2. 中国热带农业科学院海口实验站海南省香蕉遗传育种改良重点实验室,海口 570102
3. 海南大学农学院,海口 570228
2. Haikou Experimental Station,Chinese Academy of Tropical Agricultural Sciences/Hainan Provincial Key Laboratory for Genetics and Breeding of Banana,Haikou 570102 ;
3. Department of Agriculture,Hainan University,Haikou 570228
淀粉是谷类作物或以块根、块茎为收获对象的农作物中碳水化合物的主要贮藏形式,为人类日常饮食提供必需的热量。淀粉生物合成是一个复杂的生化过程[1],在此过程中存在5种关键酶:ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,ADPGase)、颗粒结合淀粉合成酶(granule-bound starch synthase,GBSS)、可溶性淀粉合成酶(soluble starch synthase,SSS)、淀粉分支酶(starch branching enzymes,SBE)及淀粉去分支酶(starch debranching enzymes,DBE)[2]。
GBSS是决定直链淀粉合成的关键酶,它可以通过α-1,4-D-糖苷键将ADPG中的葡萄糖残基添加到葡聚糖的非还原端,能够延长葡聚糖的直链。在植物细胞中GBSS与淀粉颗粒紧密结合,使合成的直链淀粉保持未分支状态,是与发育中的淀粉结合的唯一有活力的蛋白[3]。单子叶植物GBSS有两种同工酶,分别是GBSSI和GBSSII,GBSSI由waxy基因编码,在小麦中位于第7染色体上[4],水稻和玉米中该基因分别位于第6[5]、第9染色体上[6],主要控制种子、胚乳等贮藏器官中直链淀粉的合成,而GBSSII主要控制根、茎、叶等营养器官中直链淀粉的合成,双子叶植物只有GBSSII单个家族,且功能与单子叶植物GBSSII相似[4]。转基因或RNAi实验进一步研究发现,过表达或降低GBSSI表达将导致贮藏器官中GBSSI酶活性和直链淀粉含量明显上升或下降[7, 8]。通过突变体实验也发现,缺失GBSSI表达将获得直链淀粉缺失的转基因植株[9]。但GBSS表达调控的机制目前还不完全清楚。除基因结构发生改变,影响其表达和蛋白功能外,可能受多个水平、多种因子的协同调控,目前研究比较多的是GBSSI启动子、转录因子等。本文重点从基因结构特征、启动子和转录因子角度介绍模式植物和农作物中GBSSI基因表达调控机制的最新研究进展,以期为其他植物GBSS基因的研究提供借鉴。
1 GBSS基因的分子特征GBSSI 基因是一个基因家族编码的单拷贝或低拷贝基因,其cDNA全长为0.6-2.4 kb,包含6-13个外显子,编码200-800 个氨基酸,蛋白大小为30.0-70 kD。GBSSII 的氨基酸序列与GBSSI同源性较高,但GBSSII比GBSSI蛋白大,分子量约为70-100 kD。此外,GBSSII即可附着于淀粉颗粒上也可游离于颗粒之间。目前,在水稻(OsGBSSI,OsGBSSII)[5]、小麦(TaGBSSI,TaGBSSII)[4]、玉米(ZmGBSSI,ZmGBSSII)[6]、马铃薯(StGBSS)[10]、大麦(GBSSI)[11]、苋菜(GBSSI)[12]、拟南芥(AtGBSS)[13]、苦荞麦(FtGBSS1)[14]及苹果(MdGBSSII-1,MdGBSSII-2,MdGBSSII-3)、桃(PpGBSSII-1,PpGBSSII-2)、柑橘(CsGBSSII-1,CsGBSSII-2)[13]、天宝蕉(MaGBSSI)[15]、巴西蕉(MaGBSSI-1,MaGBSSI-2,MaGBSSI-3,MaGBSSI-4,MaGBSSII-1,MaGBSSII-2)[16]等多种植物中均克隆到编码GBSSI 和GBSSII 的基因。GBSSI 主要在花、果实、胚乳等贮藏器官中表达,GBSSII主要在根、茎、叶等营养器官中表达[13, 14]。目前,大多数研究主要集中在GBSSI基因。
GBSSI基因外显子和内含子结构发生改变,将影响其表达量和蛋白功能。Olsen等[17]报道糯稻的产生主要是由于GBSSI基因第1内含子5'端G/T突变和第2外显子23 bp碱基片段的插入,引起pre-mRNA不能正常剪切,其表达量减少所致,并且糯稻GBSSI基因第一内含子5'端的突变位点以T为主,粘稻的突变位点以G为主[18]。Fan等[19]发现了糯玉米的缺失突变体Wx-D7,究其原因是由于GBSSI基因第7个外显子3'端30个碱基缺失,导致终止子TAA提早出现翻译提前终止,进而GBSSI蛋白功能缺失所引起的。糯玉米的另一种缺失突变体Wx-D10是由于GBSSI第10个外显子内部15个碱基缺失,导致糖基转移酶功能域缺失所致[20]。目前在小麦中也筛选到多个糯性缺失突变体,其中Wx-A1b突变体在GBSSI内含子和外显子的连接区存在一个23 bp片段缺失,Wx-D1b突变体存在一个588 bp片段缺失和12 bp的填充序列,而Wx-B1b突变体缺失了整个编码区。随着GBSSI基因结构研究的不断深入,多位研究者针对GBSSI基因的不同突变位点开发出特异性引物[17, 19, 20],实现了不同位点的高效、快速的基因鉴定,为糯稻、糯玉米和糯小麦的分子辅助育种奠定了基础。
