微生物通过监测胞外信号分子的浓度来感知群体密度的变化,当其达到某一临界密度值,启动目标基因的表达,协调群体行为,即群体感应(Quorum sensing,QS)。在QS系统中,细菌合成、分泌、监测的物质,即群体感应信号分子,或称为自诱导剂(Auto-inducers,AIs)[1]。20世纪80年代研究发现,海洋细菌费氏弧菌(Vibrio fischeri)可以通过群体感应来调节自身发光现象,这是人们首次发现的群体感应现象[2]。群体感应与许多微生物生物学功能的实现密切相关,包括生物发光、共生现象、生物膜形成、抗生素合成、群体移动性、质粒转移、孢子形成及基因交换等[3-4]。
介导微生物群体感应的化学信号分子主要分为3类:(1)在革兰氏阴性细菌中,信号分子多为脂肪酸类的衍生物,如酰基高丝氨酸内酯类物质(N-acyl homoserine lactones,AHLs)、被简称为DSF的顺式-11-甲基-2-十二碳烯酸(cis-11-Methyl-2-dodecenoic acid)等,其中,AHLs类物质的研究最为广泛且深入。(2)革兰氏阳性菌的信号分子多为寡肽(Auto inducing peptide,AIP)。(3)除了以上几种信号分子,介导微生物QS调节的信号分子还包括自诱导剂AI-2、2-庚基-3-羟基-4(1H)-喹诺酮(PQS)、3-羟基-棕榈酸甲酯(3-OH-PAME)、二烷基间苯二酚(DARs)[5]、α-吡喃酮[6]等。
通过抑制信号分子的合成、积累、监测,或对信号分子进行酶降解或修饰的机制来干扰群体感应系统,即群体感应淬灭(Quorum quenching,QQ)。群体感应淬灭不仅可以通过相应的降解酶来实现,也可以通过物理条件的改变来实现。研究发现,AHLs在碱性条件下会出现高丝氨酸内酯环结构被破坏的现象,失去QS信号分子活性,且随着pH值的增大和AHLs酰基侧链长度的减少,破坏程度加深[7]。能够降解信号分子,使其浓度低于临界值,抑制病原菌相关毒力因子表达的酶,即群体感应淬灭酶(Quorum quenching enzymes)。在不同生物体包括细菌、酵母菌和真核生物中均已发现群体感应淬灭酶。在肺炎克雷伯杆菌(Klebsiella pneumoniae)中发现的AHLs降解酶AhlK,能够将高丝氨酸内酯的内酯键打开,使其失去信号分子活性[8]。邱健等[9]首次筛选到一株具有降解AHLs活性的酵母菌,经鉴定为红冬孢酵母菌(Rhodosporidium toruloides),此菌产生的降解酶对短中长链AHLs均具有较好的降解效果,即该酶底物谱较为广泛,经鉴定此酶为AHLs内酯酶[10]。但是,关于编码此酶的基因,尚未有详细报道。Bar-Rogovsky等[11]报道,广泛存在于哺乳动物组织中的对氧磷酶(PONs)能有效水解AHLs。迄今为止,已报道的信号分子降解酶大多是在细菌中发现。本文重点阐述了微生物群体感应淬灭酶研究现状,旨为今后发展新型绿色安全病害防控措施提供关键理论和技术支撑。
1 细菌信号分子降解酶的研究 1.1 AHLs淬灭酶20世纪80年代,首次在革兰氏阴性菌海洋细菌费氏弧菌(Vibrio fischeri)中发现AHLs信号分子[12],在此之后,多种不同结构的AHLs陆续被发现并报道。作为革兰氏阴性菌的主要信号分子,大多数AHLs具有相同的高丝氨酸内酯环结构且都具有酰基侧链,但其酰基侧链长度、饱和度存在差异。除此之外,还存在几种结构特殊的AHLs,如N-羧化的AHLs[13]、肉桂酰基—高丝氨酸内酯[14]、支链异戊酰基-高丝氨酸内酯[15]、香豆酰基-高丝氨酸内酯[16]。但是,关于这几类特殊结构AHLs降解酶的研究报道较少。
自2000年首次在芽孢杆菌(Bacillus cereus)分离出AHLs内酯酶[17],在争论贪噬菌(Variovorax paradoxus)分离出AHLs酰胺酶[18]以来,许多关于AHLs降解酶的报道相继出现。根据AHLs淬灭酶催化机制,将其分为3类:AHLs内酯酶、AHLs酰胺酶和氧化还原酶。已筛选出的AHLs降解酶大多属于AHLs内酯酶和AHLs酰胺酶。
1.1.1 AHLs内酯酶由aiiA基因编码的AiiA酶,是第一种被发现的群体感应淬灭酶,经鉴定此酶为AHLs内酯酶[17]。除此之外,在其他一些细菌中也发现了AHLs内酯酶。例如,在节杆菌(Arthrobacter sp.)中发现的AhlD酶[8],在土壤芽孢杆菌(Geobacillus kaustophilus)中发现的GKL酶[19]以及近期在动性球菌(Planococcus sp.)中发现的AidP酶[20]等。各内酯酶的系统进化关系,如图 1所示。
目前发现的AHLs内酯酶有金属β内酰胺酶、α/β水解酶、对氧磷酶(PONs)、糖基水解酶和酰胺水解酶(图 1)。AHLs内酯酶大多属于金属β内酰胺酶,此类酶具有一个高度保守的的Zn2+结合域HXHXDH,Zn2+对内酯酶活性具有决定性作用,但不同内酯酶Zn2+结合区域有所不同[17]。α/β水解酶是一类结构上相关,具有多种不同催化功能的酶,这类酶有两个共同特征:一个亲核酸性组氨酸催化三分子和一个序列为Gly-X-Nuc-X-Gly的亲核基团,这两个区域对AHL降解活性至关重要[33]。对氧磷酶(PONs)发现于哺乳动物组织中,对氧磷酶家族具有六叶螺旋桨折叠结构及Ca2+催化位点[36]。
