工作空间

文章信息

王培培, 宋萍, 张群. 2016
磷脂酶D信号转导与植物耐盐研究进展
生物技术通报, 2016, 32(10): 58-65

WANG Pei-pei, SONG Ping, ZHANG Qun. 2016
Plant Phospholipase D Signaling Pathway in Response to Salt Stress
Biotechnology Bulletin , 2016, 32(10): 58-65

文章历史

收稿日期:2016-08-26

磷脂酶D信号转导与植物耐盐研究进展
王培培 , 宋萍 , 张群     
南京农业大学生命科学学院 作物遗传与种质创新国家重点实验室,南京 210095
摘要: 土壤盐害是一个全球性的生态问题,对生态环境和农业生产带来了巨大的负面影响。研究发现,植物磷脂酶D(Phospholipase D,PLD)是磷脂代谢和应答非生物胁迫的重要酶类;PLD具有不同的结构、生化和调节特性,产生信号分子磷脂酸(Phosphatidic acid,PA)并参与多种胁迫反应。总结了PLD及其产物PA调控植物耐盐的相关报道,探讨其感受、应答盐信号的分子机制,为研究植物应答高盐胁迫和农作物分子遗传改良提供相关参考。
关键词盐胁迫     磷脂酶D     磷脂酸     信号转导    
Plant Phospholipase D Signaling Pathway in Response to Salt Stress
WANG Pei-pei , SONG Ping , ZHANG Qun     
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095
Abstract: Soil salinity is a global ecological problem,which has a great negative impact on ecological environment and agricultural production. Researches showed that Phospholipase D (PLD) was a key enzyme in catalyzing lipids and response to abiotic stresses. PLDs contained diverse structures,distinguishable biochemical and regulatory properties,which produced phosphatidic acid (PA) and participated in plant response to various stresses. This review summarized the current advances in regulating plant salt tolerance,and discussed the putative molecular mechanisms of PLD in sensing and response to salt stress,which might benefit the study of plant salt resistance and crop genetic enhancement.
Key words: salt tolerance     PLD     PA     signal transduction    

植物细胞膜较早感受、传导外界各种胁迫信号。磷脂是细胞膜的骨架成分,其水解产物参与生理生化、细胞信号转导以及环境刺激引起的细胞应答等多个过程[1]。磷脂酶是代谢磷脂的关键酶,根据其水解位点不同分磷脂酶A1(Phospholipase A1,PLA1)、磷脂酶A2(Phospholipase A2,PLA2)、磷脂酶C(Phospholipase C,PLC)和磷脂酶D(Phosph-olipase D,PLD)[2, 3]

PLD是植物中最早被发现和克隆的磷脂酶基因[4],广泛分布于根、茎、叶、花、果实和种子等各个组织[5]。根据基因序列和结构域的不同,拟南芥12个PLD基因分为6类:PLDα(1-3),PLDβ(1,2),PLDγ(1-3),PLDδPLDεPLDζ(1,2)[6]。除了PLDζ,植物PLD基因都包括N端的C2结构域,属于结合磷脂的折叠域,与Ca2+的结合有关,是植物PLD特有的结构[7, 8];两个重复的HKD区域是所有真核PLD基因共有的结构域[9],对PLD活性非常重要。PLDζ除了含有HKDs结构域,还有两个N端特殊结构域PX(Phox homology)和PH(Pleckstrin homology),PX富含脯氨酸残基,可以与磷酸肌醇结合,而PH可以与磷脂酰肌醇结合。PLD基因除了结构上的共性以外,还有一些特殊性,如PLDβ1拥有一个PIP2结合区,可以被PIP2和Ca2+协同激活[10]PLDα1在两个HKDs结构域中间包含DRY基序,此结构域可以和异三聚体G蛋白亚基α(Gα)结合,从而增强Gα的GTP酶活性,共同调节气孔运动与水分散失[11]。在第一个HKD结构域后,PLDδ包含一个油酸结合区域[12]。另外,PLD基因的亚细胞分布及在组织、器官中的表达和分布也是不同的,最终导致了其功能的特异性[6]

