表达来限制SAM的增殖和再生[12]

miR164通过靶向Cup-Shaped Cotyledon基因(CUC1CUC2CUC3)来调控植物腋生分生组织的发育。通过上调miR164的表达或突变miR164,分别导致靶向CUC下调以及腋生分生组织的消失和CUC转录物的增加以及叶缘产生异位的腋芽样结构[15]。作为双子叶植物启动结合蛋白(Squamosa promoter binding protein-like,SPL)家族的同源物TSH4(Tassel Sheath 4),在单子叶植物中,腋生分生组织的发育由其控制,它的活性通过miR156来调控进而促进分蘖,如玉米穗发育过程中通过TSH4-miR156途径调节谷粒的结构[31],柳枝稷通过SPL-miR156途径来调节分蘖[32],相反的,拟南芥通过SPL-miR156影响叶间期而不是分生组织的起始[33]。目前已经通过对大豆miR156b的操作,利用miR156-SPL-WUS途径改善了大豆植株的枝条结构和产量[34]。这些结果表明,miR156在不同的植物中,它的功能会随着不同的组织而发生改变。

1.2 miRNA调控植物幼年期向成年期的转换

植物营养生长幼年向成年转变是植物发育的重要过程之一,是植物开花生殖生长的基础。研究表明,植物幼年期向成年期阶段转变(即营养生长阶段转变)受保守的miR156-SPLs途径所调控。miR156是进化过程中最保守的miRNA。

在幼苗阶段,miR156的表达非常高,而miR172表达非常低。然而,随着植物生长,miR156表达逐渐下降,靶基因SPL的表达逐渐上调,SPL家族基因编码的转录因子SPL9/SPL10可以直接结合在miR172的启动子上激活其表达,当这些变化达到阈值时,植物形态发生显著变化,促进植物由幼年生长到成年生长的转换[35]。在毛竹芽发育的早期阶段,葡萄糖通过调节miR156靶向的PeSPL9表达水平来介导形成成体叶[36]。由此可见,miR156-SPL/miR172-AP2(Apetala 2)介导的从幼年到成年的转换机制可能在高等植物中广泛存在。因此,miR156和miR172皆可视为植物年龄的分子标记。在基因工程中,可通过靶向单个miRNA调节植物的相变,从而控制生命周期并进一步调节植物生物量和种子产量[37]

1.3 miRNA在叶形态建成中的作用

高等植物的叶片呈现明显的近-远轴极性。叶由茎尖生长锥侧面的叶原基发育形成,叶原基形成于SAM的周边区(Peripheral zone,PZ),在初始叶原基中近-远轴极性已经建立。在叶片近-远轴极性的建立过程中,包括转录因子、小分子RNA、细胞分裂的因子等许多关键的调节因子参与其中。与在SAM中一样,AGO1对于将miR165 / 166靶向叶中的HD-ZIP Ⅲ转录物是必需的,是miR165 / 166调节和限制PHB(Phabulosa/AtHB14)到近轴侧所需的[13]。类似AGO1,AGO10在叶片近轴侧的定位是抑制非细胞自主miR165 / 166活性和维持HD-ZIP Ⅲ mRNA在该区域中的积累所必需[14]。在上述过程中,需要miR390及其效应因子AGO7的参与tasiRNA(Trans-acting short-interfering RNAs)中的一个亚类TAS3 tasiRNA通过调节远轴面促进因子ETT(Ettin)/ARF3(Auxin response factor 3)及ARF4的表达贡献于近-远轴极性的建立[38]。该信号途径在陆地植物中是保守的。

miRNA也参与调节叶片形状。作为器官原基边界形成所必须的基因CUC2受TCP(Transcription factor TCP)的双重调控。研究表明,TCP4蛋白能直接与CUC2结合,抑制自身的二聚化和CUC2的转录活性。TCP4-CUC2能被SPL蛋白破坏从而恢复CUC2功能[39]。当植物老化后,SPL水平增加而导致CUC2活性增加以及叶片复杂性增加。TCP4又由另一种miR319控制[40]。在拟南芥中编码miR319的JAWJagged and Wavy)基因一旦发生突变,植株表现出叶片形状和曲率方面都极不均匀,该过程是miR319可以通过降解TCP类转录因子家族的mRNA来调控拟南芥叶子的生长发育[41]。除了对CUC2的直接影响外,CUC2表达亦可由TCP基因调节CUC2阻遏物miR164的活性来进行间接调节[16]。CUC2-miR164系统在复合叶片进化中起关键作用[17]。同时miR319-TCP4通过调控茉莉酸(Jasmonate acid,JA)生物合成通路来控制叶片的衰老[42]