2 GBSSI基因表达受阻或活性降低,将导致直链淀粉合成受阻Sano 等[21]较早发现水稻OsGBSSI表达受阻,导致胚乳中几乎不含直链淀粉。Williams等[7]利用RNA沉默技术降低GBSSI表达发现,小麦籽粒胚乳中GBSSI酶活性和直链淀粉含量明显下降;同样抑制甘薯中GBSSI表达,直链淀粉含量也明显降低[8]。将甘薯GBSSI基因的反义cDNA链转到甘薯基因组中从而获得了直链淀粉缺失的转基因植株[9]。最近,在马铃薯微管中通过反义RNA技术降低GBSSI活性,淀粉中直链淀粉含量随之降低[22]。Hunt等[23]突变体实验发现,谷子胚乳中直链淀粉含量主要由GBSSI-S位点控制,而直链淀粉合成效率下降主要与GBSSI-L位点有关。Liu等[24]将OsGBSSI 蛋白中8个氨基酸位点缺失,导致其活性明显下降,结合淀粉颗粒的能力减弱。最新研究还发现,GBSSI不仅影响大麦籽粒淀粉直链淀粉浓度,而且与支链淀粉的链长相关[25]。高粱籽粒中缺失GBSSI,导致其淀粉颗粒中支链淀粉含量增加[26]。通过调控GBSSI表达,人们获得了含直链淀粉比例不同的淀粉,如直链淀粉缺失型淀粉、高直链淀粉等,前者可以用于食品工业,而后者则可用于糖果和塑料工业。
3 GBSS启动子是调控GBSS基因表达的“开关”目前应用APCR、IPCR或PCR技术从玉米[27]、小麦[28]、大麦[29]、水稻[30]、马铃薯[31]、拟南芥[32]中克隆到多个GBSS启动子,发现了一些可能与组织特异性表达相关的响应元件,如CCGTCC-box、SORLIP5AT等;脱落酸响应的顺式作用元件CACCG;茉莉酸响应有关的顺式调节元件CGTCA-motif、TGACG-motif;赤霉素应答相关元件P-box、TATC-box;水杨酸反应的顺式元件TCA-element;糖代谢相关的元件CGACGOSAMY3、WBOXHVISO1等。5'端片段缺失突变是确定启动子调控区域响应元件的常用方法,Hu等[33]通过5'端片段缺失突变实验证明淀粉合成酶I(starch synthase I,SSI)启动子在玉米胚乳中特异表达受ABA响应的顺式元件CACCG诱导,但不受蔗糖、果糖及赤霉素等相关元件的影响。姚彩萍等[34]将GBSSI启动子区5'端12个不同长度的缺失片段与GUS融合,导入水稻原生质体,找到了与基因表达强度有关的区段(-861-640 bp)。凝胶滞后法和足印法检测出该区段中包含一个31 bp的胚乳核蛋白结合序列[35]。将包含或不包含该31 bp序列的GBSSI 启动子区与GUS分别连接,同时转化水稻幼胚愈伤组织,含有31 bp序列比不含此序列的GBSSI启动区的GUS报告基因表达水平高出2-3倍[36],该研究结果表明此31 bp序列很可能是GBSSI表达调控中的一个关键响应元件。
瞬时表达分析发现,GBSSI启动子为组织特异性启动子,启动活性与35S启动子相近[37]。Kluth等[28]通过构建小麦gbssI基因启动子(8.0 kb)和GUS基因的表达载体并转化小麦发现,上游-4.0 kb的启动区介导的GUS基因的表达与GBSSI内源启动子的组织表达模式相似,只在胚乳和花药中表达。将启动区缩减至-1.9和-1.0 kb发现仍然在胚乳和花药中表达,但随着启动子区的缩短GUS活性呈下降趋势。同时,在玉米[38]和大麦[29]中也报道GBSSI启动区使GUS报告基因主要在胚乳中表达,而马铃薯主要在块茎中表达[31],这些结果证明了GBSSI基因启动子的启动调控模式。但是,当GBSS启动子序列发生重复、缺失或替换时,将影响GBSS启动活性和直链淀粉合成。Heilersig等[31]实验发现马铃薯GBSSI转录后沉默效率依赖于一段重复的启动子区域。Patron等[29]报道低直链淀粉含量的大麦品种是由于GBSSI启动子区413 bp碱基缺失所导致的。Wang等[30]实验证明,水稻直链淀粉含量降低是由于GBSSI启动子497 bp位置发生了单核苷酸的替换。Ma等[39]实验发现,非糯性大麦GBSSI启动子(1 029 bp)比糯性大麦GBSSI启动子(822 bp)启动活性强,可能是由于糯性大麦GBSSI启动子区397 bp碱基缺失所导致的。
4 GBSS基因的表达受特定转录因子在转录水平上的调控拟南芥GBSSI基因的表达是由于转录因子CCA1和LHY与GBSSI启动子直接互作的结果[40]。水稻转录因子bZIP蛋白REB、OsbZIP20和OsbZIP58通过结合GBSS基因5'上游区Ha-2片段的3个ACGT元件(WG1、WG2和WG3)来调节GBSS基因表达,从而影响水稻籽粒直链淀粉的生物合成[41]。Albani等[42]报道水稻bZIP家族的转录因子也可通过结合GBSSI启动子区胚乳盒(endosperm box,EB)中的GCN4 基序调控GBSSI基因在种子中的专一性表达。程世军等[43]进一步研究发现,水稻bZIP家族的转录因子REB既能识别GBSSI启动子区的GCN4基序,参与对GBSSI基因的组织特异性表达调控,也能结合α-globulin启动子上的靶位点,参与对glb基因表达的协同调控。通过分析水稻籽粒灌浆期基因芯片数据,另外发现RSR1基因(AP2/EREBP转录因子家族成员)负调控水稻种子中GBSSI基因的表达[44]。OsSERF1在水稻籽粒灌浆期也可负调控GBSSI基因的表达,染色质免疫共沉淀分析发现OsSERF1可结合在GBSSI的启动子区,是GBSSI的直接上游调控因子[45]。而RSp29和RSZp23x,两种富含丝氨酸/苏氨酸的蛋白,通过增强OsGBSSI mRNA前体的剪切效率,影响OsGBSSI表达和直链淀粉合成[46]。此外,MYC转录因子OsBP-5与乙烯响应元件结合蛋白(EREBP)形成异源二聚体OsEBP-89调控水稻OsGBSSI表达,利用RNAi技术干涉OsBP-5转录因子,OsGBSSI表达量降低,种子中直链淀粉含量下降[47]。
