大丽轮枝菌(Verticillium dahliae Kleb.)是一种土传维管束真菌病害, 严重影响农业生产[1]。大丽轮枝菌能造成对农业生产极大的危害, 一方面原因是其致病力强、寄主范围广[2], 变异性强, 大丽轮枝菌基因组中存在大量转座子以及频繁的基因重组现象[3], 转座子与基因重组导致大丽轮枝菌产生不同的生理小种, 对宿主很快产生抗性, 生产上很难培育出长期抗大丽轮枝菌的作物品种。大丽轮枝菌防治困难的另一个原因是它能产生休眠结构—微菌核[4], 该结构能让大丽轮枝菌在土壤中存活20年[2]; 当有合适寄主存在时, 微菌核就成为土壤中大丽轮枝菌的初侵染源, 目前还很难找到有效的手段清除田间的微菌核以控制大丽轮枝菌为害[2]。因此阐明大丽轮枝菌致病及微菌核形成的分子机理对于设计新的大丽轮枝菌防治技术具有重要意义, 本文对近几年大丽轮枝菌致病及微菌核形成相关基因的研究进行了总结, 旨为大丽轮枝菌致病及微菌核形成机理的进一步研究奠定理论基础。
1 大丽轮枝菌致病相关基因研究进展 1.1 细胞壁降解酶或效应因子相关基因现在大多数研究者都认为大丽轮枝菌分泌到细胞外的毒素(包括细胞壁降解酶与效应因子等)在大丽轮枝菌致病过程中发挥重要功能, 研究发现大丽轮枝菌上清液能直接导致植物叶片萎蔫, 可能与植物蛋白质的翻译调控过程相关[5]。
1.1.1 细胞壁降解酶细胞壁降解类酶(Cell-wall-degrading enzymes, CWDEs)被认为是决定大丽轮枝菌能否成功侵入植物的重要因素, 在大丽轮枝菌(V.dahliae)和黑白轮枝菌(V.albo-atrum)基因组中存在大量植物细胞壁降解酶类基因[6]。大丽轮枝菌细胞壁降解酶在大丽轮枝菌侵染植物过程中主要发挥两方面作用, 一方面是通过降解植物细胞壁辅助大丽轮枝菌侵染; 另一方面降解的细胞壁多糖供给大丽轮枝菌有利于其在植物内低营养环境下的生长[7]。有研究表明细胞壁降解相关酶(果胶与纤维素)合成代谢通路的基因在大丽轮枝菌侵染植物时表达量明显上升; 与果胶代谢通路相关的两个基因VdPL3.1与VdPL3.3被敲除后, 大丽轮枝菌致病力降低[8]。细胞壁降解相关基因(Sucrose nonfermenting 1 gene, VdSNF1)[9]与内葡聚醣酶基因(Endoglucanase, EG-1)被T-DNA插入突变后导致大丽轮枝菌致病力降低[1], 研究也发现β-1, 6-endoglucanase gene(VegB)被敲除后, 大丽轮枝菌降解纤维素的能力降低[10]; VdSSP1是从高致病力大丽轮枝菌VDG1分离到的分泌蛋白, VdSSP1突变体在以果胶(Pectin)或淀粉(Starch)为碳源的培养基上生长减缓, 致病力也降低, 当VdSSP1被互补到突变体或低致病力大丽轮枝菌VDG2后回复或提高了大丽轮枝菌的致病力, 推测该基因与植物细胞壁降解相关[7]。可见, 细胞壁降解相关酶在大丽轮枝菌侵染过程中发挥重要的功能。许多植物的表皮覆盖着一层角质, 既可以防止植物水分流失, 也可以防止病原菌入侵[11], 研究发现大丽轮枝菌角质酶(Cutinase)VdCUT11能够诱导植物细胞死亡以及植物的的防御反应, 而具有糖基(Carbohydrate)结合域的蛋白VdCBM1可抑制VdCUT11的功能, 可见角质酶降解植物角质层的活性是其功能的关键[12]。
1.1.2 效应因子相关基因效应因子在真菌与植物的互作过程中发挥重要作用[13], 一些大丽轮枝菌的效应因子被发现, 如Ave1是大丽轮枝菌生理小种race 1中分离到的一个效应因子, 其基因位于大丽轮枝菌遗传特异性变异基因区[Highly dynamic lineage-specific(LS)genomic regions][14], Ave1被番茄细胞表面受体Ve1识别后, 介导番茄对race 1的抗性[15-16]; 在烟草中稳定表达的Ave1甚至不需要Ve1存在就能诱导植物防御相关基因的表达[17]。
真菌在侵染植物时一方面要通过植物细胞壁降解酶辅助侵染, 另外一方面也要防止自身细胞壁被植物真菌细胞壁降解酶降解, LysM是一类可以结合在真菌细胞壁几丁质上的效应因子, 在真菌侵染植物时LysM结合在真菌细胞壁上防止真菌细胞壁被植物几丁质酶降解, Vd2LysM是在大丽轮枝菌中发现的一类LysM效应因子, Vd2LysM敲除后, 大丽轮枝菌对番茄的致病力降低[18]。VdCP1属于SnodProt类分泌蛋白, 在大丽轮枝菌侵染植物时表达量升高, 推测VdCP1在大丽轮枝菌侵染植物时保护其细胞壁免受植物细胞壁降解相关酶类的破坏, VdCP1敲除后影响大丽轮枝菌致病力[19]。
PevD1是大丽轮枝菌中分离到的一个能引起植物防御反应的效应蛋白, 植物中表达的PevD1提升了植物对灰葡萄孢菌(Botrytis cinerea)、丁香假单胞菌(Pseudomonas syringae pv.Tomato DC3000)与烟草花叶病毒TMV的抗性[20-21], 甚至参与了植物开花周期的调控[21], 进一步研究表明PevD1通过拮抗NRP蛋白的功能间接提升植物细胞质内CRY2的量来发挥调控功能[22]。
VdIsc1是在大丽轮枝菌中发现的一类缺乏信号肽的效应因子, 进入植物细胞后抑制植物SA的产生, 辅助大丽轮枝菌的侵染[23]; 效应因子VdSCP7被大丽轮枝菌分泌后进入植物细胞核提升植物的免疫反应, VdSCP7被敲除后大丽轮枝菌致病力增强[24]。
坏死与乙烯诱导相关蛋白(Necrosis-and ethyl-eneinducing-like proteins, NLPs)是被广泛研究的大丽轮枝菌毒素蛋白, 瞬时表达或体外表达的VdNEP蛋白能够使烟草、棉花[25]及向日葵叶片枯萎[26], 研究发现8个同源的NLPs基因(NLP1-7, 9), 其中NLP2、NLP3、NLP4与NLP5包含一个保守功能域GHRHDWE; 根据氨基酸数量的不同NLPs被分为含两个半胱氨酸的Ⅰ类(NLP1, NLP2、NLP3与NLP6)与含4个半胱氨酸的Ⅱ类(NLP4, NLP5、NLP7与NLP9)。研究发现仅NLP1与NLP2能诱导植物坏死, 被敲除后影响大丽轮枝菌的产孢能力且大丽轮枝菌菌丝生长更加旺盛, 但仅轻微影响大丽轮枝菌致病力[27-28]。
1.2 致病相关基因研究发现四跨膜蛋白VdPls1通过与NADPH氧化酶VdNoxB互作激活VdNoxB产生活性氧并提升大丽轮枝菌细胞内Ca2+浓度, 最终激活转录因子VdCrz1调控大丽轮枝菌形成侵入钉(Penetration pegs)结构辅助侵染, VdPls1与VdNoxB被敲除后大丽轮枝菌无法侵入植物[29]。侵入钉与菌丝之间的颈环结构处会分泌大量效应因子辅助大丽轮枝菌的侵染, septin蛋白VsSep5、F-actin、Exocyst相关蛋白VdExo70与VdSec8、ER-Golgi转运蛋白VdSec22以及endosome介导的转运相关蛋白VdSyn8在颈环结构的形成与效应因子分泌过程中扮演了重要角色, 效应因子VdSCP5、VdSCP8、VdSCP9与VdSCP10都定位于颈环处[30]。
