2. 中国科学院昆明动物研究所,昆明 650000
2. Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000
植物在整个发育时期都会受到生物和非生物胁迫。生物胁迫包括来自病原菌、真菌、病毒和卵菌的攻击。非生物胁迫包括干旱、土壤盐渍化、重金属、热、冷、辐射和氧化应激。适应这些压力和对各种环境胁迫的响应对于植物的生存和延续是关键的。许多转录因子家族如WRKY、AP2/ ERF和NAC都是植物所特有的,它们在植物的调节控制中起着重要而独特的作用[1]。植物所特有的WRKY转录因子是最大的转录因子家族之一,WRKY转录因子是一类DNA结合蛋白,主要存在于植物中,参与植物的各个生理过程,涉及生长,发育和自我应激信号传导或与不同的基因和转录因子交叉调节。这些WRKY转录因子的DNA结合结构域被命名为WRKY结构域,其具有不变的WRKYGQK序列和CX4-5CX22-23HXH锌指结构[2]。WRKY转录因子家族的第一个成员——SPF1是从甘薯中分离出来的[3]。在其他植物物种中,特别是模型植物-拟南芥,通过对其进行全基因组测序能够检测出更多的WRKY转录因子。当植物受到各种胁迫或防御信号时,一些WRKY转录因子的表达会被快速诱导,从而调控各种胁迫的网络途径。此外,WRKY转录因子的表达具有快速,瞬态和组织特异性的特点。全文总结了WRKY转录因子的结构特点和分类、植物受到生物和非生物胁迫时,WRKY转录因子的功能,以及WRKY转录因子相应各种胁迫时的调节网络;除此之外,还分析了WRKY转录因子参与植物激素信号转导和MAPK信号级联,以及WRKY转录因子所特有的自我调节。以期为未来WRKY转录因子的研究提供理论参考和思路。
1 WRKY转录因子的结构特点和分类WRKY转录因子包含的WRKY结构域,是具有60个氨基酸长的DNA结合结构域,特征在于N端具有一个高度保守的WRKYGQK核心基序[3-4]。Yamasaki等[5]确定来自拟南芥WRKY4蛋白的WRKY结构域由四链β折叠组成,具有由Cys / His残基形成的锌指结构。此外,在N末端β链中间的Gly残基具有疏水作用,并有助于β折叠结构的稳定性。含有WRKYGQK基序的β链与约6 bp区域接触,其大体上与W-盒(TTGACY)的长度一致。在一些WRKY转录因子中,WRKY结构域中的WRKY残基被WRRY,WSKY,WKRY,WVKY或WKKY基序所代替[6]。在水稻方面,WRKY家族拥有19个WRKY结构域的变体,其中WRKYGEK和WRKYGKK是最常见的两个变体[7]。其他变体包括WRICGQK、WRMCGQK、WKKYGQK、WIKYGQK、WKRYGQK、WSKYEQK和WRKYSEK[7]。锌指结构主要有两种类型:C2-H2(C-X4-5-C-X22-23-HXH)和C2-HC(C-X7-C-X23-HXC)[8]。
WRKY转录因子根据WRKY结构域的数目和锌指结构的类型可分为3类。具有两个WRKY域的属于第Ⅰ类,而具有一个WRKY域的属于第Ⅱ或第Ⅲ类。第Ⅰ和第Ⅱ类成员所具有的锌指结构为C2-H2(C-X4-5-CX22-23-H-X1-H),其中X可以是任何氨基酸。第Ⅲ类WRKY蛋白所含的锌指结构为C2-HC(C-X7-C-X23-H-X-C)[8]。该分类方法是根据蛋白质的结构特征进行分类,不包括WRKY基因家族的进化起源和基因重复。基于WRKY结构域的进化分析,保守域和内含子位置,Xie和Zhang[7]提出了另一种模型,将WRKY蛋白分为5类:Ⅰ类(IN末端和IC末端)、Ⅱa+Ⅱb类、Ⅱc类、Ⅱd+Ⅱe类和Ⅲ类。他们根据内含子的插入位置将WRKY转录因子分为两类[7]。第一类包括R型内含子WRKY,其剪接位点位于2 Gs的精氨酸密码子AGG之间。另一类包括V型内含子WRKY,其中剪接位点位于缬氨酸密码子前面。WRKY转录因子可以激活或抑制生理过程中的转录[6]。除了WRKY结构域和锌指结构外,大多数WRKY转录因子还具有核定位信号(Nuclear localization signals,NLS),丝氨酸/苏氨酸富集区,富含谷氨酰胺的区域,富含脯氨酸的区域,激酶结构域,TIR-NBS-LRR等结构。这些结构使WRKY转录因子拥有不同的转录调控功能[7]。
2 WRKY转录因子在植物生物胁迫中的作用在植物受到生物胁迫时,WRKY转录因子会通过激活水杨酸(Salicylic acid,SA),茉莉酸(Jasmonic acid,JA)和乙烯(ET)信号通路,来改变相关基因的转录水平[9],从而对不同的生物胁迫产生反应。经研究证明,WRKY转录因子在由几种病原体攻击的植物防御反应中起重要作用。棉花基因GhWRKY39-1和GhWRKY40在烟草中的过表达可调节茄科的抗性反应[10]。GhWRKY40还调节了植株中伤口诱导反应[11]。用禾谷镰刀菌和稻瘟病菌喷施生长2周的二穗短柄草幼苗,发现有15个BdWRKY基因的表达上调,而只用禾谷镰刀菌喷洒二穗短柄草幼苗时,发现有包括BdWRKY8/34/50/69/70在内的9个BdWRKY基因的表达上调[12]。在葡萄中,在遇到白腐病诱导的生物胁迫后,57%的WRKY基因(16个基因)的表达会发生改变[13]。通过对拟南芥WRKY8的生物功能调查表明:WRKY8可调节拟南芥对丁香假单胞菌和灰葡萄孢的敏感性[14]。进一步研究发现,WRKY8可调控脱落酸(Abscisic acid,ABA)和乙烯(ET)信号通路,在TMV-cg-拟南芥相互作用期间,介导ABA和ET信号之间的串扰,从而赋予TMC-cg抗性[15]。在敲除WRKY22的转基因水稻中发现,其对稻瘟病菌的感病性增加。而WRKY22基因的过表达则增加了抗病性,说明WRKY22是水稻抗稻瘟病正调控因子[16]。TaWRKY70在小麦高温苗木(HTSP)抗条锈菌的过程中起到一定作用,其在小麦中可诱导条锈病,其中可能激活SA和ET信号[17]。