叶片的大小主要受生长调节因子(Growth-regulating factor,GRF)调节,GRF亦是参与控制细胞分裂和延伸的转录因子。在拟南芥中GRF基因突变导致叶片变小,当GRF基因过表达则产生显著更大的叶片[43]。值得注意的是,TCP能够调节miR396[44],而miR396靶向GRF基因。在拟南芥叶片中,在叶片远端表达的miR396限制了GRF活性,从而将细胞增殖限制在叶片近端。随着叶片的成熟,miR396在发育的叶片中增加,导致GRF降低,进而阻止叶片的生长[45]。研究表明,miR396对GRF的调控在苜蓿和水稻中是保守的,但体现在结瘤和花发育两个完全不同的发育过程中[46-47]。miR396-GRF途径以相同的方式调节叶片不同方向的生长,通常miR396在叶片成熟的区域中表达,并且在正在进行的细胞增殖区域中不存在[48]。由此可见,TCP在叶子的极性、形状和老化过程中起主要集线器的作用,TCP-miRNA这个错综复杂的网络是进化过程中是如何形成的,有待进一步的研究。

1.4 miRNA在花器官发育中的作用

开花是植物从营养生长转换为生殖生长以产生花并最终产生种子的生理发育过程,受多个因素诱导,在植物生长和物种进化中处于核心地位。miRNA是开花调控中的一个重要因素,特别是miR172。miR172靶基因是AP2类转录因子家族,包括AP2TOE1TOE3Target of Eat 3)等,它们在被子植物、裸子植物及蕨类植物均有发现,都是FTFlowering Locust)基因的转录抑制子。AP2是ABC模型中的A类同源异型基因,在花发育早期,miR172在SAM中积累,抑制AP2,阻止植物花分生组织的形成。同时,AP2基因的mRNA在花发育的所有4轮器官原基中都有积累,在花器官的发育过程中调控着其他基因[49]。例如,在花原基的中心,miR172和C同源异型基因AGAgamous)都有较强的表达,miR172抑制了靶基因AP2的表达,避免了A和C同源异型基因的共表达,从而确定了花瓣和雄蕊之间的边界[22]。此时,AP2也负调控miR172,形成一个反馈回路,这对于花器官的正常发育至关重要[23]。研究发现,TOE3作为miR156和miR172信号网络中的一部分,过表达miR172靶向的TOE3转录物会导致花器官大小增加并保持花分生组织特性。同时SPL3能激活TOE3和miR172,这3种成分的相互作用形成一个精巧的调控环,精细调整TOE3的定位[24]

在玉米中,miR172靶向AP2同源物IDS1(Indeterminate spikelet 1),其突变体具有缺陷的心皮和雄蕊[25]。在大麦中,miR172靶向AP2同源物CLY1(Cleistogamy 1),其突变体表现出在自花受精前闭花[50],在此途径中同时调节JA和赤霉素(Gibberellic acid,GA)来促进开花期间的茎生长[51]。在大豆中,miR172靶向GmTOE4a,调控开花整合因子GmFT2a和Gm-FT5a,以及花分生组织决定基因GmAP1GmLFYGmLEAFY)来实现调控开花[52]。在金丝桃和矮牵牛中,miR169控制这些物种中AG同源物的表达,其突变体表型和过表达C基因或失去A基因的表型一致[53],这意味着miR169对增强C基因转录至关重要。总体而言,在花器官形成期间,miR172和miR169控制ABC基因的表达模式,增加了ABC模型的复杂性。