1.1.2 AHLs酰胺酶AHLs酰胺酶破坏AHLs酰基链的酰胺键,使高丝氨酸内酯环和酰基侧链分离生成脂肪酸和高丝氨酸内酯。2000年Leadbetter & Greenberg[18]在争论贪噬菌(Variovorax paradoxus)中首次发现AHLs酰胺酶。除了在细菌中发现AHL酰胺酶以外,在放线菌和淡水藻类中也有AHLs酰胺酶的发现,Park等[37]在放线菌链霉菌(Streptomyces sp.)中发现酰胺酶AhlM,Romero等[38]在鱼腥藻属(Anabaena sp.)中发现由基因all3924编码的酰基转移酶AiiC,这种藻类的细胞原液对长链AHLs具有较好的降解效果。其他AHLs酰胺酶,见表 1。
目前已经发现的AHLs酰胺酶,绝大部分都属于N末端亲核(Ntn)水解酶。这类酶具有一个保守区域,该区域包含一个α亚单位和一个β亚单位。β亚单位中熟化和催化作用所需要的N末端亲核在AHLs酰基转移酶中是高度保守的。定点突变显示区域中保守的甘氨酸-丝氨酸对AHLs酰基转移酶活性至关重要[41]。
研究表明,在制药工业中被广泛利用的青霉素V酰基转移酶(PVAs)表现出降解长链AHLs的底物特异性。PVAs属于Ntn水解酶超家族。外源性添加这些酶到铜绿假单胞菌(Pseudomonas aeruginosa)中大大减少了弹性蛋白酶和绿脓菌素的生产和生物膜形成,并增加了在急性感染的昆虫模型中的存活率[49]。
1.1.3 氧化还原酶来自芽孢杆菌属(Bacillus sp.)的细胞色素P450单加氧酶CYP102A1(P450BM-3),能够催化氧化AHLs及其内酯分解产物,AHLs氧化产物仍然具有信号分子活性,但是其活性显着低于母体化合物[50]。在红串红球菌(Rhodococcus erythropolis)中发现氧化还原酶,其催化3-氧代-C(8-14)-HSLs还原成相应的3-羟基-HSL,从而使信号分子失活,此菌也可以还原化合物N-(3-氧代-6-苯基己酰基)高丝氨酸内酯(含有芳族酰基链取代基)[51]。Chan等[52]从姜根际中分离出的伯克霍尔德杆菌(Burkholderia cepacia)可以将3-氧代-AHL还原成相应的3-羟基化合物。
1.2 DSF淬灭酶上世纪末,Barber等[53]首次检测到DSF活性,并分析了rpf基因簇(病原致病因子的调控)。DSF信号首先在野油菜黄单胞菌中(Xanthomonas. campestris pv. campestris)得到鉴定,信号分子是顺-11-甲基-2-癸烯酸[54]。迄今为止,许多DSF降解菌被筛选并鉴定,这些降解菌能够降解DSF信号从而影响野油菜黄单胞菌毒力因子的表达。Newman等[55]在芽孢杆菌属(Bacillus)、类芽孢杆菌属(Paenibacillus)、微杆菌属(Microbacterium)、葡萄球菌属(Staphylococcus)、假单胞菌属(Pseudomonas)细菌中均筛选到能快速降解DSF的菌株,并对这些菌株进行了鉴定。除此之外,Caicedo等[56]在柑橘叶中分离出三株具有DSF降解活性的菌株,分别为Pseudomonas sp. SJ01、Pseudomonas sp. SJ02和Bacillus sp. SJ13。但是,目前还没有文献清楚报道DSF信号的淬灭机制。
1.3 其他信号分子降解酶其他信号分子有2-庚基-3-羟基-4(1H)-喹诺酮(PQS),自诱导剂AI-2,3-羟基-棕榈酸甲酯(3-OH-PAME)、二烷基间苯二酚(DARs)、α-吡喃酮等。其中二烷基间苯二酚(DARs)和α-吡喃酮为近几年新发现的群体感应信号分子,尚未有关于降解酶的研究报道。
2-庚基-3-羟基-4(1H)-喹诺酮(PQS)是铜绿假单胞菌(Pseudomonas aeruginosa)使用的群体感应信号分子。细胞质酶Hod酶能够催化PQS转化为N-辛酰基邻氨基苯甲酸和一氧化碳,将Hod酶添加到铜绿假单胞菌PAO1培养物中,可以降低PQS生物合成基因pqsA的表达[57]。从木糖氧化无色杆菌(Achromobacter xylosoxidans)菌株Q19分离出来的降解酶可以降解PQS,产生新的荧光化合物2-庚基-2-羟基-1,2-二氢喹啉-3,4-二酮(HHQD),Q19也可氧化PQS同源物,产生相应的2-羟基-1,2-二氢喹啉-3,4-二酮,但不能使PQS前体HHQ失活[58]。红球菌(Rhodococcus erythropolis)BG43能够降解PQS和PQS前体HHQ,进一步研究表明,菌株BG43的环形质粒pRLCBG43有两个基因簇aqdA1B1C1和aqdA2B2C2,预测编码水解酶黄素单加氧酶和双加氧酶[59]。
细菌种间交流信号分子AI-2是衍生自4,5-二羟基-2,3-戊二酮(4,5-Dihydroxy-2,3-pentanedione,DPD)的一类化合物[60]。研究发现,在体外条件下,大肠杆菌LsrK酶可以磷酸化AI-2[61]。Weiland-Braeuer等[62]通过构建宏基因组文库筛选出QQ-2蛋白,并发现QQ-2蛋白可以通过修改信号分子有效抑制Al-2调节的生物膜形成,QQ-2蛋白可以将Al-2还原为无QS活性的羟基衍生物。
3-羟基-棕榈酸甲酯(3-OH-PAME)是由细菌枯萎病菌(Ralstonia solanacearum)产生的信号分子,调控其毒力因子的表达。Shinohara等[63]在Ideonella sp. 0-0013菌株中发现的β-羟基棕榈酸甲酯水解酶(β-HPMEH)可以降解3-OH-PAME,将3-OH-PAME分解为3-羟基-棕榈酸和甲醇。Achari等[64]在植物体内生菌中筛选出3株对3-OH-PAME有降解活性的菌株,分别是嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)、铜绿假单胞菌(Pseudomonas aeruginosa)和类棒菌状红球菌(Rhodococcus corynebacterioides),这些菌株可以使青枯菌的致病力显著下降。