研究表明,植物能够迅速感受、应答各种胁迫环境,该信号转导过程与特异的磷脂酶激活有关。PLDα1参与盐胁迫、脱水、活性氧诱导的氧化胁迫、脱落酸反应、气孔关闭、冻害和种子老化[6]等多种胁迫反应;PLDδ涉及冻害、脱水、盐胁迫和干旱等胁迫反应[6];PLDα3介导了植物高渗胁迫应答[13];PLDβ1和PLDδ在植物抵御病害中发挥重要作用[14, 15];PLDε参与氮信号转导[16];PLDζ2参与磷饥饿[17]、生长素响应和囊泡运输[18];PLDγs活性受铝胁迫诱导,在植物耐铝性中起负调控作用[19]

土地盐碱化是制约农业生产稳定发展的重要因素之一。盐害是植物体经常遭受的非生物胁迫之一,在世界范围对作物生产会造成重大损失。植物形成各种生理、细胞和遗传机制使其在高盐胁迫下得以生存,其中包括SOS(Salt overly sensitive)系统、植物激素、抗氧化防护系统、渗透调节物质和膜脂信号等[3, 6]。其中,PLD及其产物PA在植物耐盐信号转导中扮演重要角色,本文综述了PLD/PA参与植物耐盐胁迫的研究进展及其可能的分子机制,以期为植物耐盐研究和农作物分子改良提供一定的参考。

1 盐胁迫下PLD改变生长素运输与分布

生长素是植物体内唯一具有极性运输(Polar au-xin transport,PAT)特点的激素,它主要在植物茎尖、顶芽、幼叶、发育的种子、主根根尖的分生组织及发育的侧根等生长活跃的部位合成,然后通过PAT(主要是从茎顶端向根尖)到达靶细胞来调节一系列生理反应[20, 21]。生长素的极性运输影响植物体的生长、发育和繁殖等众多生理过程:植物的形态建成和向性反应、组织的伸长生长及维管分化、胚胎发育和光形态建成等[22, 23]。生长素的极性运输是通过向细胞内运输生长素载体(AUXIN-RESISTANT1,AUX1)和向细胞外运输生长素载体(PIN-FORMED,PIN)实现的[24, 25]。PINs蛋白的极性运输、分布和表达水平变化,直接影响植物主根、侧根的发生和发育[26]

低盐处理会减少生长素信号突变体axr1、axr4tir1中的侧根数目,并抑制PIN2蛋白的表达,降低PIN2-GFP在根尖伸长区的分布,盐信号可能通过转录水平和转录后水平调节生长素的运输[27]。盐诱导PLDα1、PLDα3和PLDδ产生PA,参与拟南芥对盐害的响应过程。拟南芥pldα1pldδ双突变体的PA含量较低,其耐盐性也显著降低[7]。拟南芥PLDα3的插入缺失突变体对盐害更敏感,而过表达PLDα3基因能显著提高植株的耐盐性[13]PLDζ2及其产物PA通过调节PIN2蛋白的囊泡循环过程,影响了生长素的极性运输、分布[28]。近期研究表明,盐胁迫促进PLDζ2依赖的网格蛋白招募到质膜和PIN2的内化、回收到根的一侧,最终导致生长素的差异分布及其根部弯曲,从而促使植物避开盐环境;对盐胁迫响应是PIN2蛋白特有的,而不是其他膜蛋白共有的[29]

PA调控生长素信号通路的关键靶蛋白可能是蛋白磷酸酶PP2A。PLD来源的PA结合PP2A的亚基PP2AA1,二者的互作诱导质膜PP2AA1含量增加和活性升高,并调控PP2A介导的PIN1去磷酸化水平,进而影响生长素的分布[30]

2 PLD参与响应盐胁迫的蛋白激酶信号转导途径

植物体在高盐胁迫下会接受并且转导胁迫信号,启动植物对盐胁迫的响应机制。植物蛋白激酶在信号转导中起着重要作用,蛋白质的磷酸化和去磷酸化可以实时调节细胞稳态,维持植物体正常的生命活动[31]