大多数已知功能的WRKY转录因子是负调节因子,只有少数为具有正调节作用的调节因子[18-19]。在拟南芥中,AtWRKY38和AtWRKY62编码两种结构相似的Ⅲ类WRKY转录因子,对病原菌丁香假单胞菌的防御起到负调节作用。在AtWRKY38和AtWRKY62的单突变体及双突变体中,其抗病性均得到提高[18]。而AtWRKY38或AtWRKY62的过表达则降低了抗病性[18]。在AtWRKY48过表达的转基因植物中,其感病性增强;而在AtWRKY48功能丧失的突变体中,其对丁香假单胞菌的抗性增强[19]。这些结果表明,WRKY48对拟南芥丁香假单胞菌的基础抗性具有负调节作用。对抗病原体具有正调控作用的WRKY基因可直接或间接激活抗性基因的表达[20]。WRKY转录因子还参与促分裂原活化蛋白激酶(MAPK)信号通路,其涉及应激诱导的防御反应[21]。在拟南芥中,AtWRKY22和AtWRKY29是MAPK介导的针对病原体的植物防御反应的重要组成部分。AtWRKY29在拟南芥中的瞬时表达也增强了其对根肿菌的抗性[21]。水稻转录因子OsWRKY45的表达下调可降低SA对真菌和细菌病原体抗性的诱导,而其过表达对两种病原体都具有强烈的抗性,表明其对SA诱导的抗病性具有重要作用[22]。
3 WRKY转录因子在植物非生物胁迫中的作用非生物胁迫,包括热胁迫或逆温、土壤盐分、氧化应激、干旱和营养缺乏对植物的生理和生化过程产生不利影响[23]。这些胁迫有时也会同时发生,不利于植物生长。这种非生物胁迫在一定程度上也会诱导WRKY转录因子表达上调或下调并引发信号级联网络,以提高植物的胁迫耐受性[23-24]。
3.1 热应激热应激被认为是主要的非生物胁迫。极端高温或低温都会导致广泛的农业经济损失。因此,制定保护植物细胞不受温度剧烈变化造成损害的策略对于提高农业生产是必要的[25-26]。植物在遇到热胁迫时,WRKY转录因子通过调控相关基因的表达,帮助植物抵抗温度的变化。在拟南芥中,高温处理可抑制AtWRKY33的表达,也可诱导AtWRKY25和AtWRKY26的表达[27]。AtWRKY25和AtWRKY26的组成型过表达增强了抗热应激[27]。拟南芥AtWRKY39是第Ⅱ类WRKY蛋白质的成员,并对多种胁迫作出反应[28]。热处理诱导AtWRKY39转录因子转录的同时,SA和JA信号通路正向共调节AtWRKY39[28]。此外,WRKY39过表达可使植物的耐热性增强[28]。TaWRKY70不仅参与小麦高温苗木对条锈菌的抗性,还可诱导小麦条锈病的发生,其中SA和ET信号可能被激活[17]。当小麦遇到高温时,TaWRKY70的转录物显着增加,且在用乙烯,水杨酸和冷(4℃)胁迫处理的植物中增加,但是在用茉莉酸甲酯(MeJA)和热(40℃)胁迫处理的植物中则下降。TaWRKY70的沉默会导致植株对小麦条锈病(Pst)的敏感性增高[17]。此外,TaWRKY33转基因株系的耐热性也大大增强[29]。
3.2 盐胁迫干旱经常会引起土壤盐分析出,从而导致渗透胁迫。AtWRKY25和AtWRKY33双突变体对NaCl具有高度敏感性,其任一基因的过表达都会赋予NaCl胁迫耐受性[27]。同样地,菊花中的WRKY基因-DgWRKY1或DgWRKY3的过表达也提高了其的耐盐性。在DgWRKY1或DgWRKY3过表达的转基因烟草植物中,盐胁迫引起的过氧化氢(H2O2)和丙二醛的积累会随过氧化物歧化酶(Superoxide dismutase,SOD),过氧化物酶(Peroxidase,POD)和过氧化氢酶(Catalase,CAT)等抗氧化酶活性的降低而减少[30]。类似地,在OsWRKY45和OsWRKY72过表达的转基因水稻植物中,其对干旱和盐胁迫的耐受性也大大增加[31-32]。当OsWRKY11转录因子的cDNA与水稻HSP101的启动子融合时,转基因株系显示出明显的耐热耐旱性,如植物绿色部分叶片枯萎较慢和存活率较高[33]。TaWRKY10是来自小麦的WRKY基因,其被引入并在烟草中过量表达时,烟草的干旱和盐胁迫耐受性显著增强。通过调节渗透平衡和胁迫相关基因的转录,TaWRKY10被认为是干旱和盐胁迫下的主要调节因子。当转基因品系受到干旱和盐胁迫时,脯氨酸和可溶性糖含量增加,MDA含量维持在较低水平[32]。BcWRKY46和HvWRKY38在拟南芥中组成型过表达时,赋予转基因植物更强的干旱和盐胁迫耐受性[34-35]。在拟南芥中ZmWRKY23的组成型表达也增强了其对盐胁迫的耐受性[36]。GhWRKY68可以通过调节ABA含量和增强ABA相关基因的转录水平来介导盐和干旱反应。