2 结语抗生素的滥用使得越来越多的致病菌产生抗药性,甚至是多重抗药性。因此,新型的防治策略的提出显得十分重要。群体感应淬灭是基于群体感应机制提出的一种高效的生物防治策略。在病害防治过程中,不直接作用于致病菌,所以不会使致病菌产生抗药性。在多种具有群体感应淬灭作用的群体感应抑制剂中,群体感应淬灭酶是毒性最小、最为安全有效的。群体感应淬灭酶的研究与应用对于农林业、水产养殖业、医药行业的发展具有重要意义。
研究方向展望:(1)AHLs群体感应淬灭酶的研究较为深入,但是要使群体感应淬灭酶广泛应用于农林牧渔业生产及医疗中还存在许多问题要解决,比如淬灭酶的稳定性、催化效率、底物特异性、酶递送和电位问题及是否存在副作用。(2)虽然目前AHLs群体感应淬灭酶研究较为深入,但包括AHLs在内的微生物群体感应信号分子的新型淬灭酶基因的筛选和克隆以及淬灭酶作用机理的研究工作仍需进行。(3)群体感应广泛存在于微生物群体中,但除少数模式细菌群体感应系统有较为全面的研究外,其他重要病害致病细菌、真菌、放线菌的群体感应系统研究并不深入。为此,应该进一步加深对于细菌、真菌、放线菌群体感应系统的研究,如群体感应系统信号通路、群体感应信号的鉴定、群体感应淬灭酶的筛选和应用等,这将为细菌、真菌、放线菌病害提供新的防治策略,同时,有利于发展新型生物防治技术。
[1] | Nealson KH. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance[J]. Archives of Microbiology, 1977, 112 (1): 73–79. DOI:10.1007/BF00446657 |
[2] | Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Journal of Bacteriology, 1970, 104 (1): 313–322. |
[3] | Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280 (5361): 295–298. DOI:10.1126/science.280.5361.295 |
[4] | Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176 (2): 269–275. DOI:10.1128/jb.176.2.269-275.1994 |
[5] | Brameyer S, Kresovic D, Bode HB, et al. Dialkylresorcinols as bacterial signaling molecules[J]. Proc Natl Acad Sci USA, 2015, 112 (2): 572–577. DOI:10.1073/pnas.1417685112 |
[6] | Brameyer S, Bode HB, Heermann R. Languages and dialects:bacterial communication beyond homoserine lactones[J]. Trends in Microbiology, 2015, 23 (9): 521–523. DOI:10.1016/j.tim.2015.07.002 |
[7] | Yates EA, Philipp B, Buckley C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa[J]. Infection and Immunity, 2002, 70 (10): 5635–5646. DOI:10.1128/IAI.70.10.5635-5646.2002 |
[8] | Park SY, Lee SJ, Oh TK, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria[J]. Microbiology-Sgm, 2003, 149 (6): 1541–1550. DOI:10.1099/mic.0.26269-0 |
[9] | 邱健, 贾振华, 马宏, 等. 一株降解N-酰基高丝氨酸内酯酵母菌菌株的分离鉴定及其降解特性[J]. 微生物学报, 2007, 2: 355–358. DOI:10.3321/j.issn:0001-6209.2007.02.033 |
[10] | 罗利龙. 红冬孢酵母中Ahl降解酶的分离纯化[D]. 天津: 河北工业大学, 2010. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201206016.htm |
[11] | Bar-Rogovsky H, Hugenmatter A, Tawfik DS. The evolutionary origins of detoxifying enzymes:the mammalian serum paraoxonases(PONs)relate to bacterial homoserine lactonases[J]. Journal of Biological Chemistry, 2013, 288 (33): 23914–23927. DOI:10.1074/jbc.M112.427922 |
