硫化氢(hydrogen sulfide,H2S)在标准状态下是一种易燃的酸性有毒气体,近年来大量的研究结果证实,H2S是生物体内重要的信号分子。H2S的信号作用首先在动物中得到证实[1],随后证明植物体内也可以产生H2S,H2S在调控植物生长发育及逆境适应等多种重要生命过程中发挥重要作用[2-4]。
本文就植物体内H2S的形成、其在植物气孔运动调节及逆境响应方面的研究进展进行概述。
1 植物体内H2S的来源H2S广泛分布于植物体内,合成H2S的途径包括酶促途径和非酶促途径。目前认为植物体内至少有5种酶参与了H2S的合成,它们分别是L-半胱氨酸脱巯基酶(L-cysteine desulphydrase,L-CDes)、D-半胱氨酸脱巯基酶(D-cysteine desulphydrase,D-CDes)、亚硫酸盐还原酶(sulfite reductase,SiR)、氰丙氨酸合酶(cyanide synthase,CAS)和半胱氨酸合酶(cysteine synthase,CS)[5]。2010年,Alvarez等[6]发现O-乙酰基-L-丝氨酸(硫醇)裂解酶(oacetylserine(thiol)lyase,OASTL)催化Cys分解生成H2S的活性高于催化Cys合成,认为该酶是一种新发现的L-CDes,并把它命名为DES1(L-Cys desulfhydrases,AT5G28030)。至今为止只有拟南芥、烟草和油菜等少数植物的L/D-CDes被分析研究。最近本实验室构建AtD-/L-CDes∷GUS转基因拟南芥研究发现,AtD-CDes在叶片中表达量较高,特别是在叶脉、叶肉细胞和气孔保卫细胞中具有较高表达量,在保卫细胞中主要存在于叶绿体中,AtD-CDe亦存在于根部微管组织中;而AtL-CDes存在于子叶尖端、保卫细胞细胞质和中柱原始细胞中[7]。
H2S合成的非酶促反应途径包括将吸收的结合态硫酸盐转化成游离态硫酸盐,最终将多余的硫以H2S气体的形式释放出来;或者L-半胱氨酸在非酶作用下直接还原生成H2S[8]。
2 H2S参与气孔运动的调节气孔是高等植物与外界进行气体和水分交换的主要通道,对各种内外刺激反应非常灵敏,气孔保卫细胞可以感受光照、水分、温度、二氧化碳浓度和激素等不同内外因子,从而调节气孔开闭。脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和茉莉酸(jasmonic acid,JA)等植物激素均对气孔运动起调节作用,Ca2+、一氧化氮(nitric oxide,NO)和过氧化氢(hydrogen peroxide,H2O2)等是气孔信号转导途径的重要信号组分[9, 10]。最早发现外施H2S供体能够调控气孔运动,但作用有所差异。2010年,Lisjak等[11]使用两种H2S供体(NaHS和GYY4137)处理拟南芥和甜椒,发现两种H2S供体处理均可阻止黑暗诱导的气孔关闭,并阻断ABA引起的气孔保卫细胞中NO的积累,但García-Mata和Lamattina[3]、刘菁等[12]越来越多的研究表明,H2S能够诱导拟南芥和蚕豆等植物叶片气孔关闭。
2.1 H2S诱导气孔关闭的信号转导机制H2S通过一系列复杂的信号转导过程(图 1)最终诱导气孔关闭,H2S能够通过Ca2+、G蛋白或细胞外ATP(extracellular ATP,eATP)促进H2O2形成,从而参与对气孔运动的调控[13-15]。Ca2+螯合剂乙二醇-双-(2-氨基乙醚)四乙酸(glycol-bis-(2-aminoethylether)-N,N,N' ,N' -tetraacetic acid,EGTA)和质膜Ca2+通道阻断剂硝苯地平(nifedipine,Nif)能不同程度抑制H2S诱导的气孔关闭,而内质网钙泵阻断剂毒胡萝卜素(thapsigargin,Thaps)对H2S的作用无显著影响,表明H2S通过促进胞外Ca2+内流诱导气孔关闭[13]。在H2S诱导拟南芥气孔关闭过程中G蛋白α亚基(GPA)和β亚基(AGB)基因表达量上调,但H2S对G蛋白α亚基和β亚基缺失突变体Atgpa1-3、Atgpa1-4、Atagb1-1和Atagb1-2叶片气孔运动无显著影响;G蛋白激活剂霍乱毒素(cholera toxin,CTX)增强H2S诱导拟南芥气孔关闭的作用,而其抑制剂百日咳毒素(pertussis toxin,PTX)能够阻断H2S的诱导作用,表明G蛋白参与H2S诱导的拟南芥气孔关闭过程[5]。