一旦花器官形成,就会生长并发育成复杂的结构,并且已经证明几种miRNA参与了这一过程。miR164靶向NAC(NAM,ATAF1 / 2和CUC2)类转录因子家族,其突变体表现出花瓣的数量较野生型明显增多,暗示miR164通过调节转录因子CUC1和CUC2等的表达水平来控制花瓣的数量[18]。在叶片中,miR319-TCP途径调节花瓣形状和大小,miR319a的突变导致花瓣长度和宽度都减少了[54]。在拟南芥中,miR396-GRF-GIF(GRF-interacting factor)途径影响花粉母细胞的起始[55]。在番茄中,miR171靶向GRAS(GAI,RGA和SCR)转录因子SlGRAS24,其过表达会产生具有小花粉囊和开裂的雄蕊[56]。在青菜中,过表达miR158的转基因株系会导致花粉败育以及花粉活力降低[57]。miR393靶向运输抑制因子反应1(TIR1)和AFBAuxin Signaling F-BOX)基因,这些基因也参与花的发育[58]

近些年来,越来越多的miRNA被证实通过抑制或促进营养生长到生殖生长的相变来调控植物的开花时间。通常在植物幼年期,miR156被AGL15(Agamous-like 15)和AGL18激活,进而抑制转录因子SPL的活性,促进AP2-LIKE蛋白质的产生以抑制开花[59]。在植物到达成年并准备开花时,miR156水平降低导致SPL蛋白的产生,SPL通过直接激活FRUITFULLLEAFY等关键开花基因,同时也激活和促进miR172的转录,miR172靶向降解AP2类转录物,触发相变,使植物进入开花期[35, 60-61]。在水稻中,miR156直接靶向LAX1(Lax panicle 1)的表达来调控穗的发育[62]。这也是为什么在许多物种中,miR156的过表达延迟了开花,而miR172的过表达促进了开花的原因[25, 63]。同时也表明miR156决定植物的幼年期,而miR172决定植物的成年、生殖和开花期。在水稻中,SPL9- miR528-RFI2(Red and Far-red Insensitive 2)途径来调控开花时间[64]。因此,miRNA对植物花器官的正常发育和繁衍是至关重要的。进一步研究miRNA如何介导花发育以及开花时间的分子调控网络有利于我们深入了解花发育背后的一系列重要科学问题,同时对作物的重要经济形状改良起借鉴作用。

2 miRNA在植物发育可塑性中的功能

植物可塑性发育是指同一基因型的植物在不同的环境条件下表现型会发生巨大的变化,是植物更适应环境变化的一个重要策略。miRNA不仅是植物发育的主要调节因子,而且还参与了由各种环境刺激引起的植物发育表型可塑性的调节[65]。适当的低温可以促进植物成花。miR156和miR172都被认为是植物年龄的分子标记,而在拟南芥中,两者均被发现亦可参与调控植物对温度变化的响应并微调开花时间[66]。当周围环境温度降低时,miR156被上调,一方面抑制SPL3,导致FTFRUITFULL的下调以及开花延迟[66-67];另一方面,miR172被下调,进而激活AP2来抑制FT,结果也是开花延迟[66]。这意味着miRNA通过两条不同的途径来实现对开花时间的控制。miR156也在植物避荫综合征调控过程中起重要作用。拟南芥在遮荫条件下光敏色素的功能受到抑制,导致光敏色素相互作用因子(Phytochrome-interacting factors,PIFs)蛋白快速积累,PIF蛋白能抑制miR156的表达,进而引起其靶基因SPL家族成员表达升高,后者进一步调控了植物株高、分枝数目、叶柄长度、叶片数目、叶片面积及开花时间等一系列重要农艺性状的改变,揭示了光敏色素PIF和miR156-SPL在植物避荫综合征调控过程中存在着功能关系[68]

在高硝酸盐条件下,一方面,保守的miR167水平下降,其靶向蛋白AUXIN反应因子8(ARF8)在周环和侧根冠中积累,从而增强生长素信号传导以促进侧根的形成和抑制主根的伸长[69];另一方面,生长素受体AFB3Auxin Signaling F-BOX 3)基因被诱导,但在硝酸盐还原和同化过程中形成的一些代谢物可诱导miR393表达以抑制AFB3表达,即AFB3介导的响应于硝酸盐变化的生长素信号传导是短暂的[70-71]。在氮素诱导下,OsmiR393积累,降低靶标基因OsTIR1Transport Inhibitor Response 1)和OsAFB2的表达,减轻叶腋中生长素的敏感性并使OsIAA6(Auxin-responsive Aux/IAA)稳定,进而促进水稻分蘖[72]。在有毒铝胁迫下,miR393被下调,其靶向生长素受体基因HvTIR1HvAFB表达增强,增强了生长素信号传导,加剧了铝胁迫引起的根伸长受阻[7]。铝胁迫能够诱导细胞分裂素合成的关键基因IPTs(Adenosine phosphate isopentenyltransferases)在根尖转化区上调表达并最终导致该部位细胞分裂素水平的大量积累及根伸长的抑制[73],在这个过程中,具体是哪个miRNA起作用还有待进一步的研究。植物在受到UV-B辐射后,miR396被诱导并抑制其靶GRF,进而介导叶子生长的抑制,这是植物阻止细胞周期的适应性策略,允许时间修复UV-B诱导的DNA损伤[74-75]