[12] | Eberhard A, Burlingame AL, Eberhard C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase[J]. Biochemistry, 1981, 20 (9): 2444–2449. DOI:10.1021/bi00512a013 |
[13] | Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a Methanogenic archaeon[J]. ISME Journal, 2012, 6 (7): 1336–1344. DOI:10.1038/ismej.2011.203 |
[14] | Ahlgren NA, Harwood CS, Schaefer AL, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia[J]. Proc Natl Acad Sci USA, 2011, 108 (17): 7183–7188. DOI:10.1073/pnas.1103821108 |
[15] | Lindemann A, Pessi G, Schaefer AL, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum[J]. Proc Natl Acad Sci USA, 2011, 108 (40): 16765–16770. DOI:10.1073/pnas.1114125108 |
[16] | Schaefer AL, Greenberg EP, Oliver CM, et al. A new class of homoserine lactone quorum-sensing signals[J]. Nature, 2008, 454 (7204): 595–596. DOI:10.1038/nature07088 |
[17] | Dong Y, Xu J, Li X, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia Carotovora[J]. Proc Natl Acad Sci USA, 2000, 97 (7): 3526–3531. DOI:10.1073/pnas.97.7.3526 |
[18] | Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax Paradoxus[J]. Journal of Bacteriology, 2000, 182 (24): 6921–6926. DOI:10.1128/JB.182.24.6921-6926.2000 |
[19] | Xue B, Chow JY, Baldansuren A, et al. Structural evidence of a productive active site architecture for an evolved quorum-quenching GKL lactonase[J]. Biochemistry, 2013, 52 (13): 2359–2370. DOI:10.1021/bi4000904 |
[20] | See-Too WS, Ee R, Lim Y, et al. AidP, a novel N-acyl homoserine lactonase gene from antarctic Planococcus sp[J]. Scientific Reports, 2017, 7 : 42968. DOI:10.1038/srep42968 |
[21] | Zhang HB, Wang LH, Zhang LH. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA, 2002, 99 (7): 4638–4643. DOI:10.1073/pnas.022056699 |
[22] | Tang K, Su Y, Brackman G, et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda Olearia[J]. Appl Environ Microbiol, 2015, 81 (2): 774–782. DOI:10.1128/AEM.02805-14 |
[23] | Wang W, Morohoshi T, Someya N, et al. AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides(CFB)group bacterium Chryseobacterium sp. strain StRB126[J]. Appl Environ Microbiol, 2012, 78 (22): 7985–7992. DOI:10.1128/AEM.02188-12 |
[24] | Morohoshi T, Tominaga Y, Someya N, et al. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris[J]. Journal of Bioscience and Bioengineering, 2012, 113 (1): 20–25. DOI:10.1016/j.jbiosc.2011.09.006 |