H2S能够诱导ABC转运体AtMRP4和AtMRP5基因表达,引起eATP积累,促进拟南芥气孔关闭;AtMRP4和AtMRP5缺失取消H2S对eATP积累和气孔关闭的诱导效应,证明AtMRP4和AtMRP5来源的eATP介导了H2S诱导的气孔关闭过程[14]。H2S处理后拟南芥叶片NADPH氧化酶基因AtRBOHD和AtRBOHF以及细胞壁过氧化物酶基因AtPRX34表达增强,引起叶片和保卫细胞中H2O2积累,钙螯合剂EGTA和G蛋白抑制剂PTX对此起抑制作用;外源CaCl2处理可以上调AtRBOHD、AtRBOHF和AtPRX34的表达;G蛋白激活剂霍乱毒素(CTX)促进拟南芥叶片及气孔保卫细胞中H2O2积累;H2S不能促进ABC转运体缺失突变体Atmrp4和Atmrp5中H2O2积累,表明Ca2+、G蛋白和eATP可能位于H2O2上游参与H2S诱导的拟南芥气孔关闭过程[13-15]。Papanatsiou等[16]最近发现外源H2S可以通过抑制内向整流K+通道的K+内流促进气孔关闭。
2.2 H2S参与逆境相关因子调控气孔关闭的机制H2S作为内源信号分子参与干旱、盐害、ABA、乙烯和JA诱导气孔关闭的过程。我们课题组发现AtL/D-CDes启动子含有乙烯响应元件ERE,非生物胁迫响应元件MBS、LTR和ABRE。构建AtD-CDes缺失片段启动子转基因拟南芥的组织特异性分析结果进一步证明,响应乙烯和干旱的关键作用区段分别是-408 bp至-697 bp,-1 bp至-90 bp。研究发现,干旱[17]、盐胁迫[18]、ABA[3, 12]、乙烯[7, 19]和JA[20]能提高L/D-CDes活性和(或)基因表达量、促进H2S合成、诱导气孔关闭;H2S清除剂次牛磺酸(hypotaurine,HT)及合成抑制剂氨氧基乙酸(aminooxy acetic acid,AOA)等均可不同程度抑制这些因子所引起的气孔关闭;逆境对H2S合成突变体Atl-cdes和Atd-cdes气孔关闭的作用效果显著下降[21],表明L/D-CDes途径来源的H2S介导干旱、盐胁迫、ABA、ETH和JA诱导的气孔关闭[7, 17, 19, 20]。本实验室以拟南芥野生型和SOS突变体(Atsos1、Atsos2和Atsos3)为材料研究证实,H2S位于SOS上游介导了盐胁迫诱导气孔关闭过程[18]。利用ABC转运体缺失突变体(Atmrp4,Atmrp5和Atmrp4/Atmrp5)证明ABC转运体位于H2S上游参与盐胁迫诱导气孔关闭过程[22]。Jin等[23]发现H2S合成缺失突变体中Ca2+通道、外向整流K+通道基因表达下调,而内向整流K+通道基因表达上调,气孔开度增大,对干旱敏感性增强,外源H2S可以恢复ABA合成缺失突变体aba3和abi1气孔对干旱的敏感性,aba3和abi1突变体中LCD表达量和H2S含量降低。表明干旱胁迫下ABA通过与H2S互作调控离子运输系统活性诱导气孔关闭。
在响应逆境及相关因子促进气孔关闭过程中,H2S与其他信号分子之间存在联系。例如,NO和H2S之间存在相互作用参与ABA和ETH诱导气孔关闭过程:ABA诱导的NO合成依赖于DES1,并且H2S能促进NO产生[21],在ABA诱导气孔关闭过程中NO位于H2S的下游。NO合成抑制剂和清除剂抑制ETH诱导的L/D-CDes活性和H2S含量的上升,H2S位于NO下游参与ETH诱导气孔关闭的过程[24]。干旱胁迫对H2O2合成缺失突变体AtrbohD、AtrbohF和AtrbohD/F的叶片中H2S含量和L-/D-CDes活性及基因表达量没有显著影响,H2O2清除剂和合成抑制剂均能抑制干旱、ETH和JA诱导的拟南芥叶片H2S含量和L-/D-CDes活性的增加及气孔开度的减小,在干旱、ETH和JA诱导气孔关闭的过程中H2S位于H2O2下游[17, 19, 20]。
3 H2S参与植物的非生物逆境响应过程 3.1 H2S与植物的耐盐性外源H2S至少可以通过4种方式提高植物的耐盐能力(图 2)。