cAMP-dependent protein kinase A是大丽轮枝菌中乙烯合成相关的基因, 其突变导致大丽轮枝菌乙烯合成减少, 相应的大丽轮枝菌致病力也降低[31], G蛋白亚基(G protein beta subunit)基因的敲除影响大丽轮枝菌侵染后植物叶片乙烯的合成[32], 大丽轮枝菌侵染后植物乙烯代谢相关通路的基因明显上调[33]。拟南芥乙烯相关通路基因突变后, 植物在遭受黄萎病侵染时症状会减轻[34], 这些研究都表明大丽轮枝菌与宿主植物乙烯的合成与大丽轮枝菌致病紧密相关。
一些与大丽轮枝菌营养代谢调控与传递相关的基因被敲除后也影响大丽轮枝菌的致病力, 如NUC-2是phosphate(Pi)代谢通路的关键基因[35], VdNRS/ER参与大丽轮枝菌细胞壁鼠李糖(Rhamnose)的合成[36], 它们突变后影响大丽轮枝菌的致病力。大丽轮枝菌VdTHI4参与噻唑(Thiazole)合成, 而VdThit参与维生素B1(Thiamine)的运输, VdTHI4与VdThit被敲除后影响大丽轮枝菌的致病力[37-38]。在侵染植物的过程中大丽轮枝菌也面临低氨基酸营养的情况, 这时真菌启动自身氨基酸的合成通路, 大丽轮枝菌与长孢轮枝菌中发现的转录因子CPC1参与氨基酸的合成, VlCPC1突变后大丽轮枝菌在氨基酸缺乏的环境中生长被抑制且致病力降低, 长孢轮枝菌氨基酸合成相关基因Vlaro2突变后影响其侵染也印证了氨基酸的合成对轮枝菌属致病菌致病力非常重要[39]。
一些大丽轮枝菌生长发育相关基因也与大丽轮枝菌致病力相关, 如细胞自噬在生物的发育抗逆等方面发挥了重要作用, 研究发现大丽轮枝菌细胞自噬相关基因VdATG8与VdATG12被敲除后影响大丽轮枝菌的致病力[40]。VdQase是具有cupin保守功能域及槲皮素酶(Quercetinase)活性的蛋白[41-42]; VdRac1是一个小的GTPase, 该蛋白与VdCla4互作调控大丽轮枝菌的极性生长[43]; 而Vdsho1具有4个跨膜功能域, 在HOG-MAPK调控通路上游发挥功能[44], VdQase、VdRac1、Vdsho1被敲除后都影响了大丽轮枝菌的致病力。转录调节子VdSge1与大丽轮枝菌菌丝生长与孢子产生相关, 它同时参与了多个候选效应因子的调控[45], 而bZIP转录因子VDAG_08676参与大丽轮枝菌孢子形成及氧化胁迫防御等[46], 它们被敲除后影响大丽轮枝菌的致病力。
2 大丽轮枝菌微菌核相关基因研究进展微菌核不仅是大丽轮枝菌的休眠结构, 而产微菌核能力常常与大丽轮枝菌致病力相关[47], 如果能阐明微菌核形成的分子机理对揭示大丽轮枝菌的致病机理以及设计新的大丽轮枝菌防治方案都十分重要。一些研究发现在微菌核形成过程中, 外层菌丝细胞膨大, 分泌出黑色素粒子, 填充细胞间隙, 大量黑色素颗粒成纤维状包裹在菌丝的细胞壁上, 最外层菌丝细胞自溶(Autolysis)形成紧密结构[48-50], 这个紧密结构能保护大丽轮枝菌度过低温等严酷的外界环境[2]。有关微菌核形成机理的研究主要包括黑色素合成与微菌核形成两个方面。
2.1 黑色素形成相关基因研究发现大丽轮枝菌微菌核的黑色素属于DHN-melanin类黑色素[51-52]。在微菌核的形成过程中, 黑色素合成相关基因的表达明显上调[53]; DHN-melanin合成通路基因VdPKS1[54]与Vayg1[52]被敲除后, 大丽轮枝菌不能形成黑色素及微菌核; 大丽轮枝菌真菌特异性转录因子Vdpf调控黑色素代谢通路相关基因的表达, Vdpf基因被敲除后大丽轮枝菌黑色素及微菌核形成能力受阻[55]。尽管黑色素与微菌核形成紧密相关, 但研究发现黑色素并不是微菌核形成的必须因素, 一些黑色素合成突变体也可形成白化或棕色微菌核[48, 56], 但黑色素对大丽轮枝菌形成具有完整功能的微菌核非常重要[57]。
2.2 微菌核形成相关基因在微菌核形成过程中许多基因被调控, 研究发现许多转录因子与大丽轮枝菌微菌核的形成相关, 如MADS-Box类转录因子VdMcm1[58]、APSES类转录因子Vst1[59]、真菌特异性转录因子Vdpf[55]及钙调控转录因子VdCrz1[60]等, 这些转录因子对应基因被敲除后大丽轮枝菌微菌核形成受阻; 而粘合转录激活子Vta2通过调控基因的表达而抑制大丽轮枝菌微菌核的形成, 在微菌核形成过程中发挥负调控的功能[61]。
活性氧被发现诱导丝状真菌产生菌核或微菌核[62], 研究发现Nox蛋白(Flavinoxidore ductase/NADH oxidase)在微菌核产生过程中发挥功能, 该基因被敲除后影响活性氧诱导下绿僵菌微菌核的形成[63-64], 大丽轮枝菌同源基因VdNoxB被敲除后也影响其微菌核形成, 同时该基因也参与大丽轮枝菌侵染植物过程中侵入钉(Penetration pegs)的形成[29]。
此外一些分泌蛋白、细胞壁蛋白、跨膜蛋白及疏水蛋白被发现与微菌核或菌核形成相关, 它们参与把外界环境压力信号传递到真菌细胞内, 诱导真菌产生微菌核或菌核。如核盘菌的分泌蛋白基因Ss-Caf1[65]与细胞壁蛋白基因Ss-Sl2[66]被沉默后影响核盘菌菌核的形成, 进一步研究发现Ss-Sl2与GAPDH、Hex1及elongation factor 1-alpha互作并调控核盘菌菌核形成[66], 而绿僵菌跨膜蛋白Sho1p与Sln1p传递细胞外压力信号到细胞内部, 激活MrHog1激酶(MAPK)[67-68], 从而诱导微菌核形成[69], 而真菌Hog1被Pbs2(MAPKK)所调控[70]。大丽轮枝菌跨膜蛋白VdMsb是一种跨膜黏液素, 研究发现其参与MAPK通路信号传递, VdMsb被敲除后大丽轮枝菌无法形成微菌核[71]。MAPK(Mitogen-activated protein kinase)相关基因与许多真菌微菌核或菌核形成的相关性被深入研究, 如大丽轮枝菌的VdHog1[72]、VdPbs2[73]、VMK1[4]; 与大丽轮枝菌类似, 核盘菌(Sclerotinia sclerotiorum)的Smk1[74]和Smk3[75]及绿僵菌(Nomuraea rileyi)的Mrhog1与Mrslt2[76]等也属于MAPK通路基因, 这些基因被敲除或被沉默后影响真菌微菌核或菌核的形成。大丽轮枝菌cerevisin基因被敲除后影响微菌核的形成, 进一步研究发现大丽轮枝菌分泌蛋白减少, 减少的分泌蛋白就包括VdASP F2[77], 当VdASP F2被敲除后, 大丽轮枝菌在外界环境压力下(低温或低营养)的微菌核形成明显延迟[78]。大丽轮枝菌压力胁迫调节子VdSkn7突变后影响大丽轮枝菌压力耐受、产微菌核及侵染植物等方面的能力[79]。富含谷氨酸蛋白VdGARP1被敲除后, 大丽轮枝菌微菌核形成延迟, 推测VdGARP1在大丽轮枝菌感受外界胁迫方面发挥着重要的作用[80]。