综上所述,植物在调整其对营养素的反应、环境刺激时,皆由miRNA介导,通过靶向发育中各种关键基因或与植物激素信号传导的整合,如细胞分裂素还能够以协同的方式参与生长素介导的铝抑制的根伸长,即植物微调自身发育反应的策略来促进植物适应动态变化的环境。

3 展望

在植物发育过程中,miRNA在调控分生组织特性,叶极性、形态和大小,以及花器官发育过程中起着重要作用,甚至在各种环境刺激下,miRNA充当环境响应调节因子,赋予植物表型并促进植物的进化和适应。值得一提的是,不同的植物采用通用的策略来调控各种发育,如拟南芥与大岩桐的miR172[76];同一miRNA可在不同组织中发挥不同的功能,如AGO10[10-11, 14];利用相同的途径以实现不同的发育过程,如miR156/miR172[32, 36, 68]。有研究表明,在拟南芥整个生活史中,相比发育阶段,组织器官对miRNA的表达影响更大[77]。那么在植物生长的过程中是否可以改进对植物器官的处理技术来调控miRNA的表达,进而改善植株的生长状态,这对于某些经济作物与观赏植物来说具有非常重要的意义。

植物miRNA出现在几乎所有已检测的生物发育过程中,也使我们对miRNA重要性的认识不断提高,但是目前确认的miRNA数量和功能与所在总基因中所占比重的数量相比相差甚远,而且,我们的研究还仅仅局限于证实miRNA和靶基因参与了植物生长发育的调控,但对miRNA如何在发育及组织细胞水平特异地调控某个生物学过程,以及该过程的分子机制和调控网络如何仍是一个谜,有很多科学问题亟需我们解答。例如,miR156-SPL介导的从幼年到成年的转换机制[36]和在植物避荫综合征的调控过程[68],仍需继续鉴定miR156上游的调控因子,从而阐明miR156如何通过同一下游因子进而调控不同的生物学过程的分子机制;TCP作为叶发育过程中的主要集线器,TCP-miRNA这个复杂的网络是如何形成的;水稻中SPL9-miR528-RFI2途径来调控开花时间[64],还需要探究该途径是否具有广谱性,是否还参加了植物某些特有的重要生物学过程或性状的形成,介导这些过程的分子机制又是如何发生的;在植物的进化过程中,决定miRNA结构差异的机制和靶基因特异性的分子机制目前亦尚不清楚。因此,非常有必要利用第二代测序技术以及不断改进的miRNA研究方法,借助单细胞的各种组学和其他研究手段,借鉴模式植物miRNA的研究成果,miRNA的更多种类及其作用机理与调控途径将会得到更清晰地阐释,这将为理解miRNA如何调控植物生长发育提供重要的理论依据。