第一,提高植物体清除活性氧的能力。外施H2S可以提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和抗坏血酸过氧化物酶(aseorbateperoxidase,APX)等抗氧化酶,以及抗坏血酸-谷胱甘肽循环相关酶谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)和谷胱苷肽S-转移酶(glutathione S-transferase,GST)等酶活性和(或)基因表达量,维持细胞抗氧化能力和氧化还原平衡,降低活性氧积累,提高水稻、草莓和狗牙根等植物的耐盐性[25-30]。外施H2S供体NaHS可以促进谷胱甘肽还原酶(glutathione reductase,GR),脱氢抗坏血酸还原酶(dehydroascorbate reductase,DHAR)和单脱氢抗坏血酸还原酶(monodehydroascorbatereductase,MDHAR)等参与谷胱甘肽和抗坏血酸代谢相关基因表达,维持细胞还原态谷胱甘肽和抗坏血酸水平,抑制盐胁迫诱导的活性氧积累和膜脂过氧化作用[31]。
第二,维持盐胁迫条件下的离子平衡。外施H2S能够调节水稻对钙、镁、铁等营养离子吸收和K+/Na+平衡[25],上调草莓SOS途径基因(SOS2-like,SOS3-like和SOS4)表达[26];提高大麦根部内向整流K+-通道基因HvAKT1、高亲和K+转运蛋白基因HvHAK4、质膜H+-ATPase基因HvHA1和Na+/H+反向转运体基因HvSOS1以及液泡膜Na+/H+反向转运体基因HvVNHX2和H+-ATPase β亚基基因HvVHA-β表达,促进K+吸收Na+向胞外和液泡分泌,维持细胞Na+/K+平衡,提高其耐盐性[29, 30]。
第三,能够促进脯氨酸和可溶性糖等渗透调节物质积累,以提高其抗盐性[27, 28]。
第四,通过其他信号分子提高耐盐性。例如,H2S通过NO提高苜蓿和大麦耐盐性,H2S可以促进大麦根部NO积累,而NO清除剂cPTIO消除H2S对苜蓿和大麦盐胁迫的缓解作用[29, 30];H2S能诱导6-磷酸葡萄糖脱氢酶(glucose-6-phosphate dehydrogenase,G6PDH)和质膜NADPH氧化酶活性升高,促进H2O2合成,而H2O2清除剂二甲叉三脲(dimethylthiourea,DMTU)和合成抑制剂二苯基碘(diphenyliodonium,DPI)取消H2S作用,表明H2O2介导H2S诱导的耐盐性[32]。
3.2 H2S与植物的耐旱性外施H2S能够诱导气孔关闭、促进脯氨酸和可溶性糖等渗透调节物质积累,以提高其抗旱性[27, 33];能够显著提高植物体SOD、CAT和APX等抗氧化酶以及(或)GR、MDHAR、DHAR、L-半乳糖内酯脱氢酶(L-Galactono-1,4-lactone dehydrog-enas,GalLDH)等抗坏血酸代谢和谷胱甘肽代谢相关酶活性,降低脂氧合酶(lipoxygenase,LOX)活性,减少H2O2和O2-·积累,缓解干旱对甘薯、大豆和小麦幼苗等造成的氧化损伤[27, 33, 34];可以诱导拟南芥干旱诱导基因CBF1、CBF3、CBF4、DREB2A、DREB2B、RAB18、RD29A和RD29的表达,提高其干旱条件下的存活率[35, 36];亦可降低干旱胁迫下柑橘叶片蛋白的羰基化和S-亚硝基化水平,通过影响蛋白质的翻译后修饰,进而提高植物的抗旱性[37]。
内源H2S亦参与植物的干旱应答过程。干旱胁迫下ABA通过与H2S互作调控离子运输系统活性诱导气孔关闭[23];PEG8000模拟干旱处理野生型拟南芥能够促进H2S合成相关酶基因LCD、DCD1、NFS1、NFS2和DES1表达,促进H2S产生,并引发干旱响应miRNA,如miR167、miR39、miR396和miR398的转录改变,进一步影响其靶基因表达。外源H2S处理能模拟PEG8000引发的miRNA转录改革并诱导其靶基因表达变化,LCD突变削弱PEG8000对miRNA转录的影响,表明干旱胁迫下植物通过合成H2S调节干旱相关miRNA转录提高其抗旱性[38]。