2.1 蛋白激酶分类

蛋白激酶数量多、功能多样化,根据底物特异性分为5类:丝/苏氨酸蛋白激酶、组/精/赖氨酸蛋白激酶、酪氨酸蛋白激酶、色氨酸蛋白激酶和天冬酰胺基/谷氨酰胺基蛋白激酶[32]。根据催化域氨基酸序列的不同分为5类:AGC类(包括蛋白激酶A、G、C),CaMK类(CDPK家族)和需要SNF1/AMP活化的蛋白激酶家族(SNF1-related protein kinase),CMGC类(包括细胞周期蛋白依赖激酶CDK、糖原合成酶激酶(GSK-3)、促分裂原活化蛋白激酶MAPK以及酪蛋白激酶CKⅡ,常规PTK类和其他类蛋白激酶[33]

2.2 PLD调控植物盐胁迫信号转导的蛋白激酶

MAPKs家族成员是丝氨酸/苏氨酸蛋白激酶,参与多种信号传递过程,包括分裂原激活的蛋白激酶(MAPK)、分裂原激活蛋白激酶的激酶(MAPKK)和分裂原激活蛋白激酶的激酶的激酶(MAPKKK)3种类型。通过MAPK/MAPKK/MAPKKK间逐级磷酸化形成一个MAPK级联系统[34]。盐胁迫可以激活拟南芥MAPK3、MAPK4和MAPK6,过表达MAPKK2可以增加MAPK4和MAPK6活性,提高植株的耐盐性和耐冻性[35]。研究表明,PA调控盐信号的靶蛋白激酶是MAPK6[36]。盐胁迫下,PLDα1被激活产生的PA与MAPK6的结合,诱导MAPK6激酶活性增加,促进Na+/H+转运蛋白SOS1的磷酸化水平,增加其外排Na+的活性,提高了植物的抗盐性[36]

蛋白激酶CTR1(Constitutive triple response)是乙烯信号途径的负调控因子,PA与CTR1能够结合并抑制后者与乙烯受体ETR1(Ethylene receptor)的互作[37]。研究表明乙烯信号途径是植物耐盐所必需的。拟南芥etr-1突变体表现为盐敏感表型[38],乙烯信号的核心组分EIN2(ETHYLENE INSENSITIVE 2)的突变体也对盐胁迫非常敏感[39]。但是,PA如何通过精细调节乙烯信号通路,并进而调控植物对盐信号的感受、应答,仍然需要更多的分子细胞和遗传证据。

作为AGC激酶的上游激活因子,蛋白激酶PDK1(3-phosphoinositide-dependent kinase 1)能够激活生长素信号途径重要的蛋白激酶PID(PINOID),进而调控植物生长素极性运输和植物的耐盐性[40]。PA能特异结合PDK1并激活下游AGC活性,该激活效应是依赖PDK1的[40, 41]。因此,可以推测,PA依赖的PDK1-PID激酶途径可能是植物连接生长素信号和植物耐逆的关键因子[42]。PA也能结合和激活鞘氨醇激酶(Sphingosine kinase,SPHK)并促使后者产生鞘氨醇-1-磷酸(Phytosphingosine 1-phosphate,Phyto-S1P),共同调节ABA介导的气孔运动途径[43, 44],但上述互作是否影响植物耐盐性尚无报道。

另外,OsMAPK5能够正向调节水稻对盐的耐受性[45];OsMAPK33通过调节Na+/K+,维持植物体内稳态,增强耐盐性[46]。CDPK家族GsCBRLK[47]、AtCPK3[48]、OsCPK2、OsCPK4、OsCPK7和OsCPK12都参与植物耐盐[49, 50];RLK家族OsSIK1和OsSIK2都能使水稻转基因植株耐盐性提高[51, 52]。PLD成员是否参与其中,值得进一步研究。