3.3 氧化应激氧化应激是各种其他胁迫引起的最严重的胁迫之一[37]。植物中主要有4种类型的活性氧:单线态氧(O2),羟自由基(OH),超氧阴离子(O2)和过氧化氢H2O2。在拟南芥中,WRKY6,WRKY8,WRKY22,WRKY30,WRKY39,WRKY48,WRKY53,WRKY75等WRKY转录因子都响应于H2O2胁迫而上调。Davletova等[38]的研究显示,拟南芥胞浆H2O2清除酶抗坏血酸过氧化物酶1(APX1)在轻度胁迫过程中起到保护叶绿体的作用。在使用Zat12敲除拟南芥植物H2O2的情况下,研究其与Zat7,WRKY25和APX之间的表达相关性,和在未诱导H2O2的情况下,研究Zat7,WRKY25和APX的表达,表明Zat12在这三个基因的氧化应激反应中的必要性[39]。丝裂原活化蛋白激酶激酶激酶(MEKK1)可以直接与WRKY53相互作用,调节参与抗氧化防御的蛋白质如CAT1,CAT2和CAT3的表达[40]。AtWRKY53过表达株系也对干旱胁迫具有敏感性。AtWRKY53的活化表达通过减少保卫细胞中的H2O2含量来抑制气孔闭合。AtWRKY53可以直接与QQS启动子序列结合,从而导致淀粉代谢增强[37]。AtWRKY8通过与MAPKKKα-MEK2-WIPK信号级联的下游基因相互作用,诱导对致病疫霉的抗性,从而增加H2O2的积累并最终诱导植物细胞凋亡[41]。在干旱,盐,脱落酸和H2O2胁迫时,由GhWRKY68启动子驱动的b-葡糖苷酸酶活性得到提高[42]。GhWRKY68过表达植物在干旱和盐胁迫时,对氧化应激的耐受性降低,这与活性氧(Reactive oxy gen species,ROS)的积累,酶活性的降低,MDA含量的升高和ROS相关基因表达的改变相关[42]。
4 WRKY转录因子在响应胁迫时的调控网络在植物生长发育过程中,许多生长调节剂参与信号转导网络的应用。WRKY转录因子是这种信号网络中的新兴参与者。WRKY转录因子,其下游靶基因和上游调节剂之间的相互作用和交互作用构成了复杂的WRKY转录因子调控网络,这是研究界的新兴领域[43-45]。
4.1 WRKY转录因子的自调控两个靶基因启动子和WRKY转录因子启动子都存在W盒。WRKY转录因子通过自我调节调控其对各种压力的防御反应,其通过识别和结合本身目标基因中的W-box或其他WRKY转录因子启动子来实现不同WRKY转录因子之间的串扰[44]。经研究表明,石斛兰中的PcWRKY1可以与其启动子区域中的W-box结合,也可与PcWRKY3启动子区域中的W-box结合[46]。具有相同结构的AtWRKY18,AtWRKY40和AtWRKY60在物理和功能上具有相互作用,因为它们在其N端中都具有富含亮氨酸的重复[47]。在野生型拟南芥中,ABA可诱导AtWRKY60表达,但在AtWRKY18和AtWRKY40突变体中不表达,表明WRKY60可能是ABA信号通路中WRKY18 / WRKY40的直接靶基因[14]。AtWRKY25,AtWRKY26和AtWRKY33也参与了热诱导反应的调节[28]。AtWRKY25与AtWRKY26和AtWRKY33在耐热胁迫的调节中相互作用。AtWRKY33的组成型表达通过对自身活动的负反馈增强了对热应激的抵抗力[27]。
4.2 WRKY转录因子在MAPK信号级联中的作用丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信号级联存在于所有真核生物中,并在植物中ABA依赖性防御反应的下游信号传导中起作用[48]。它还参与了对生长发育和多种非生物和生物胁迫反应的调控[49]。MAPK信号级联通过多种磷酸化反应将上游受体与下游转录因子连接[50-51]。在N末端区域含有保守基序的Ⅰ组WRKY转录因子也被MAPK依赖性磷酸化活化,强调其在植物免疫中的重要性[51]。在拟南芥中,转录因子WRKY33在不存在病原体感染的情况下与MAP激酶4(MPK4)形成MAMP或PAMP复合物[52]。该复合物取决于MPK4底物MKS1,前者会由于病原体感染而被激活并磷酸化。随后,核内复合物MPK4-MKS1-WRKY33被破坏,MKS1和AtWRKY33被释放。AtWRKY33然后激活编码抗微生物复合物合成所需酶的PAD3的表达[52]。此外,AtWRKY22和AtWRKY29是MAPK介导的对细菌和真菌病原体的抗性的重要组成部分。AtWRKY29同源基因在拟南芥叶中的瞬时表达,赋予其对病原体的抗性[53]。AtWRKY29同源物AtWRKY22可以识别并结合与AtWRKY29相同的启动子,并赋予相似的功能[21]。另一个例子是OsWRKY30,它通过MAPK磷酸化级联增强了水稻抗旱性[54]。
4.3 WRKY TFs参与植物激素信号转导WRKY转录因子在SA和ABA介导的信号通路中起关键作用[55]。AtWRKY39可被SA或甲基茉莉酸(MeJA)诱导,并协同参与SA和JA信号通路[56]。AtWRKY38或AtWRKY62的过表达,可抑制SA诱导的防御相关基因AtPR1的表达,从而降低植物的抗病性[57]。OsWRKY45在SA介导的防御反应中是关键的,抑制其表达将严重损害SA介导的对苯并噻二唑的抗性,而其过表达则使水稻的抗性显著增强[58]。SA可诱导PtrWRKY89过表达,从而加速PR蛋白的表达,提高对杨树黑斑病的抗性。综上所述,WRKY转录因子在SA防御信号通路中具有重要作用[59]。