参考文献
[1]
Iki T, Yoshikawa M, Nishikiori M, et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90[J]. Molecular Cell, 2010, 39: 282-291. DOI:10.1016/j.molcel.2010.05.014
[2]
Kim YJ, Zheng B, Yu Y, et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana[J]. EMBO Journal, 2011, 30: 814-822. DOI:10.1038/emboj.2011.3
[3]
Ding Y, Ma Y, Liu N, et al. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton(Gossypium hirsutum)[J]. Plant Journal, 2017, 91: 977-994. DOI:10.1111/tpj.13620
[4]
Liu Y, Wang K, Li D, et al. Enhanced cold tolerance and tillering in switchgrass(Panicum virgatum L.)by heterologous expression of Osa-miR393a[J]. Plant and Cell Physiology, 2017, 58: 2226-2240. DOI:10.1093/pcp/pcx157
[5]
Bai B, Bian H, Zeng Z, et al. miR393 -mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley[J]. Plant and Cell Physiology, 2017, 58: 426439.
[6]
Zhang J, Zhang H, Srivastava AK, et al. Knock-down of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018, 177: 1691-1703. DOI:10.1104/pp.18.00485
[7]
Pan J, Huang D, Guo Z, et al. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants[J]. Journal of Integrative Plant Biology, 2018, 60: 323-340. DOI:10.1111/jipb.12634
[8]
Chen Q, Li M, Zhang Z, et al. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco[J]. BMC Genomics, 2017, 18: 62. DOI:10.1186/s12864-016-3372-0
[9]
Deng Y, Wang J, Tung J, et al. A role for small RNA in regulating innate immunity during plant growth[J]. PLoS Pathogens, 2018, 14: e1006756. DOI:10.1371/journal.ppat.1006756
[10]
Zhou Y, Honda M, Zhu H, et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance[J]. Cell Reports, 2015, 10: 1819-1827. DOI:10.1016/j.celrep.2015.02.047
[11]
Brandt R, Xie Y, Musielak T, et al. Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops[J]. Mechanisms of Development, 2013, 130: 25-33. DOI:10.1016/j.mod.2012.06.007
[12]
Yang S, Poretska O, Sieberer T. Altered meristem program restricts shoot meristem proliferation and regeneration by limiting HD-ZIP Ⅲ-mediated expression of RAP2. 6L[J]. Plant Physiology, 2018, 177: 1580-1594. DOI:10.1104/pp.18.00252
[13]
Kidner CA and Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1[J]. Nature, 2004, 42: 81-84.
[14]
Liu Q, Yao X, Pi L, et al. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis[J]. Plant Journal, 2009, 58: 27-40. DOI:10.1111/j.1365-313X.2008.03757.x
[15]
Raman S, Greb T, Peaucelle A, et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana[J]. Plant Journal, 2008, 55: 65-76. DOI:10.1111/j.1365-313X.2008.03483.x
[16]
Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. Plant Cell, 2010, 22: 3574-3588. DOI:10.1105/tpc.110.075598
[17]
Blein T, Pulido A, Vialette-Guiraud A, et al. A conserved molecular framework for compound leaf development[J]. Science, 2008, 322: 1835-1839. DOI:10.1126/science.1166168
[18]
González-Carranza ZH, Zhang X, Peters JL, et al. HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2expression[J]. PLoS One, 2017, 12: e0185106. DOI:10.1371/journal.pone.0185106
[19]
Lakhotia N, Joshi G, Bhardwaj AR, et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato(Solanum tuberosum L.)by high-throughput sequencing[J]. BMC Plant Biology, 2014, 14: 6. DOI:10.1186/1471-2229-14-6
[20]
Nova-Franco B, Íñiguez LP, Valdés-López O, et al. The micro-RNA-172c-APETALA2-1 node as a key regulator of the commonbean-Rhizobium etlinitrogenfixation symbiosis[J]. Plant Physiology, 2015, 168: 273-291. DOI:10.1104/pp.114.255547
[21]
Holt DB, Gupta V, Meyer D, et al. microRNA172(miR172)signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules[J]. New Phytologist, 2015, 208: 241-256. DOI:10.1111/nph.13445
[22]
Zhao L, Kim Y, Dinh TT, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems[J]. Plant Journal, 2007, 51: 840-849. DOI:10.1111/j.1365-313X.2007.03181.x
[23]
Yant L, Mathieu J, Dinh TT, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. Plant Cell, 2010, 22: 2156-2170. DOI:10.1105/tpc.110.075606
[24]
Jung JH, Lee S, Yun J, et al. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning[J]. Plant Science, 2014, 215: 29-38.
[25]
Chuck G, Meeley R, Irish E, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1[J]. Nature Genetics, 2007, 39: 1517-1521. DOI:10.1038/ng.2007.20