3 PLD调控盐胁迫中的微管形态

细胞骨架(包括微管、微丝和中间纤维)是位于细胞膜内侧面的蛋白质丝纤维网架系统,参与细胞运动、细胞分裂、细胞分化以及细胞信号转导过程,并且在抗逆反应中起到重要作用[53]。微管主要由α-、β-微管蛋白(tubulin)和少量的微管结合蛋白(MAP)构成。微管结合蛋白可以与微管特异结合,从而影响微管的结构与功能,调节微管稳定性,促使微管与质膜等细胞结构交联[54]

早期研究发现,150 mmol/L NaCl处理烟草BY-2悬浮细胞后,细胞微管由横定性转变为无序状态[55];Wang等[56]研究表明盐胁迫诱导拟南芥植株根部向右弯曲生长并伴随着皮层微管的解聚;Mao等[57]发现AtMAP65-6能够诱导单根微管形成致密的网状结构,该网状结构可以抵抗500 mmol/L NaCl的胁迫;这些都表明微管参与了应答高盐刺激。

PLD蛋白或者其产物PA可能是连接微管和细胞膜的重要因子[58],Zhang等[59]近期研究表明,pldα1突变体的细胞微管对NaCl胁迫超敏感,而外源补充PA能显著提高其抗性;PA能结合并激活微管蛋白MAP65-1,形成PA-MAP65-1-微管复合体,促使微管形成更多的维管束结构,缓解胁迫对细胞的伤害,提高拟南芥植株对盐害的抵抗力;过表达MAP65-1增强了拟南芥细胞耐盐的能力;PA与MAP65-1蛋白有3个关键的结合区域(53-55、61-63和428-429位氨基酸),突变上述的结合区域导致其聚合微管能力下降,细胞耐盐性降低。因此,PA可能通过靶蛋白MAP65-l将质膜和细胞骨架联系在一起并转导盐信号,对研究植物抗盐有重要的指导作用。蛋白激酶如ANP2/ANP3、MPK4和MPK6等均可磷酸化MAP65-1,通过调节其蛋白活性,参与细胞微管排布和分裂周期的调控[59]。另外,PA还能结合微丝结合蛋白异二聚体加帽蛋白AtCP,并调节后者与微丝的结合活性[60, 61]。深入研究发现,PA和AtCP的互作增加微丝末端动态变化,促进微丝自由端的伸长,该过程可能调控花粉管的发育和植物逆境响应(图 1[62, 63]。可见,植物PLD/PA调控细胞骨架(微管或微丝)应答盐信号的分子通路相对比较复杂,且PA靶蛋白之间存在一定的交叉对话[3]

图 1 PLDs/PA调控的植物耐盐信号通路

利用烟草悬浮细胞蛋白抗体,Gardiner等[64]从烟草中分离到一个分子量大小为90 kD的微管结合蛋白,通过与拟南芥基因数据库比对,发现该蛋白是PLDδ,并具有酯酶活性。拟南芥PLDδ位于细胞质膜,其活性特异性被油酸激活,并参与植物活性氧、耐盐、气孔运动和抗冻等多个重要过程[64-66]。利用正丁醇、NaCl等PLD的激活因子处理烟草悬浮细胞,发现PLD被激活后,细胞周质微管解聚,暗示PLDδ可能是植物中连接微管和质膜的桥梁蛋白,通过感受外界胁迫信号,调节膜脂组合和微管骨架动态,传导信号到胞内[55]。但是,PLDδ蛋白如何调控微管的动态变化(解聚或聚合),PLDδ是否也调控微丝骨架,PLDδ是否通过调节细胞骨架从而调控细胞对盐害等逆境的响应,这些都是亟待解决的科学问题。另外,研究发现,PLDβ能分别被F-肌动蛋白和G-肌动蛋白特异激活和抑制,推测其可能参与微丝重排和花粉管伸长[67]

4 磷脂信号和活性氧爆发

活性氧(Reactive oxygen species,ROS)是植物生长发育和抗逆应答中非常重要的信号分子。研究表明,PLDα1来源的PA结合并激活质膜上的NADPH氧化酶,导致胞内ROS爆发,转导ABA信号和促进气孔关闭[68]。最近研究表明,PLDα1/PA介导的ROS促进了PLDδ与3-磷酸甘油醛脱氢酶(Glyceraldehyde-3-phosphate dehydrogenases,GAPCs)的结合,二者的互作促使PLDδ活性升高,从而调控细胞碳素代谢和膜脂变化并传导ABA信号[69]。上述信号途径可能也参与植物的耐盐过程(图 1)。