脱落酸也是一种植物激素,在整合各种应激信号和控制下游应激反应方面发挥重要作用。一些WRKY转录因子也参与ABA介导的应激反应中的信号通路。LtWRKY21激活ABA诱导型基因HVA22的启动子,并与VP1和ABI5协同互作使其表达上调[60]。ChIP测定表明,WRKY57可以直接结合反应性干燥素29A(RD29A)和9-顺式环氧类胡萝卜素双加氧酶3(NCED3)启动子的W-box,并启动基因表达[61]。AtWRKY40结合多个ABA诱导型基因启动子的W-box,如AtABF4、AtABI4、AtABI5、AtDREB1A、AtMYB2和AtRAB18,以抑制其表达[62]。在拟南芥ABA信号通路中,WRKY18,WRKY40和WRKY60通过与ABI4和ABI5相互作用来调控下游基因表达。其中WRKY40是负调节因子,WRKY18抑制了WRKY40诱导ABI4和ABI5的转录,而WRKY60对WRKY40具有拮抗作用[62]。在冷应激和外源性脱落酸处理中,CsWRKY46基因表达上调,但CsWRKY46仅在细胞核中表达,并与ABI5启动子中的W-盒相互作用。而CsWRKY46过表达的转基因拟南芥在冷胁迫时具有较高的幼苗存活率,种子萌发期间对ABA也具有较高的敏感性[63]。CmWRKY1是从菊花中分离出来的WRKY转录因子家族成员,通过ABA介导途径在抗旱反应中起重要作用[64]。此外,转基因植物表现出抑制ABA负调控的基因表达水平,如PP2C,ABI1和ABI2,以及激活ABA正调控的基因表达水平[64]。
4.4 其他调控网络IId类WRKY转录因子含有CAT结合结构域[65],表明IId类WRKY转录因子可能受CaM和Ga2+调控[66]。类似的CAT结合结构域也存在于拟南芥的十几个WRKY转录因子中,其也被CaM结合[66]。一组高度保守的调节蛋白14-3-3存在于所有真核生物中,通过与靶基因的相互作用,通常以磷酸化依赖性方式调节多种细胞生理事件。包括BZR1(油菜素类固醇的转录因子),抑制苗生长(Repression of shoot growth,RSG)和丝氨酸乙酰转移酶(Serine acetyltransferase,SAT)在内的300种拟南芥WRKY转录因子都是14-3-3蛋白的靶基因[67-69]。在拟南芥WRKY转录因子和14-3-3蛋白之间的相互作用中,应激诱导的信号级联中分子的磷酸化是必需的[70]。由于14-3-3蛋白质二聚化,每个14-3-3二聚体可以结合两个蛋白质配体,磷酸化配体和其他未磷酸化的配体都通过与14-3-3二聚体的相互作用而接近。具有磷酸化结合位点的WRKY转录因子间接地与其他蛋白质形成复合物,从而参与许多细胞反应。AtWRKY6参与了植物衰老和低磷酸胁迫反应的调控[71-72]。AtWRKY38和AtWRKY62与组蛋白脱乙酰酶19(HDA19)的相互作用,可以通过维持组蛋白尾部的乙酰基水平来调控植物对非生物胁迫的基础防御反应[18]。除了WRKY转录因子之外,还有其他转录因子以其他方式响应应激反应。质膜定位的NTL6蛋白可以转位到细胞核调控目标基因如miR(COR15a)和PR基因[73]。
5 展望WRKYs是高等植物中最大的转录因子家族(TFs)之一,在植物对生物和非生物胁迫的反应中起关键作用。现已发现的WRKY转录因子是否都对植物的生理存在作用,其功能是否存在重复,以及WRKY转录因子自我调节模式和涉及WRKY转录因子的信号传导途径之间的串扰机制尚不清楚,仍需进一步的研究证实和完善。而基因组和转录组学的研究有助于了解不同植物中WRKY转录因子的整个基因组学,有助于揭示WRKR转录因子在植物胁迫反应中的作用方式。此外,在不久的将来探索越来越多的信息时,与WRKY转录因子及其目标以及其他转录因子相结合的协同应对机制将更为有趣。
[1] |
Jiang Y, Zeng B, Zhao HN, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. J Integr Plant Biol, 2012, 54(9): 616-630. DOI:10.1111/j.1744-7909.2012.01149.x |
[2] |
Bakshi M, Oelmüller R. WRKY transcription factors[J]. Plant Signaling & Behavior, 2014, 9(2): 247-258. |
[3] |
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular Genetics and Genomics, 1994, 244(6): 563-571. |
[4] |
Rushton, Paul J, Somssich, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. DOI:10.1016/j.tplants.2010.02.006 |
[5] |
Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of an Arabidopsis WRKY DNA binding domain[J]. Plant Cell, 2005, 17(3): 944-956. DOI:10.1105/tpc.104.026435 |
[6] |
Xie Z, Zhang ZL, Zou X, et al. Annotations and functional analyses of the rice WRKY gene super family reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137: 176-189. DOI:10.1104/pp.104.054312 |
[7] |
Zhang Y, Wang L. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1): 1-12. DOI:10.1186/1471-2148-5-1 |