一些与生长发育相关的基因突变后也影响大丽轮枝菌微菌核的形成, 大丽轮枝菌疏水蛋白VDH1被发现与微菌核形成相关, 但VDH1被敲除后并不影响大丽轮枝菌产孢及致病能力, 分析其可能参与微菌核形成中菌丝的黏附过程[81-82]。此外一些其它基因如核糖体相关基因VdRACK1被敲除后影响大丽轮枝菌生长相关性状包括产微菌核能力[83]; 葡萄糖阻遏介导蛋白VdCYC8[84]、糖代谢调控蛋白VdSNF1[9]、尿嘧啶DNA糖基化酶VdUDG[85]及病程相关蛋白类似蛋白VdPR1[86]与VdPR3[87]也与微菌核形成相关, 相关基因被敲除后影响大丽轮枝菌微菌核的形成及致病力。VdRACK1属于Gbeta-like/RACK1类蛋白, 拥有WD40保守功能域, 该基因被敲除后影响大丽轮枝菌孢子形成与萌发、菌丝生长及产微菌核的能力, 同时也影响大丽轮枝菌对具有完整根系的棉花的侵染[88]。
3 展望从目前的研究结果来看, 黑色素DHN-melanin的合成决定了大丽轮枝菌能否形成完整成熟的微菌核, 同时微菌核形成相关的基因往往也与大丽轮枝菌致病力相关, 微菌核形成机理的研究有助于解析大丽轮枝菌致病分子机理。
此外, 大丽轮枝菌侵入钉结构的发现对于阐明大丽轮枝菌致病分子机理具有重要的意义, 特别是一些参与大丽轮枝菌与植物互作的效应因子正是从该侵染结构分泌, 随后进入植物细胞调控植物的免疫系统。但目前发现的大部分效应因子在植物表达后往往能增强植物的免疫反应, 提高了植物对真菌、细菌与病毒的抗性。效应因子激发植物免疫反应与大丽轮枝菌这种半活体营养型致病菌之间的关系并不清楚, 同时多个效应因子在植物中的靶标或者互作蛋白尚不清楚, 效应因子在大丽轮枝菌与植物早期互作过程中的作用也需进一步阐明。
目前的结果大部分只是对单个基因的研究, 未能系统的揭示大丽轮枝菌致病及微菌核形成的分子机理。在进一步的研究中, 大丽轮枝菌微菌核的形成机理及大丽轮枝菌效应蛋白作用机理将是重要研究方向。特别是近期的一项研究预测大丽轮枝菌中具有潜在效应因子可能的基因有181个[89], 这表明大丽轮枝菌中的效应蛋白还需要进一步的深入探索。
[1] |
Maruthachalam K, Klosterman SJ, Kang S, et al. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis[J]. Mol Biotechnol, 2011, 49(3): 209-221. DOI:10.1007/s12033-011-9392-8 |
[2] |
Fradin EF, Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused by V.dahliae and V.albo-atrum[J]. Mol Plant Pathol, 2006, 7(2): 71-86. DOI:10.1111/mpp.2006.7.issue-2 |
[3] |
Amyotte SG, Tan X, Pennerman K, et al. Transposable elements in phytopathogenic Verticillium spp.:insights into genome evolution and inter-and intra-specific diversification[J]. BMC Genomics, 2012, 13: 314. DOI:10.1186/1471-2164-13-314 |
[4] |
Rauyaree P, Ospina-Giraldo MD, Kang S, et al. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Curr Genet, 2005, 48(2): 109-116. DOI:10.1007/s00294-005-0586-0 |
[5] |
Xie C, Wang C, Wang X, et al. Proteomics-based analysis reveals that Verticillium dahliae toxin induces cell death by modifying the synthesis of host proteins[J]. Journal of General Plant Pathology, 2013, 79(5): 335-345. DOI:10.1007/s10327-013-0467-1 |
[6] |
Klosterman SJ, Subbarao KV, Kang S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens[J]. PLoS Pathog, 2011, 7(7): e1002137. DOI:10.1371/journal.ppat.1002137 |
[7] |
Liu SY, Chen JY, Wang JL, et al. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae[J]. Gene, 2013, 529(2): 307-316. DOI:10.1016/j.gene.2013.06.089 |
[8] |
Chen JY, Xiao HL, Gui YJ, et al. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium[J]. Front Microbiol, 2016, 7: 1709. |
[9] |
Tzima AK, Paplomatas EJ, Rauyaree P, et al. VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation[J]. Mol Plant Microbe Interact, 2011, 24(1): 129-142. DOI:10.1094/MPMI-09-09-0217 |
[10] |
Eboigbe L, Tzima AK, Paplomatas EJ, et al. The role of the beta-1, 6-endoglucanase gene vegB in physiology and virulence of Verticillium dahliae[J]. Phytopathologia Mediterranea, 2014, 53(1): 94-107. |
[11] |
Chen S, Su L, Chen J, et al. Cutinase:characteristics, preparation, and application[J]. Biotechnol Adv, 2013, 31(8): 1754-67. DOI:10.1016/j.biotechadv.2013.09.005 |
[12] |