[26]
Gaillochet C and Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity[J]. Development, 2015, 142: 2237-2249. DOI:10.1242/dev.117614
[27]
Somssich M, Je BI, Simon R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem[J]. Development, 2016, 143: 3238-3248. DOI:10.1242/dev.133645
[28]
Knauer S, Holt AL, Rubio-Somoza I, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Developmental Cell, 2013, 24: 125-132. DOI:10.1016/j.devcel.2012.12.009
[29]
Song JB, et al. Regulation of leaf morphology by micro-RNA394 and its target leaf curling responsiveness[J]. Plant and Cell Physiology, 2012, 53: 1283-1294. DOI:10.1093/pcp/pcs080
[30]
Kumar A, Gautam V, Kumar P, et al. Identification and co-evolution pattern of stem cell regulator miR394s and their targets among diverse plant species[J]. BMC Evolutionary Biology, 2019, 19: 55. DOI:10.1186/s12862-019-1382-7
[31]
Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries[J]. Development, 2010, 137: 1243-1250. DOI:10.1242/dev.048348
[32]
Wu Z, Cao Y, Yang R, et al. (2016)Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop[J]. Biotechnology for Biofuels, 2016, 9: 101. DOI:10.1186/s13068-016-0516-z
[33]
Wang JW, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 2008, 20: 1231-1243. DOI:10.1105/tpc.108.058180
[34]
Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b[J]. Plant Biotechnology Journal, 2019, 17: 50-62. DOI:10.1111/pbi.12946
[35]
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138: 738-749. DOI:10.1016/j.cell.2009.06.014
[36]
Silva PO, Batista DS, Cavalcanti JHF, et al. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172[J]. Annals of Botany, 2019, pii:mcz025.
[37]
Fu C, Sunkar R, Zhou C, et al. Overexpression of miR156 in switchgrass(Panicum virgatum L.)results in various morphological alterations and leads to improved biomass production[J]. Plant Biotechnology Journal, 2012, 10: 443-452. DOI:10.1111/j.1467-7652.2011.00677.x
[38]
Chitwood DH, Nogueira FT, Howell MD, et al. Pattern formation via small RNA mobility[J]. Genes & Development, 2009, 23: 549-554.
[39]
Rubio-Somoza I, Zhou CM, Confraria A, et al. Temporal control of leaf com-plexity by miRNA-regulated licensing of protein complexes[J]. Current Biology, 2014, 24: 2714-2719. DOI:10.1016/j.cub.2014.09.058
[40]
Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP transcription factors in leaf development[J]. Plant Physiology, 2017, 175: 874-885. DOI:10.1104/pp.17.00732
[41]
Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Developmental Cell, 2007, 13: 115-125. DOI:10.1016/j.devcel.2007.04.012
[42]
Sun X, Wang C, Xiang N, et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal, 2017, 15: 1284-1294. DOI:10.1111/pbi.12715
[43]
Horiguchi G, Kim GT, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant Journal, 2005, 43: 68-78. DOI:10.1111/j.1365-313X.2005.02429.x
[44]
Schommer C, Debermardi JM, Bresso EG, et al. Repression of cell proliferation by miR319-regulated TCP4[J]. Molecular Plant, 2014, 7: 1533-1544. DOI:10.1093/mp/ssu084
[45]
Rodriguez RE, Mecchia MA, Debemardi JM, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010, 137: 103-112. DOI:10.1242/dev.043067
[46]
Bazin J, Khan GA, Combier JP, et al. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant Journal, 2013, 74: 920-934. DOI:10.1111/tpj.12178
[47]
Liu H, Guo S, Xu Y, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology, 2014, 165: 160-174. DOI:10.1104/pp.114.235564
[48]
Gupta M, Das Nath U. Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396[J]. Plant Cell, 2015, 27: 2785-2799.
[49]
Wollmann H, Mica E, Todesco M, et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development[J]. Development, 2010, 137: 3633-3642. DOI:10.1242/dev.036673
[50]
Martin A, Adam H, Diaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136: 2873-2881. DOI:10.1242/dev.031658
[51]
Patil V, McDermott HI, McAllister T, et al. APETALA2 control of barley internode elongation[J]. Development, 2019, pii: dev. 170373.
[52]
Zhao X, Cao D, Huang Z, et al. Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean[J]. Plant Molecular Biology, 2015, 88: 343-55. DOI:10.1007/s11103-015-0322-1