[8] |
Li H, Yan X, Yu X, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1, and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010, 232(6): 1325-1337. DOI:10.1007/s00425-010-1258-y |
[9] |
Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128. DOI:10.1016/j.bbagrm.2011.09.002 |
[10] |
Shi W, Hao L, Li J, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports, 2014, 33(3): 483-498. DOI:10.1007/s00299-013-1548-5 |
[11] |
Wang X, Yan Y, Li Y, et al. GhWRKY40, a Multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One, 2014, 9(4): e93577. DOI:10.1371/journal.pone.0093577 |
[12] |
Wen F, Zhu H, Li P, et al. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon[J]. DNA Research, 2014, 21(3): 327-339. DOI:10.1093/dnares/dst060 |
[13] |
Zhang Y, Feng JC. Identification and characterization of the grape WRKY family[J]. Biomed Research International, 2014, 2014. |
[14] |
Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact, 2010, 23: 558-565. DOI:10.1094/MPMI-23-5-0558 |
[15] |
Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110(21): 1963-1971. DOI:10.1073/pnas.1221347110 |
[16] |
Cheng HT, Wang SP. WRKY-Type transcription factors:a significant factor in rice-pathogen interactions[J]. Scientia Sinica, 2014, 44(8): 784-793. DOI:10.1360/052014-97 |
[17] |
Wang J, Tao F, An F, et al. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Mol Plant Pathol, 2016, 18(5): 649-661. |
[18] |
Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9): 2357-2371. DOI:10.1105/tpc.107.055566 |
[19] |
Deng H, Xi ng, Zi B, et al. Stress-and pathogen-induced arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3): 459-470. DOI:10.1093/mp/ssn020 |
[20] |
Hwang KF, Chang CC. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell, 2001, 13(7): 1527-1540. DOI:10.1105/tpc.13.7.1527 |
[21] |
Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875): 977-983. DOI:10.1038/415977a |
[22] |
Akira N, Setsuko F, Shingo G, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice[J]. BMC Plant Biology, 2013, 13(1): 150-160. DOI:10.1186/1471-2229-13-150 |
[23] |
Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress:current understanding and future directions[J]. Frontiers in Plant Science, 2016, 7: 1029. |
[24] |
Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:Key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1): 2-11. DOI:10.1111/pbi.2011.10.issue-1 |
[25] |
Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:Achievements and challenges[J]. Plant Science, 2013, 205(5): 38-47. |
[26] |
Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017, 22(1): 53-65. DOI:10.1016/j.tplants.2016.08.015 |
[27] |
Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6): 1237-1252. DOI:10.1007/s00425-011-1375-2 |
[28] |
Li S, Xiang Z, Chen L, et al. Functional characterization of Arabidopsis thaliana, WRKY39 in heat stress[J]. Molecules and Cells, 2010, 29(5): 475-483. DOI:10.1007/s10059-010-0059-2 |
[29] |
He GH, Xu JY, Wang YX, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1): 116-131. DOI:10.1186/s12870-016-0806-4 |
[30] |
Liu QL, Zhong M, Li S, et al. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, intobacco enhances tolerance to salt stress[J]. Plant Physiol Biochem Ppb, 2013, 69(8): 27-33. |
[31] |
Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45, enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental & Experimental Botany, 2009, 65(1): 35-47. |
[32] |
Yu S, Ligang C, Liping Z, et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis[J]. Journal of Biosciences, 2010, 35(3): 459-471. DOI:10.1007/s12038-010-0051-1 |
[33] |
Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1): 21-30. DOI:10.1007/s00299-008-0614-x |
[34] |
Wang C, Deng P, Chen L, et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2013, 8(6): e65120. DOI:10.1371/journal.pone.0065120 |
[35] |
Wang F, Hou X, Tang J, et al. A novel cold-inducible gene from Pak-choi(Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco[J]. Mol Biol Rep, 2012, 39(4): 4553-4564. DOI:10.1007/s11033-011-1245-9 |
[36] |
Jiang WB, Yu DQ. Arabidopsis WRKY2 transcription factor may be involved in osmotic stress response[J]. Acta Botanica Yunnanica, 2009, 31(5): 427-432. |
[37] |
Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Reports, 2015, 34(8): 1295-1306. DOI:10.1007/s00299-015-1787-8 |
[38] |
Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell, 2005, 17(1): 268-281. DOI:10.1105/tpc.104.026971 |
[39] |
Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. J Biol Chem, 2004, 279: 11736-11743. DOI:10.1074/jbc.M313350200 |
[40] |
Ying M, Laun T M, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Molecular Biology, 2007, 65(1): 63-76. |