5 总结与展望

盐胁迫是植物体经常遭受的非生物胁迫之一,在世界范围影响农作物产量和品质。研究植物应答高盐胁迫的分子机制将有助于选育抗逆作物品种。

大量研究表明植物PLDs/PA是植物耐盐胁迫信号中的重要组成部分,且相关研究已取得了突破性进展;其中,研究发现MAPK6和MAP65-1是PLDs/PA应答盐胁迫的重要靶蛋白,并已从生理、细胞和遗传角度初步揭示其可能的分子机制。在外界胁迫刺激下,PLDs一方面代谢和调节膜脂组分,影响膜的流动性,另一方面,通过产物PA识别、结合和调节下游靶蛋白定位、活性或表达,传递信号和启动胞内应答。然而,PLDs是一个多基因家族,PLDs各成员拥有不同的亚细胞定位、激活条件和调节机制,且PLDs的酶解底物存在较大差异,具有一定的功能特异性;每个PLDs如何特异应答刺激产生信号分子PA并调节下游信号途径,该方面研究进展较缓慢;同时PLDs也可以在蛋白水平与胞内靶蛋白直接互作,调节其酯酶活性。所以大部分PLDs转导盐害等胁迫的分子机制尚不清楚[1]。同时,植物抗盐是一个复杂的生理过程,胞内信号转导途径也存在交叉对话,PLDs之间、PLDs与其他细胞内信使之间都存在复杂的信号转导网络,信号转导网络各成员之间都存在直接或间接的相互作用[1, 5]。因此要探索PLD介导的植物耐盐磷脂信号网络,仍需要大量的深入研究。

此外,另一个重要的磷脂酶PLC也参与植物耐盐过程。PLC的酶解产物DAG可被磷酸化并转化为PA,而该通路如何影响耐盐尚不明确[7]。Hirayama等[70-72]在1995年克隆了拟南芥PI-PLC基因,随后发现其表达受盐、干旱诱导。在绿豆、玉米、棉花、水稻和烟草中,也证实了PI-PLC基因调节植物耐盐性[73-76]。但是,PLC调节植物耐盐信号机制尚需进一步研究。PLD和PLC在耐盐信号转导过程也可能存在一些交叉,研究这些机制对阐明植物生长和发育过程中的磷脂信号转导途径非常重要。