[53]
Cartolano M, Castillo R, Efremova N, et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity[J]. Nature Genetics, 2007, 39: 901-905. DOI:10.1038/ng2056
[54]
Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 22534-22539. DOI:10.1073/pnas.0908718106
[55]
Lee SJ, Lee BH, Jung JH, et al. GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR specify meristematic cells of gynoecia and anthers[J]. Plant Physiology, 2018, 176: 717-729. DOI:10.1104/pp.17.00960
[56]
Huang W, Peng S, Xian Z, et al. Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis[J]. Plant Biotechnology Journal, 2017, 15: 472-488. DOI:10.1111/pbi.12646
[57]
Ma Z, Jiang J, Hu Z, et al. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis[J]. Plant Molecular Biology, 2017, 93: 313-326. DOI:10.1007/s11103-016-0563-7
[58]
Parry G, Calderon-Villalobos LI, Prigge M, et al. Complex regulation of the TIR1/AFB family of auxin receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 22540-22545. DOI:10.1073/pnas.0911967106
[59]
Serivichyaswat P, Ryu HS, Kim W, et al. Expression of the floral repressor miRNA156 is positively regulated by the AGAMOUS-like proteins AGL15 and AGL18[J]. Molecular Cells, 2015, 38: 259-266. DOI:10.14348/molcells.2015.2311
[60]
Yamaguchi A, Wu MF, Yang L, et al. The microRNA-regulated SBP box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17: 268-278. DOI:10.1016/j.devcel.2009.06.007
[61]
Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138: 750-759. DOI:10.1016/j.cell.2009.06.031
[62]
Yang X, Wang J, Dai Z, et al. miR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways[J]. Rice, 2019, 12: 40. DOI:10.1186/s12284-019-0299-5
[63]
Chuck GS, Tobias C, Sun L, et al. Over expression of the maize Corn-grass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 17550-17555. DOI:10.1073/pnas.1113971108
[64]
Yang R, Li P, Mei H, et al. Fine-tuning of MiR528 accumulation modulates flowering time in rice[J]. Molecular Plant, 2019, 12(8): 1103-1113. DOI:10.1016/j.molp.2019.04.009
[65]
Zhang X, Lai Y, Zhang W, et al. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod[J]. BMC Genomics, 2018, 19: 819. DOI:10.1186/s12864-018-5204-x
[66]
Lee H, Yoo SJ, Lee JH, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis[J]. Nucleic Acids Research, 2010, 38: 3081-3093. DOI:10.1093/nar/gkp1240
[67]
Kim JJ, Lee JH, Kim W, et al. The microRNA156-squamosa promoter binding protein-like3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiology, 2012, 159: 461-478. DOI:10.1104/pp.111.192369
[68]
Xie Y, Liu Y, Wang H, et al. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis[J]. Nature Communication, 2017, 8: 348. DOI:10.1038/s41467-017-00404-y
[69]
Gifford ML, Dean A, Gutierrez RA, et al. 2008. Cell-specific nitrogen responses mediate developmental plasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 803-808. DOI:10.1073/pnas.0709559105
[70]
Vidal EA, Araus V, Lu C, et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 4477-4482. DOI:10.1073/pnas.0909571107
[71]
Song X, Li Y, Cao X, et al. MicroRNAs and their regulatory roles in plant- environment interactions[J]. Annual Review of Plant Biology, 2019, 70: 489-525. DOI:10.1146/annurev-arplant-050718-100334
[72]
Li X, Xia K, Liang Z, et al. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds[J]. Scientific Reports, 2016, 6: 32158. DOI:10.1038/srep32158
[73]
Yang ZB, Liu G, Liu J, et al. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis[J]. EMBO Reports, 2017, 18: 1213-1230. DOI:10.15252/embr.201643806
[74]
Casadevall R, Rodriguez RE, Debernardi JM, et al. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell, 2013, 25: 3570-3583. DOI:10.1105/tpc.113.117473
[75]
Jiang L, Wang Y, Bjorn LO, et al. Does cell cycle arrest occur in plant under solar UV-B radiation[J]. Plant Signaling & Behavior, 2011, 6: 892-894.
[76]
Li XY, Guo F, Ma SY, et al. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia(Sinningia speciosa)[J]. Journal of Zhejiang University Science B, 2019, 20: 322-331. DOI:10.1631/jzus.B1800003
[77]
Le X, Yugang H, Ying C, et al. 2018. An expression atlas of miRNAs in Arabidopsis thaliana[J]. Science China Life Sciences, 2018, 2: 178-189.