[41] |
Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J]. Molecular plant-microbe interactions:MPMI, 2012, 25(12): 1639. DOI:10.1094/MPMI-11-11-0293 |
[42] |
Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(3): e0120646. DOI:10.1371/journal.pone.0120646 |
[43] |
Berri S, Abbruscato P, Faivre-Rampant O, et al. Characterization of WRKY co-regulatory networks in rice and Arabidopsis[J]. BMC Plant Biology, 2009, 9(1): 120-141. DOI:10.1186/1471-2229-9-120 |
[44] |
Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53, during leaf senescence of Arabidopsis thaliana[J]. European Journal of Cell Biology, 2010, 89(2-3): 133-137. DOI:10.1016/j.ejcb.2009.10.014 |
[45] |
Banerjee A, Roychoudhury A. WRKY proteins:signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015, 807560. |
[46] |
Turck F, Zhou A, Somssich I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J]. Plant Cell, 2004, 16(10): 2573-2585. DOI:10.1105/tpc.104.024810 |
[47] |
Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5): 1310-1326. DOI:10.1105/tpc.105.037523 |
[48] |
De ZA, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 2016, 21(8): 677-685. DOI:10.1016/j.tplants.2016.04.004 |
[49] |
Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence[J]. Curr Opin Plant Biol, 2009, 12(4): 421-426. DOI:10.1016/j.pbi.2009.06.008 |
[50] |
Fiil BK, Petersen K, Petersen M, et al. Gene regulation by MAP kinase cascades[J]. Curr Opin Plant Biol, 2009, 12(5): 615-621. DOI:10.1016/j.pbi.2009.07.017 |
[51] |
Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity[J]. Curr Opin Plant Biol, 2012, 15(4): 431-437. DOI:10.1016/j.pbi.2012.02.003 |
[52] |
Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27(16): 2214-2221. DOI:10.1038/emboj.2008.147 |
[53] |
Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2(Bcl-2)-associated athanogene 7(BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29[J]. New Phytologist, 2016, 214(2): 695-705. |
[54] |
Danquah A, De ZA, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnology Advances, 2014, 32(1): 40-52. DOI:10.1016/j.biotechadv.2013.09.006 |
[55] |
Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51: 21-37. DOI:10.1023/A:1020780022549 |
[56] |
Li S, Zhou X, Chen L, et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J]. Mol Cells, 2010, 29: 475-483. DOI:10.1007/s10059-010-0059-2 |