Gui Y, Zhang W, Zhang D, et al. A Verticillium dahliae extracellular cutinase modulates plant immune responses[J]. Mol Plant Microbe Interact, 208, 31(2): 260-273. |
[13] |
Stergiopoulos I, de Wit P. Fungal effector proteins[J]. Annu Rev Phytopathol, 2009, 47: 233-263. DOI:10.1146/annurev.phyto.112408.132637 |
[14] |
de Jonge R, Bolton MD, Kombrink A, et al. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen[J]. Genome Res, 2013, 23(8): 1271-1282. DOI:10.1101/gr.152660.112 |
[15] |
de Jonge R, van Esse HP, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing[J]. Proc Natl Acad Sci USA, 2012, 109(13): 5110-5115. DOI:10.1073/pnas.1119623109 |
[16] |
Zhang Z, van Esse HP, van Damme M, et al. Ve1-mediated resistance against Verticillium does not involve a hypersensitive response in Arabidopsis[J]. Molecular Plant Pathology, 2013, 14(7): 719-727. DOI:10.1111/mpp.2013.14.issue-7 |
[17] |
Castroverde CDM, Nazar RN, Robb J. Verticillium Ave1 effector induces tomato defense gene expression independent of Ve1 protein[J]. Plant Signaling & Behavior, 2016, 11(11): e1245254. |
[18] |
Kombrink A, Rovenich H, Shi-Kunne X, et al. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts[J]. Molecular Plant Pathology, 2017, 18(4): 596-608. DOI:10.1111/mpp.2017.18.issue-4 |
[19] |
Zhang Y, Gao YH, Liang YB, et al. The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System[J]. Frontiers in Plant Science, 2017, 8: 1880. DOI:10.3389/fpls.2017.01880 |
[20] |
Liu W, Zeng H, Liu Z, et al. Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco[J]. Microbiol Res, 2014, 169(5-6): 476-482. DOI:10.1016/j.micres.2013.08.001 |
[21] |
Liu M, Khan NU, Wang N, et al. The protein elicitor PevD1 enhances resistance to pathogens and promotes growth in Arabidopsis[J]. Int J Biol Sci, 2016, 12(8): 931-943. DOI:10.7150/ijbs.15447 |
[22] |
Zhou R, Zhu T, Han L, et al. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2[J]. J Exp Bot, 2017, 68(13): 3427-3440. DOI:10.1093/jxb/erx192 |
[23] |
Liu T, Song T, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nat Commun, 2014, 5: 4686. |
[24] |
Zhang L, Ni H, Du X, et al. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections[J]. New Phytol, 2017, 215(1): 368-381. DOI:10.1111/nph.14537 |
[25] |
Wang JY, Cai Y, Gou JY, et al. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting[J]. Appl Environ Microbiol, 2004, 70(8): 4989-4995. DOI:10.1128/AEM.70.8.4989-4995.2004 |
[26] |
Yao Z, Rashid KY, Adam LR, et al. Verticillium dahliae's VdNEP acts both as a plant defence elicitor and a pathogenicity factor in the interaction with Helianthus annuus[J]. Canadian Journal of Plant Pathology, 2011, 33(3): 375-388. DOI:10.1080/07060661.2011.579173 |
[27] |
Santhanam P, Esse PV, Albert I, et al. Evidence for functional diversification within a fungal NEP1-like protein family[J]. Mol Plant Microbe Interact, 2013, 26(3): 278-286. DOI:10.1094/MPMI-09-12-0222-R |
[28] |
Zhou BJ, Jia PS, Gao F, et al. Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 964-975. DOI:10.1094/MPMI-12-11-0319 |