[25] | Krysciak D, Schmeisser C, Preuss S, et al. Involvement of multiple loci in quorum quenching of autoinducer l molecules in the nitrogen-fixing symbiont Rhizobium(Sinorhizobium)sp. strain NGR234[J]. Appl Environ Microbiol, 2011, 77 (15): 5089–5099. DOI:10.1128/AEM.00112-11 |
[26] | Riaz K, Elmerich C, Raffoux A, et al. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria[J]. Communications in Agricultural and Applied Biological Sciences, 2008, 73 (2): 3–6. |
[27] | Chow JY, Wu L, Yew WS. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily[J]. Biochemistry, 2009, 48 (20): 4344–4353. DOI:10.1021/bi9004045 |
[28] | Hong K, Koh C, Sam C, et al. Quorum quenching revisited-from signal decays to signalling confusion[J]. Sensors, 2012, 12 (4): 4661–4696. |
[29] | Afriat L, Roodveldt C, Manco G, et al. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase[J]. Biochemistry, 2006, 45 (46): 13677–13686. DOI:10.1021/bi061268r |
[30] | Hiblot J, Gotthard G, Chabriere E, et al. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus[J]. PLoS One, 2012, 7 : e4702810. |
[31] | Park SY, Hwang BJ, Shin MH, et al. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities[J]. FEMS Microbiology Letters, 2006, 261 (1): 102–108. DOI:10.1111/fml.2006.261.issue-1 |
[32] | Wang W, Morohoshi T, Ikenoya M, et al. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum[J]. Appl Environ Microbiol, 2010, 76 (8): 2524–2530. DOI:10.1128/AEM.02738-09 |
[33] | Mei G, Yan X, Turak A, et al. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase[J]. Appl Environ Microbiol, 2010, 76 (15): 4933–4942. DOI:10.1128/AEM.00477-10 |
[34] | Schipper C, Hornung C, Bijtenhoorn P, et al. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75 (1): 224–233. DOI:10.1128/AEM.01389-08 |
[35] | Garge SS, Nerurkar AS. Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50[J]. PLoS One, 2016, 11 : e016734412. |
[36] | Harel M, Aharoni A, Gaidukov L, et al. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atheroscleroticenzymes[J]. Nature Structural & Molecular Biology, 2004, 11 (12): 1253. |
[37] | Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Appl Environ Microbiol, 2005, 71 (5): 2632–2641. DOI:10.1128/AEM.71.5.2632-2641.2005 |
[38] | Romero M, Diggle SP, Heeb S, et al. Quorum quenching activity in Anabaena sp. PCC 7120:Identification of AiiC, a novel AHL-acylase[J]. FEMS Microbiology Letters, 2008, 280 (1): 73–80. DOI:10.1111/fml.2008.280.issue-1 |