[57] |
Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20: 2357-2371. DOI:10.1105/tpc.107.055566 |
[58] |
Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19: 2064-2076. DOI:10.1105/tpc.106.046250 |
[59] |
Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid-and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26: 230-245. DOI:10.1105/tpc.113.117838 |
[60] |
Zou X, Seemann JR, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway[J]. J Biol Chem, 2004, 279: 55770-55779. DOI:10.1074/jbc.M408536200 |
[61] |
Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Mol Plant, 2012, 5: 1375-1388. DOI:10.1093/mp/sss080 |
[62] |
Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22: 1909-1935. DOI:10.1105/tpc.110.073874 |
[63] |
Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiol Biochem, 2016, 108: 478-487. DOI:10.1016/j.plaphy.2016.08.013 |
[64] |
Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11: e0150572. DOI:10.1371/journal.pone.0150572 |
[65] |
Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2): 287-300. DOI:10.1093/mp/sst026 |
[66] |
Chan YP, Ju HL, Jae HY, et al. WRKY group IId transcription factors interact with calmodulin[J]. Febs Letters, 2005, 579(6): 1545-1550. DOI:10.1016/j.febslet.2005.01.057 |
[67] |
Ishida S, Fukazawa J, Yuasa T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10): 2641-2651. DOI:10.1105/tpc.104.024604 |
[68] |
Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2): 249-259. DOI:10.1016/j.cell.2004.11.044 |
[69] |
Kumaran S, Yi H, Krishnan HB, et al. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions[J]. J Biol Chem, 2009, 284(15): 10268-10275. DOI:10.1074/jbc.M900154200 |
[70] |
Shen YH, Godlewski J, Bronisz A, et al. Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding[J]. Mol Biol Cell, 2003, 14(11): 4721-4733. DOI:10.1091/mbc.E02-12-0821 |
[71] |
Arulpragasam A, Magno AL, Ingley E, et al. The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling[J]. Biochemical Journal, 2012, 441(3): 995-1006. DOI:10.1042/BJ20111277 |
[72] |
Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2): 287-300. DOI:10.1093/mp/sst026 |
[73] |
Seo PJ. Recent advances in plant membrane-bound transcription factor research:Emphasis on intracellular movement[J]. J Integr Plant Biol, 2014, 56(4): 334-342. DOI:10.1111/jipb.v56.4 |