[29] |
Zhao YL, Zhou TT, Guo HS. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae[J]. PLoS Pathog, 2016, 12(7): e1005793. DOI:10.1371/journal.ppat.1005793 |
[30] |
Zhou TT, Zhao YL, Guo HS. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae[J]. PLoS Pathog, 2017, 13(3): e1006275. DOI:10.1371/journal.ppat.1006275 |
[31] |
Tzima A, Paplomatas EJ, Rauyaree P, et al. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2010, 47(5): 406-415. DOI:10.1016/j.fgb.2010.01.007 |
[32] |
Tzima AK, Paplomatas EJ, Tsitsigiannis DI, et al. The G protein beta subunit controls virulence and multiple growth-and development-related traits in Verticillium dahliae[J]. Fungal Genet Biol, 2012, 49(4): 271-283. DOI:10.1016/j.fgb.2012.02.005 |
[33] |
Wang FX, Ma YP, Yang CL, et al. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae[J]. Proteomics, 2011, 11(22): 4296-4309. DOI:10.1002/pmic.201100062 |
[34] |
Pantelides IS, Tjamos SE, Paplomatas EJ. Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae[J]. Molecular Plant Pathology, 2010, 11(2): 191-202. DOI:10.1111/mpp.2010.11.issue-2 |
[35] |
Deng S, Wang CY, Zhang X, et al. VdNUC-2, the Key Regulator of phosphate responsive signaling pathway, is required for Verticillium dahliae infection[J]. PLoS One, 2015, 10(12): e0145190. DOI:10.1371/journal.pone.0145190 |
[36] |
Santhanam P, Boshoven JC, Salas O, et al. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae[J]. Mol Plant Pathol, 2017, 18(3): 347-362. DOI:10.1111/mpp.12401 |
[37] |
Hoppenau CE, Tran V-T, Kusch H, et al. Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato[J]. Environ Exp Bot, 2014, 108: 14-22. DOI:10.1016/j.envexpbot.2013.12.015 |
[38] |
Qi X, Su X, Guo H, et al. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae[J]. Mol Plant Microbe Interact, 2016, 29(7): 545-559. DOI:10.1094/MPMI-03-16-0057-R |
[39] |
Timpner C, Braus-Stromeyer S, Tran V, et al. The Cpc1 regulator of the cross-pathway control of amino acid biosynthesis is required for pathogenicity of the vascular pathogen Verticillium longisporum[J]. Mol Plant Microbe Interact, 2013, 26(11): 1312-1324. DOI:10.1094/MPMI-06-13-0181-R |
[40] |
Van Twest SM, Grant SJ, Cucullo J, et al. Characterization of ATG8 autophagy gene homologs in Verticillium dahliae and Verticillium albo-atrum[J]. Phytopathology, 2011, 101(6): S251. |
[41] |
El Hadrami A, Islam MR, Adam LR, et al. A cupin domain-containing protein with a quercetinase activity(VdQase)regulates Verticillium dahliae's pathogenicity and contributes to counteracting host defenses[J]. Front Plant Sci, 2015, 6: 440. |
[42] |
Islam MR, Eihardami A, Adam LR, et al. A cupin domain containing protein(VdQase)is required for optimum virulence in Verticillium dahliae[J]. Canadian Journal of Plant Pathology, 2014, 36(2): 267-268. |
[43] |
Tian H, Zhou L, Guo W, et al. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 74: 21-31. DOI:10.1016/j.fgb.2014.11.003 |
[44] |