参考文献
[1] 钟秀丽, 崔德才, 李玉中. 磷脂酶D的细胞信号转导作用. 植物生理与分子生物学学报 , 2005, 31 (5) : 451–460.
[2] Wang XM. Phospholipase D in hormonal ands tress signaling. Current Opinion in Plant Biology , 2002, 5 : 408–414. DOI:10.1016/S1369-5266(02)00283-2
[3] Hong YY, Zhao J, Guo L, et al. Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research , 2016, 62 : 55–74. DOI:10.1016/j.plipres.2016.01.002
[4] Hanahan DJ, Chaikoff IL. A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. The Journal Biological Chemistry , 1947, 169 : 699–705.
[5] 闫旭宇, 李玉中, 李玲, 等. 植物中的磷脂酶D信号转导. 植物生理学通讯 , 2006, 42 (6) : 1183–1189.
[6] Wang X. Lipid signaling. Current Opinion in Plant Biollgy , 2004, 7 : 1–8. DOI:10.1016/j.pbi.2003.11.012
[7] Wang X, Devaiah SP, Zhang W, et al. Signaling functions of phosphatidic acid. Progress in Lipid Research , 2006, 45 : 250–278. DOI:10.1016/j.plipres.2006.01.005
[8] Qin C, Wang XM. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiology , 2002, 128 : 1057–1068. DOI:10.1104/pp.010928
[9] Koonin EV. A duplicated catalytic motif in a new superfamily of pho-sphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. Trends in Biochemical Sciences , 1996, 21 : 242–243. DOI:10.1016/S0968-0004(96)30024-8
[10] Zheng L, Shan J, Krishnamoorthi R, et al. Activation of plant phospholipase Dβ by phosphatidylinositol 4, 5-bisphosphate: characterization of binding site and mode of action. Biochemistry , 2002, 41 : 4546–4553. DOI:10.1021/bi0158775
[11] Zhao J, Wang X. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. The Journal Biological Chemistry , 2004, 279 : 1794–1800. DOI:10.1074/jbc.M309529200
[12] Wang C, Wang XM. A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiology , 2001, 127 : 1102–1112. DOI:10.1104/pp.010444
[13] Hong Y, Devaiah SP, Bahn SC, et al. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. The Plant Journal , 2009, 58 : 376–387. DOI:10.1111/tpj.2009.58.issue-3
[14] Zhao J, Devaiah SP, Wang C, et al. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytologist , 2013, 199 : 228–240. DOI:10.1111/nph.12256
[15] Pinosa F, Buhot N, Kwaaitaal M, et al. Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiology , 2013, 163 : 896–906. DOI:10.1104/pp.113.223503
[16] Hong Y, Pan X, Welti R, et al. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. The Plant Cell , 2008, 20 : 803–816. DOI:10.1105/tpc.107.056390
[17] Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, et al. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103 : 6765–6770. DOI:10.1073/pnas.0600863103
[18] Li G, Xue HW. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. The Plant Cell , 2007, 19 : 281–295. DOI:10.1105/tpc.106.041426
[19] Zhao J, Wang C, Bedair M, et al. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS One , 2011, 6 : e28086. DOI:10.1371/journal.pone.0028086
[20] Ljung K, Ostin A, Lioussanne L, et al. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiology , 2001, 125 : 464–475. DOI:10.1104/pp.125.1.464
[21] Normanly J, Cohen JD, Fink GR. Arabidopsis thaliana auxotrophs reveal a tryptophan- independent biosynthetic pathway for indole-3-acetic acid. Proceedings of the National Academy of Sciences of the United States of America , 1991, 90 : 10355–10359.
[22] 夏石头, 萧浪涛. 生长素极性运输的调控及其机制. 植物生理学通讯 , 2003, 39 (3) : 255–261.
[23] 刘士平, 王璐, 王继荣, 等. 高等植物的PIN家族. 植物生理学通讯 , 2009, 45 (8) : 833–841.
[24] Bainbridge K, Guyomarch S, Bayer E, et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Development , 2008, 22 (6) : 810–823. DOI:10.1101/gad.462608
[25] Peer WA, Blakeslee JJ, Yang H, et al. Seven things we think we know about auxin transport. Molecular Plant , 2011, 4 (3) : 487–504. DOI:10.1093/mp/ssr034
[26] Feraru E, Friml J. PIN polar targeting. Plant Physiology , 2008, 147 : 1553–1559. DOI:10.1104/pp.108.121756
[27] Zhao Y, Wang T, Zhang W, et al. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytologist , 2011, 189 : 1122–1134. DOI:10.1111/nph.2011.189.issue-4
[28] Li G, Xue HW. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. The Plant Cell , 2007, 19 : 281–295. DOI:10.1105/tpc.106.041426