[39] | Lin YH, Xu JL, Hu JY, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003, 47 (3): 849–860. DOI:10.1046/j.1365-2958.2003.03351.x |
[40] | Huang JJ, Han JI, Zhang LH, et al. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2003, 69 (10): 5941–5949. DOI:10.1128/AEM.69.10.5941-5949.2003 |
[41] | Morohoshi T, Nakazawa S, Ebata A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Bioscience Biotechnology and Biochemistry, 2008, 72 (7): 1887–1893. DOI:10.1271/bbb.80139 |
[42] | Chen C, Chen C, Liao C, et al. A probable aculeacin a acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiology, 2009, 9 : 89. DOI:10.1186/1471-2180-9-89 |
[43] | Huang JJ, Petersen A, Whiteley M, et al. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2006, 72 (2): 1190–1197. DOI:10.1128/AEM.72.2.1190-1197.2006 |
[44] | Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology[J]. Appl Environ Microbiol, 2009, 75 (1): 45–53. DOI:10.1128/AEM.01723-08 |
[45] | Terwagne M, Mirabella A, Lemaire J, et al. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis[J]. PLoS One, 2013, 8 : e8251412. |
[46] | Czajkowski R, Krzyzanowska D, Karczewska J, et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase[J]. Environ Microbiol Reports, 2011, 3 (1): 59–68. DOI:10.1111/emi4.2011.3.issue-1 |
[47] | Maisuria VB, Nerurkar AS. Interference of quorum sensing by Delftia sp. VM4 depends on the activity of a novel N-acylhomoserine lactone-acylase[J]. PLoS One, 2015, 10 (9): e138034. |
[48] | Nasuno E, Suzuki T, Suzuki R, et al. Novel quorum quenching enzymes identified from draft genome of Roseomonas sp. TAS13[J]. Genomics Data, 2017, 12 : 22–23. DOI:10.1016/j.gdata.2017.02.001 |
[49] | Sunder AV, Utari PD, Ramasamy S, et al. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa[J]. Applied Microbiology and Biotechnology, 2017, 6 (101): 2383–2395. |
[50] | Chowdhary PK, Keshavan N, Nguyen HQ, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines[J]. Biochemistry, 2007, 46 (50): 14429–14437. DOI:10.1021/bi701945j |
[51] | Uroz S, Chhabra SR, Camara M, et al. N-acylhomoserine lactone quorum-ssensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities[J]. Microbiology-SGM, 2005, 151 (10): 3313–3322. DOI:10.1099/mic.0.27961-0 |
[52] | Chan K, Atkinson S, Mathee K, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale(Ginger)rhizosphere:co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia[J]. BMC Microbiology, 2011, 11 : 51. DOI:10.1186/1471-2180-11-51 |