Qi X, Zhou S, Shang X, et al. VdSho1 Regulates Growth, Oxidant Adaptation and Virulence in Verticillium dahliae[J]. Journal of Phytopathology, 2016, 164(11-12): 1064-1074. DOI:10.1111/jph.2016.164.issue-11pt12 |
[45] |
Santhanam P, Thomma BP. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes[J]. Mol Plant Microbe Interact, 2013, 26(2): 249-256. DOI:10.1094/MPMI-08-12-0198-R |
[46] |
Fang Y, Xiong D, Tian L, et al. Functional characterization of two bZIP transcription factors in Verticillium dahliae[J]. Gene, 2017, 626: 386-394. DOI:10.1016/j.gene.2017.05.061 |
[47] |
Lopez-Escudero FJ, Roca JM, Valverde-Corredor A, et al. Correlation between virulence and morphological characteristics of microsclerotia of Verticillium dahliae isolates infecting olive[J]. Journal of Phytopathology, 2012, 160(7-8): 431-433. DOI:10.1111/jph.2012.160.issue-7-8 |
[48] |
Wheeler MH, Tolmsoff WJ, Meola S. Ultrastructure of melanin formation in Verticillium-Dahliae with(+)-scytalone as a biosynthetic intermediate[J]. Canadian Journal of Microbiology, 1976, 22(5): 702-711. DOI:10.1139/m76-103 |
[49] |
Griffiths DA. The fine structure of developing microsclerotia of Verticillium dahliae Kleb[J]. Archiv für Mikrobiologie, 1970, 74(3): 207-212. DOI:10.1007/BF00408881 |
[50] |
Brown MF, Wyllie TD. Ultrastructure of microsclerotia of Vertici-llium alboatrum[J]. Phytopathology, 1970, 60: 538-542. DOI:10.1094/Phyto-60-538 |
[51] |
Neumann MJ, Dobinson KF. Sequence tag analysis of gene expre-ssion during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2003, 38(1): 54-62. DOI:10.1016/S1087-1845(02)00507-8 |
[52] |
Fan R, Klosterman SJ, Wang C, et al. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 98: 1-11. DOI:10.1016/j.fgb.2016.11.003 |
[53] |
Xiong DG, Wang YL, Ma J, et al. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae[J]. BMC Genomics, 2014, 15: 324. DOI:10.1186/1471-2164-15-324 |
[54] |
Zhang T, Zhang BS, Hua CL, et al. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae[J]. Science China-Life Sciences, 2017, 60(8): 868-879. DOI:10.1007/s11427-017-9075-3 |
[55] |
Luo X, Mao H, Wei Y, et al. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Molecular Plant Pathology, 2016, 17(9): 1364-1381. DOI:10.1111/mpp.2016.17.issue-9 |
[56] |
Bell A, Puhalla J, Tolmsoff W, et al. Use of mutants to establish(+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae[J]. Canadian Journal of Microbiology, 1976, 22(6): 787-799. DOI:10.1139/m76-115 |
[57] |
Duressa D, Anchieta A, Chen D, et al. RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae[J]. BMC Genomics, 2013, 14: 607. DOI:10.1186/1471-2164-14-607 |
[58] |
Xiong DG, Wang YL, Tian LY, et al. MADS-Box Transcription Factor VdMcm1 Regulates Conidiation, Microsclerotia Formation, Pathogenicity, and Secondary Metabolism of Verticillium dahliae[J]. Frontiers in Microbiology, 2016, 7: 1192. |
[59] |