3.3 H2S与植物对温度逆境的响应极端温度影响植物生长发育,H2S在植物抵御低温和高温中的作用引起人们的关注。发现外源H2S提高小麦幼苗叶片水溶性非蛋白巯基(主要是谷胱甘肽)水平,提高其耐寒性[39];低温上调拟南芥LCD和DCD1表达量,提高LCD和DCD活性及H2S含量,LCD和DCD1过表达提高拟南芥对低温的抵抗能力,而LCD和DCD1缺失和H2S清除剂则导致胁迫条件下拟南芥存活率降低,内源H2S参与拟南芥低温应答过程。H2S可能通过提高抗氧化酶活性和抗氧化物质含量,调控CBF1、CBF3和CBF4等抗逆相关基因表达参与植物对低温等逆境的响应过程[36]。
H2S处理提高高温胁迫下玉米幼苗胚芽鞘海藻糖-6-磷酸磷酸酯酶(trehalose-6-phosphate phosphatase,TPP)和吡咯啉-5-羧酸-合成酶(△' -pyrroline-5-carboxylate synthetase,P5CS)活性,降低脯氨酸脱氢酶(proline dehydrogenase,ProDH)活性,促进海藻糖和脯氨酸积累,提高其耐热性[40];外源H2S提高高温胁迫下烟草悬浮细胞的存活率和高温后恢复生长的能力,该作用被外源Ca2+加强,而被Ca2+螯合剂EGTA、质膜Ca2+通道阻断剂La3+、钙调素(calmodulin,CaM)拮抗物氯丙嗪(chlorpromazine,CPZ)和三氟吡啦嗪(trifluoperazine)削弱,而不受胞内Ca2+通道阻断剂钌红(ruthenium red,RR)影响,表明H2S提高植物的耐热性需要胞外Ca2+的内流及CaM的参与[41]。高温促进烟草幼苗烟碱合成,同时促进烟草幼苗H2S和JA(jasmonic acid,JA)合成,H2S合成抑制剂取消高温的作用,高温不能诱导L-CDes RNAi干扰株系烟碱和JA合成,表明H2S位于JA上游介导高温诱导的烟碱合成[42]。Li等[5, 43]研究发现,H2S参与SA诱导的玉米幼苗耐热性,SA预处理诱导玉米幼苗L-CDes活性提高,促进H2S积累,提高高温胁迫下玉米幼苗的存活率,而H2S合成抑制剂炔丙基甘氨酸(DL-propargylglycine,PAG)和清除剂羟胺(hydroxylamine,HT)削弱SA的作用,但SA合成抑制剂多效唑(paclobutrazol,PAC)和氨基茚磷酸(2-aminoindan-2-phosphonic acid,AIP)对H2S诱导的耐热性无显著作用,表明H2S位于SA下游介导玉米幼苗的耐热性。
3.4 H2S与重金属胁迫由于工业“三废”(废水、废渣和废气)、机动车尾气的排放、污水灌溉和农药、除草剂、化肥等的使用造成土壤、水质和大气的重金属污染,近年来,土壤重金属污染对植物生长发育的影响受到广泛关注。研究发现,H2S可以提SOD、POD、APX、CAT和GR等抗氧化酶活性,缓解镉、铝、铬、铅和砷引发的氧化损伤[36, 44-52]能提高植物对氮、磷、钾等大量元素和锰、铁、铜等微量元素的吸收,维持叶肉细胞和根尖细胞的正常结构和功能,降低有害离子的吸收,缓解镉、铝、铅和砷对大麦、油菜和大豆幼苗的毒害作用[36, 47-51];能阻止镉胁迫下H2O2激活的质膜Ca2+-通道介导的镉内流,促进镉经液泡膜Cd+/H+反向传递体向液泡分泌,降低胡杨的镉胁迫[52]。
内源H2S参与植物对镉、铝和铬等重金属胁迫的响应。镉胁迫上调白菜幼苗和大麦根部H2S合成相关酶基因L/D-CDes和DES1表达,促进内源H2S含量升高[53];外源H2S预处理提高谷胱甘肽代谢相关酶以及抗氧化酶基因表达,维持还原性谷胱甘肽含量并降低活性氧积累,降低镉的伤害作用[54]。Shi等[55]和Li等[56]发现镉胁迫诱导狗牙根NO和H2S的产生,外施NO和H2S提高镉胁迫下狗牙根和苜蓿根部SOD和POD等抗氧化酶活性,提高GSH含量,降低氧化损伤,缓解对生长的抑制;Shi等[55]利用狗牙根研究发现H2S合成抑制剂和清除剂削弱NO的作用,而NO清除剂对H2S的作用无显著影响,表明NO位于H2S上游参与镉胁迫响应。而Li等[56]利用苜蓿研究表明,NO清除剂削弱H2S的作用,H2S处理促进苜蓿NO的产生,表明NO位于H2S下游介导镉胁迫应答。