[53] | Barber CE, Tang JL, Feng JX, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology, 1997, 24 (3): 555–566. DOI:10.1046/j.1365-2958.1997.3721736.x |
[54] | Wang LH, He YW, Gao YF, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues[J]. Mol Microbiol, 2004, 51 (3): 903–912. |
[55] | Newman KL, Chatterjee S, Ho KA, et al. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors[J]. Molecular Plant-Microbe Interactions, 2008, 21 (3): 326–334. DOI:10.1094/MPMI-21-3-0326 |
[56] | Caicedo JC, Villamizar S, Ferro MIT, et al. Bacteria from the citrus phylloplane can disrupt cell-cell signalling in Xanthomonas citri and reduce citrus canker disease severity[J]. Plant Pathology, 2016, 65 (5): 782–791. DOI:10.1111/ppa.2016.65.issue-5 |
[57] | Pustelny C, Albers A, Bueldt-Karentzopoulos K, et al. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa[J]. Chemistry & Biology, 2009, 16 (12): 1259–1267. |
[58] | Soh EY, Chhabra SR, Halliday N, et al. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule[J]. Environ Microbiol, 2015, 17 (11): 4352–4365. DOI:10.1111/1462-2920.12857 |
[59] | Mueller C, Birmes FS, Rueckert C, et al. Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation[J]. Appl Environ Microbiol, 2015, 81 (22): 7720–7729. DOI:10.1128/AEM.02145-15 |
[60] | Ma R, Qiu S, Jiang Q, et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus[J]. Int J Med Microbiol, 2017, 307 (4-5): 257:267. |
[61] | Roy V, Fernandes R, Tsao C, et al. Cross species quorum quenching using a native AI-2 processing enzyme[J]. ACS Chemical Biology, 2010, 5 (2): 223–232. DOI:10.1021/cb9002738 |
[62] | Weiland-Braeuer N, Kisch MJ, Pinnow N, et al. Highly effective inhibition of biofilm formation by the first metagenome-derived Al-2 quenching enzyme[J]. Front Microbiol, 2016, 7 : 1098. |
[63] | Shinohara M, Nakajima N, Uehara Y. Purification and characterization of a novel esterase(beta-hydroxypalmitate methyl ester hydrolase)and prevention of the expression of virulence by Ralstonia solanacearum[J]. J Appl Microbiol, 2007, 1 : 152–162. |
[64] | Achari GA, Ramesh R. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester(3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum[J]. Letters in Applied Microbiology, 2015, 60 (5): 447–455. DOI:10.1111/lam.2015.60.issue-5 |