Sarmiento-Villamil JL, García-Pedrajas NE, Baeza-Montañez L, et al. The APSES transcription factor Vst1 is a key regulator of development in microsclerotium and resting mycelium producing Verticillium species[J]. Molecular Plant Pathology, 2016, 19(1): 59-76. |
[60] |
Xiong D, Wang Y, Tang C, et al. VdCrz1 is involved in microsclerotia formation and required for full virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 82: 201-212. DOI:10.1016/j.fgb.2015.07.011 |
[61] |
Tran VT, Braus-Stromeyer SA, Kusch H, et al. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots[J]. New Phytol, 2014, 202(2): 565-581. DOI:10.1111/nph.12671 |
[62] |
Papapostolou I, Georgiou CD. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi[J]. Appl Microbiol, 2010, 109(6): 1929-1936. DOI:10.1111/jam.2010.109.issue-6 |
[63] |
Liu J, Yin Y, Song Z, et al. NADH:flavin oxidoreductase/NADH oxidase and ROS regulate microsclerotium development in Nomuraea rileyi[J]. World J Microbiol Biotechnol, 2014, 30(7): 1927-1935. DOI:10.1007/s11274-014-1610-7 |
[64] |
Song Z, Yin Y, Jiang S, et al. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi[J]. BMC Genomics, 2013, 14(1): 411. DOI:10.1186/1471-2164-14-411 |
[65] |
Xiao X, Xie J, Cheng J, et al. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Mol Plant Microbe Interact, 2014, 27(1): 40-55. DOI:10.1094/MPMI-05-13-0145-R |
[66] |
Yu Y, Jiang D, Xie J, et al. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum[J]. PLoS One, 2012, 7(4): e34962. DOI:10.1371/journal.pone.0034962 |
[67] |
O'Rourke SM, Herskowitz I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis[J]. Molecular Biology of the Cell, 2004, 15(2): 532-542. DOI:10.1091/mbc.e03-07-0521 |
[68] |
Boisnard S, Ruprich-Robert G, Florent M, et al. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae[J]. Yeast, 2008, 25(11): 849-859. DOI:10.1002/yea.v25:11 |
[69] |
Song Z, Shen L, Yin Y, et al. Role of two Nomuraea rileyi transmembrane sensors Sho1p and Sln1p in adaptation to stress due to changing culture conditions during microsclerotia development[J]. World J Microbiol Biotechnol, 2015, 31(3): 477-485. DOI:10.1007/s11274-015-1801-x |
[70] |
Brewster JL, Devaloir T, Dwyer ND, et al. An osmosensing signal transduction pathway in yeast[J]. Science, 1993, 259(5102): 1760-1763. DOI:10.1126/science.7681220 |
[71] |
Tian L, Xu J, Zhou L, et al. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae[J]. Gene, 2014, 550(2): 238-244. DOI:10.1016/j.gene.2014.08.035 |
[72] |
Wang YL, Tian LY, Xiong DG, et al. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2016, 88: 13-23. DOI:10.1016/j.fgb.2016.01.011 |
[73] |
Tian LY, Wang YL, Yu J, et al. The mitogen-activated protein kinase kinase VdPbs2 of Verticillium dahliae regulates microsclerotia formation, stress response, and plant infection[J]. Frontiers in Microbiology, 2016, 7: 1532. |
[74] |
Chen C, Harel A, Gorovoits R, et al. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing[J]. Mol Plant Microbe Interact, 2004, 17(4): 404-413. DOI:10.1094/MPMI.2004.17.4.404 |
[75] |