[29] Galvan-Ampudia CS, Julkowska MJ, Darwish E, et al. Halotropism is a response of plant roots to avoid a saline environment. Current Biology , 2013, 23 : 2044–2050. DOI:10.1016/j.cub.2013.08.042
[30] Gao HB, Chu YJ, Xue HW. Phosphatidic acid(PA)binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Molecular Plant , 2013, 6 : 1692–1702. DOI:10.1093/mp/sst076
[31] Xu ZS, Liu L, Ni ZY, et al. W55a encodes a novel protein kinase that is involved in multiple stress responses. Journal of Integrative Plant Biology , 2009, 51 (1) : 58–66. DOI:10.1111/jipb.2008.51.issue-1
[32] 孙大业. 植物细胞信号转导研究进展. 植物生理学通讯 , 1996, 32 (2) : 81–91.
[33] Bayerr G, Stael S, Rocha AG, et al. Chloroplast-localized protein kinases: A step forward towards a complete inventory. Journal of Experimental Botany , 2012, 63 (4) : 1713–1723. DOI:10.1093/jxb/err377
[34] Menke FLH, Van Pelt JA, Pieterse CMJ, et al. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. The Plant Cell , 2004, 16 (4) : 897–907. DOI:10.1105/tpc.015552
[35] Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. The Plant Journal , 2000, 24 : 655–665. DOI:10.1046/j.1365-313x.2000.00913.x
[36] Yu LJ, Nie JN, Cao CY. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist , 2010, 188 : 762–773. DOI:10.1111/j.1469-8137.2010.03422.x
[37] Testerink C, Larsen PB, van der Does D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. Journal of Experimental Botany , 2007, 58 : 3905–3914. DOI:10.1093/jxb/erm243
[38] Wang YN, Wang T, Li KX, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regulation , 2008, 54 : 261–269. DOI:10.1007/s10725-007-9249-0
[39] Lei G, Shen M, Li ZG, et al. EIN2 regulates salt stress response and interacts with a MA3 domain containing protein ECIP1 in Arabidopsis. Plant Cell and Environment , 2011, 34 : 1678–1692. DOI:10.1111/pce.2011.34.issue-10
[40] Anthony RG, Henriques R, Helfer A, et al. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO Journal , 2004, 23 : 572–581. DOI:10.1038/sj.emboj.7600068
[41] Zegzouti RG, Anthony N, Jahchan L, et al. Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1(PDK1)in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103 : 6404–6409. DOI:10.1073/pnas.0510283103
[42] Galvan-Ampudia CS, Testerink C. Salt stress signals shape the plant root. Current Opinion in Plant Biology , 2011, 13 : 296–302.
[43] Guo L, Mishra G, Taylor K, et al. Phosphatidic acid binds and stimulates Arabidopsis. The Journal of Biological Chemistry , 2011, 286 : 13336–13345. DOI:10.1074/jbc.M110.190892
[44] Guo L, Mishra G. Connections between sphingosine kinase and Phospholipase D in the abscisic acid signaling pathway in Arabidopsis. The Journal of Biological Chemistry , 2012, 287 : 8286–8296. DOI:10.1074/jbc.M111.274274
[45] Xiong LZ, Yang YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell , 2003, 15 (3) : 745–759. DOI:10.1105/tpc.008714
[46] Lee SK, Kim BG, Kwon TR, et al. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice(Oryza sativa L. ). Journal of Biosciences , 2011, 36 (1) : 139–151. DOI:10.1007/s12038-011-9002-8
[47] Sun X, Yang S, Sun M, et al. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Molecular Biology , 2014, 85 : 33–48. DOI:10.1007/s11103-013-0167-4
[48] Dammann C, Ichida A, Hong B, et al. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiology , 2003, 132 (4) : 1840–1848. DOI:10.1104/pp.103.020008
[49] Campo S, Baldrich P, Messeguer J, et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology , 2014, 165 (2) : 688–704. DOI:10.1104/pp.113.230268
[50] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt / drought tolerance onrice plants. The Plant Journal , 2000, 23 (3) : 319–327. DOI:10.1046/j.1365-313x.2000.00787.x
[51] Ouyang SQ, Liu YF, Liu P, et al. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice(Oryza sativa)plants. The Plant Journal , 2010, 62 (2) : 316–329. DOI:10.1111/j.1365-313X.2010.04146.x