近几年,酵母单杂交技术被用来筛选调控淀粉合成相关基因表达的转录因子,如Wang等[48]利用酵母单杂交技术获得了bZIP类转录因子OsbZIP58,它可直接结合在6个淀粉合成相关基因(OsAGPL3、OsGBSSI、OsSSIIa、SBE1、OsBEIIb和ISA2)的启动区并调控它们的表达活性,且Osbzip58缺失突变体表现出种子形态不正常,淀粉积累速率下降,总淀粉和直链淀粉含量降低等现象。ZmaNAC36在玉米胚乳中也可与大多数的淀粉合成相关基因(AGPL2、AGPL3、AGPs2、AGPs3和GBSSIIb)共表达,是玉米胚乳合成淀粉的关键调节因子之一[49]。截止目前,共发现4大类转录因子家族(bZIP、AP2/EREBP、MYC和NAC)成员参与了GBSSI基因的表达调控,是否还有其他转录因子家族成员参与其表达调控,仍需进一步深入研究。
5 展望在生产中如何有效调控植物直链淀粉的合成,以满足食品、医疗、工业等行业对不同含量直链淀粉的需求,将是未来的研究方向。然而,深入解析直链淀粉合成关键酶基因GBSS的表达调控机制,有针对性的通过激素、光照等外界刺激来调节GBSS的表达水平,将是改良谷类作物以及淀粉转化型果实的品质、提高产量的有效方法之一。
[1] | Calvert P. Biopolymers:the structure of starch[J]. Nature, 1997, 389:338-339. |
[2] | Zeeman SC, Kossmann J, Smith AM. Starch:its metabolism, evolution, and biotechnological modification in plants[J]. Annu Rev Plant Biol, 2010, 61:209-234. |
[3] | Krishnan HB, Chen M. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase[J]. J Agr Food Chem, 2013, 61:5404-5409. |
[4] | Vrinten PL, Nakamura T. Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues[J]. Plant Physiol, 2000, 122(1):255-264. |
[5] | Dian W, Jiang H, Chen Q, et al. Cloning and characterization of the granule-bound starch synthase II gene in rice:gene expression is regulated by the nitrogen level, sugar and circadian rhythm[J]. Planta, 2003, 218:261-268. |
[6] | Hylton CM, Denyer K, Keeling PL, et al. The effect of waxy mutations on the granule-bound starch synthases of barley and maize endosperms[J]. Planta, 1996, 198:230-237. |
[7] | Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007, 41:6854-6859. |
[8] | Otani M, Hamada T, Katayama K, et al. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Rep, 2007, 26:1801-1807. |
[9] | Kimura T, Saito A. Heterogeneity of poly(A)sites in the granule-bound starch synthase I gene in sweet potato(Ipomoea batatas(L.)Lam. )[J]. Biosci Biotech Bioch, 2010, 74:667-669. |
[10] | Dry I, Smith A, Edwards A, et al. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato[J]. Plant J, 1992, 2(2):193-202. |
[11] | Li Z, Li D, Du X, et al. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes[J]. J Exp Bot, 2011, 62(14):5217-5231. |
[12] | Park Y, Nemoto K, Nishikawa T, et al. Genetic diversity and expression analysis of granule bound starch synthase I gene in the new world grain amaranth(Amaranthus cruentus L. )[J]. J Cereal Sci, 2011, 53(3):298-305. |
[13] | Cheng J, Khan MA, Qiu WM, et al. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events[J]. PLoS One, 2012, 7:1-10. |
[14] | Wang X, Feng B, Xu Z, et al. Identification and characterization of granule bound starch synthase I(GBSSI)gene of tartary buckwheat(Fagopyrum tataricum Gaerth. )[J]. Gene, 2014, 534(2):229-235. |