Bashi ZD, Gyawali S, Bekkaoui D, et al. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion[J]. Can J Microbiol, 2016, 62(10): 836-850. DOI:10.1139/cjm-2016-0091 |
[76] |
Song ZY, Zhong Q, Yin YP, et al. The high osmotic response and cell wall integrity pathways cooperate to regulate morphology, microsclerotia development, and virulence in Metarhizium rileyi[J]. Scientific Reports, 2016, 6: 38765. DOI:10.1038/srep38765 |
[77] |
He XJ, Li XL, Li YZ. Disruption of Cerevisin via Agrobacterium tumefaciens-mediated transformation affects microsclerotia formation and virulence of Verticillium dahliae[J]. Plant Pathology, 2015, 64(5): 1157-1167. DOI:10.1111/ppa.2015.64.issue-5 |
[78] |
Xie C, Li Q, Yang X. Characterization of VdASP F2 secretory factor from Verticillium dahliae by a fast and easy gene knockout system[J]. Mol Plant Microbe Interact, 2017, 30(6): 444-454. DOI:10.1094/MPMI-01-17-0007-R |
[79] |
Tang C, Xiong D, Fang Y, et al. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae[J]. Fungal Genet Biol, 2017, 108: 26-35. DOI:10.1016/j.fgb.2017.09.002 |
[80] |
Gao F, Zhou BJ, Li GY, et al. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity[J]. PLoS One, 2010, 5(12): e15319. DOI:10.1371/journal.pone.0015319 |
[81] |
Klimes A, Dobinson KF. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae[J]. Fungal Genet Biol, 2006, 43(4): 283-294. DOI:10.1016/j.fgb.2005.12.006 |
[82] |
Klimes A, Amyotte SG, Grant S, et al. Microsclerotia development in Verticillium dahliae:Regulation and differential expression of the hydrophobin gene VDH1[J]. Fungal Genet Biol, 2008, 45(12): 1525-1532. DOI:10.1016/j.fgb.2008.09.014 |
[83] |
Wang L, Wu SM, Zhu Y, et al. Functional characterization of a novel jasmonate ZIM-domain interactor(NINJA)from upland cotton(Gossypium hirsutum)[J]. Plant Physiol Biochem, 2017, 112: 152-160. DOI:10.1016/j.plaphy.2017.01.005 |
[84] |
Li ZF, Liu YJ, Feng ZL, et al. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae[J]. PLoS One, 2015, 10(12): e0144020. DOI:10.1371/journal.pone.0144020 |
[85] |
Zhang YL, Mao JC, Huang JF, et al. A uracil-DNA glycosylase functions in spore development and pathogenicity of Verticillium dahliae[J]. Physiological and Molecular Plant Pathology, 2015, 92: 148-153. DOI:10.1016/j.pmpp.2015.05.001 |
[86] |
Zhang YL, Li ZF, Feng ZL, et al. Functional analysis of the pathogenicity-related gene VdPR1 in the vascular wilt fungus Verticillium dahliae[J]. PLoS One, 2016, 11(11): e0166000. DOI:10.1371/journal.pone.0166000 |
[87] |
Zhang YL, Li ZF, Feng ZL, et al. Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton[J]. Curr Genet, 2015, 61(4): 555-566. DOI:10.1007/s00294-015-0476-z |
[88] |
Yuan L, Su Y, Zhou S, et al. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae[J]. Fungal Genet Biol, 2017, 99: 52-61. DOI:10.1016/j.fgb.2017.01.003 |
[89] |
Sperschneider J, Gardiner DM, Dodds PN, et al. EffectorP:predicting fungal effector proteins from secretomes using machine learning[J]. New Phytol, 2016, 210(2): 743-761. DOI:10.1111/nph.13794 |