[52] Chen LJ, Wuriyanghan H, Zhang YQ, et al. An s-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiology , 2013, 163 (4) : 1752–1765. DOI:10.1104/pp.113.224881
[53] Zhang Q, Lin F, Mao TL, et al. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. The Plant Cell , 2012, 24 : 4555–4576. DOI:10.1105/tpc.112.104182
[54] 时兰春, 王益川, 王伯初. 植物细胞骨架与细胞生长. 植物生理学通讯 , 2007, 43 : 1175–1181.
[55] Dhonukshe P, Laxalt AM, Goedhart J, et al. Phospholipase D activation correlates with microtubule reorganization in living plant cells. The Plant Cell , 2003, 15 : 2666–2679. DOI:10.1105/tpc.014977
[56] Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant and Cell Physiology , 2007, 48 : 1534–1547. DOI:10.1093/pcp/pcm123
[57] Mao G, Chan J, Calder Q, et al. Modulated taigeting of GFP-AtMAP65-1 to central spindle microtubules during division. The Plant Journal , 2005, 43 : 469–478. DOI:10.1111/tpj.2005.43.issue-4
[58] Komis G, Quader H, Galatis B, et al. Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum: involvement of phospholipase D. New Phytologist , 2006, 171 : 737–750. DOI:10.1111/nph.2006.171.issue-4
[59] Beck M, Komis G, Muller J, et al. Arabidopsis homologs of nucleus-and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. The Plant Cell , 2010, 22 : 755–771. DOI:10.1105/tpc.109.071746
[60] Huang S, Blanchoin L, Kovar DR, et al. Arabidopsis capping protein(AtCP)is a heterodimer that regulates assembly at the barbed ends of actin filaments. The Journal of Biological Chemistry , 2003, 278 : 44832–44842. DOI:10.1074/jbc.M306670200
[61] Huang S, Gao L, Blanchoin L, et al. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Molecular Biology of the Cell , 2006, 17 : 1946–1958. DOI:10.1091/mbc.E05-09-0840
[62] Li J, Henty-Ridilla JL, Huang S, et al. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. The Plant Cell , 2012, 24 : 3742–3754. DOI:10.1105/tpc.112.103945
[63] Wang J, Qian D, Fan T, et al. Arabidopsis actin capping protein(AtCP)subunits have different expression patterns, and downregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress. Plant Science , 2012 : 110–119.
[64] Gardiner JC, Harper JD, Weerakoon ND, et al. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. The Plant Cell , 2001, 13 : 2143–2158. DOI:10.1105/tpc.13.9.2143
[65] Zhang W, Wang C, Qin C, et al. The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. The Plant Cell , 2003, 15 : 2285–2295. DOI:10.1105/tpc.013961
[66] Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell , 2016, 7 (2) : 81–88. DOI:10.1007/s13238-015-0233-6
[67] Pleskot R, Potocky M, Pejchar P, et al. Mutual regulation of plant phospholipase D and the actin cytoskeleton. The Plant Journal , 2010, 62 : 494–507. DOI:10.1111/tpj.2010.62.issue-3
[68] Zhang Y, Zhu H, Zhang Q, et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. The Plant Cell , 2009, 21 : 2357–2377. DOI:10.1105/tpc.108.062992
[69] Guo L, Devaiah SP, Narasimhan R, et al. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases interact with Phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. The Plant Cell , 2012, 24 : 2200–2212. DOI:10.1105/tpc.111.094946
[70] Hirayama T, Ohto C, Mizoguchi T, et al. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America , 1995, 92 (9) : 3903–3907. DOI:10.1073/pnas.92.9.3903
[71] Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. The Plant Cell , 2001, 13 : 1143–1154. DOI:10.1105/tpc.13.5.1143
[72] Xu X, Cao Z, Liu G, et al. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana. Chinese Science Bulletin , 2004, 49 (4) : 567–573.
[73] Yun JK, Kim JE, Lee JH, et al. The Vr-PLC3 gem encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.). FEBS Letters , 2004, 556 (1-3) : 127–136. DOI:10.1016/S0014-5793(03)01388-7
[74] 王春荣. 磷脂酶C基因的过表达对玉米转基因植株抗逆性的影响[D].济南: 山东大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10422-2008189836.htm
[75] 梵文菊.转ZmPLC1基因及聚合ZmPLCa/betA基因棉花耐盐性的研究[D].济南: 山东大学, 2013.
[76] 王法微.水稻磷脂酶C调节耐盐性以及磷脂酶D参与种子老化的研究[D].南京: 南京农业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10307-1013282715.htm