[15] | 匡云波, 赖钟雄. 香蕉叶片颗粒结合性淀粉合成酶Ⅰ和可溶性淀粉合成酶Ⅲ基因的克隆与序列分析[J]. 热带作物学报, 2012(1):70-78. |
[16] | Miao HX, Sun PG, Liu WX, et al. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit[J]. PLoS One, 2014, 9(2):88077-88085. |
[17] | Olsen KM, Purugganan MD. Molecular evidence on the origin, evolution of glutinous rice[J]. Genetics, 2002, 162(2):941-950. |
[18] | 李枝桦, 陆春明, 卢宝荣, 等. 云南传统栽培稻品种Waxy基因序列分析[J]. 分子植物育种, 2011, 9(6):665-671. |
[19] | Fan LJ, Quan LY, Leng XD, et al. Molecular evidence for post-domestication selection in the Waxy gene of Chinese Waxy maize[J]. Mol Breed, 2008(22):329-338. |
[20] | 田孟良, 黄玉碧, 谭功燮, 等. 西南糯玉米地方品种Waxy基因序列多态性分析[J]. 作物学报, 2008, 34(5):729-736. |
[21] | Sano Y, Maekawa M, Kikuchi H. Temperature effects on the Wx protein level and amylose content in the endosperm of rice[J]. J Hered, 1985, 76:221-222. |
[22] | Asare EK, Båga M, Rossnagel BG, et al. Polymorphism in the barley granule bound starch synthase I(GbssI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60(40):10082-10092. |
[23] | Hunt HV, Moots HM, Graybosch RA, et al. Waxy phenotype evolution in the allotetraploid cereal broomcorn miller:mutations at the GBSSI locus in their functional and phylogenetic context[J]. Mol Biol Evol, 2013, 30(1):109-122. |
[24] | Liu D, Wang W, Cai X. Modulation of amylose content by structure-based modification of OsGBSSI activity in rice(Oryza sativa L. ). Plant Biotechnol J, 2014, 12(9):1297-1307. |
[25] | Eric KA, Monica B, Brian GR, et al. Polymorphism in the barley granule bound starch synthase I(GBSSI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60:10082-10092. |
[26] | Funnell-Harris DL, Sattler SE, O’Neill PM, et al. Effect of waxy(low amylose)on fungal infection of Sorghum grain[J]. Phytopathology, 2015, doi. org/10. 1094/PHYTO-09-14-0255-R. |
[27] | Russell DA, Fromm ME. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice[J]. Transgenic Res, 1997, 6(2):157-168. |
[28] | Kluth A, Sprunck S, Beeker D, et al. 5'deletion of a gbssI promoter region from wheat leads to changes in tissue and developmental specificities[J]. Plant Mol Biol, 2002, 49(6):665-678. |
[29] | Patron NJ, Smith AM, Fahy BF, et al. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5'-noncoding region[J]. Plant Physiol, 2002, 130(1):190-198. |
[30] | Wang SJ, Liu LF, Chen CK, et al. Regulation of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress[J]. Biol Plantarum, 2006, 50(4):537-541. |
[31] | Heilersig BH, Loonen AE, Janssen EM, et al. Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat[J]. Mol Gen Genet, 2006, 275:437-449. |
[32] | Schwarte S, Brust H, Steup M, et al. Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana[J]. BMC Research Notes, 2013, 6:84. |
[33] | Hu YF, Li YP, Zhang JJ, et al. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize(Zea mays L. )endosperm[J]. J Exp Bot, 2012, 63(16):5979-5989. |
[34] | 姚彩萍, 王宗阳, 蔡秀玲, 等. 水稻蜡质基因5'上游区缺失对基因表达的影响[J]. 植物生理学报, 1996, 22(4):431-436. |
[35] | 陈丽, 王宗阳, 张景六, 等. 一个能与水稻未成熟种子核蛋白特异结合的31bp的DNA片段[J]. 植物生理学报, 1997, 23(3):257-261. |
[36] | 葛鸿飞, 王宗阳, 洪孟民. 水稻蜡质232蜡质基因转录起始位点的鉴定[J]. 遗传学报, 1995, 22(6):431-436. |
[37] | Bansal A, Kumari V, Taneja D, et al. Molecular cloning and characterization of granule-bound starch synthase I(GBSSI)alleles from potato and sequence analysis for detection of cis-regulatory motifs[J]. Plant Cell Tiss Organ, 2012, 109:247-261. |
[38] | Chen J, Zeng B, Zhang M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiol, 2014, 166(1):252-264. |
[39] | Ma J, Jiang QT, Zhao QZ, et al. Characterization and expression analysis of waxy alleles in barley accessions[J]. Genetica, 2013, 141(4-6):227-238. |
[40] | Tenorio G, Orea A, Romero JM, et al. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle[J]. Plant Mol Biol, 2003, 51(6):949-958. |
[41] | Cai J, Yang Y, Man J, et al. Structural and functional properties of alkali-treated high-amylose rice starch[J]. Food Chem, 2014, 145:245-253. |
[42] | Albani D, Hammond-Kosack MC, Smith C, et al. The wheat transcriptional activator SPA:a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes[J]. Plant Cell, 1997, 9(2):171-184. |
[43] | 程世军, 王宗阳, 洪孟民. 水稻bZIP蛋白REB结合Wx基因启动子的GCN4基序[J]. 中国科学(C辑), 2002, 32(1):23-29. |
[44] | Fu FF, Xue HW. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiol, 2010, 154(2):927-938. |
[45] | Schmidt R, Schippers JH, Mieulet D, et al. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-media-ted seedling establishment in rice[J]. Mol Plant, 2014, 7(2):404-421. |
[46] | Liu DR, Huang WX, Cai XL. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation[J]. Plant Sci, 2013, 210:141-150. |
[47] | Zhu Y, Cai XL, Wang ZY, et al. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene[J]. J Biol Chem, 2003, 278:47803-47811. |
[48] | Wang JC, Xu H, Zhu Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. J Exp Bot, 2013, 64:3453-3466. |
[49] | Zhang J, Chen J, Yi Q, et al. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm[J]. Plant Mol Biol, 2014, 84:359-369. |