Ca2+可能位于H2S的上游参与铬胁迫应答。Fang等[57]证明铬胁迫诱导谷子幼苗H2S和Ca2+信号的产生,Ca2+通过H2S依赖方式促进金属螯合剂合成相关基因MT3A和PCS表达,提高铬胁迫下谷子幼苗叶片SOD、POD等抗氧化酶活性。腺苷酸环化酶抑制剂四氧嘧啶(alloxan)和DDA不同程度降低NaHS对铝胁迫的缓解作用,表明H2S可能通过cAMP参与大麦铝胁迫响应过程[54]。
4 H2S参与植物的生物逆境响应过程H2S与油菜、葡萄和拟南芥等植物的抗病性有关[36]。Bloem等[58]发现核盘菌侵染诱导油菜H2S释放量增多,增施硫肥能使感染叶斑菌的油菜叶片逐渐恢复正常,并且这种变化与植物体内H2S含量相关[59]。本实验室证明H2S参与葡萄抗霜霉病过程,葡萄霜霉病菌侵染能够显著增强葡萄抗性品种‘左优红’L/D-CDes基因表达量和H2S含量增加;外源H2S提高抗病相关蛋白多酚氧化酶(polyphenoloxidase,PPO)和β-1,3葡聚糖酶(β-1,3-glucanase,Glu)活性,H2S清除剂HT对此起抑制作用;并且H2O2清除剂抗坏血酸可显著抑制霜霉病菌诱导的H2S含量的升高,而H2S清除剂HT对霜霉病菌诱导的H2O2含量变化影响不显著,推测H2S作用于H2O2的下游参与葡萄抵御霜霉病过程[60]。病原菌Pst DC3000侵染诱导拟南芥叶片LCD和DCD1表达量和H2S含量升高,LCD和DCD1过表达提高拟南芥植物的抗病性,而LCD和DCD1缺失则导致拟南芥抗病性降低;H2S可能通过miR393-依赖的生长素信号途径和调节SA诱导的抗病基因表达影响植物的抗病性[36]。
5 问题与展望目前有关H2S在植物中作用的研究较多集中在H2S缓解逆境造成的氧化损伤,调节离子吸收和渗透平衡等生理作用方面,H2S介导的信号转导过程和分子机制的研究相对欠缺。因此,今后可考虑从以下几个方面深入研究:(1)逆境胁迫可以促进H2S的合成,但H2S合成的调控机制尚未见报道。需要探究能够调节H2S合成酶的转录因子和其他调控因子。(2)作为信号分子,植物体内是否存在H2S的特异受体,对此问题可以通过生物学和物理化学等方法筛选与H2S特异结合的蛋白质,研究其作用机制;(3)在植物生长发育调控中H2S与H2O2、NO与Ca2+等信号分子之间存在相互作用,还需要寻找信号传递链的其他信号组分,完善H2S介导的信号传递链。(4)植物中存在WRKY和MYB等许多参与低温、盐和干旱诱导的转录因子[61, 62],Ziogas等[37]筛选到干旱胁迫下受H2S特异诱导的基因,挖掘H2S特异诱导基因及其互作的转录因子,研究其作用机制,进一步研究H2S参与逆境应答的分子机制将有助于深入理解H2S的生物学功能。
[1] | Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci , 1996, 16 : 1066–1071. |
[2] | Fang T, Cao Z, Li J, et al. Auxin-induced hydrogen sulphide generation is involved in lateral root formation in tomato. Plant Physiol Bioch , 2014, 76 : 44–51. DOI:10.1016/j.plaphy.2013.12.024 |
[3] | García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol , 2010, 188 (4) : 977–984. DOI:10.1111/j.1469-8137.2010.03465.x |
[4] | Kajimura M, Fukuda R, Bateman RM, et al. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal , 2010, 13 (2) : 157–192. DOI:10.1089/ars.2009.2657 |
[5] | Li ZG, Xie LR, Li XJ. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize(Zea mays L.)seedlings. J Plant Physiol , 2015, 177 : 121–127. DOI:10.1016/j.jplph.2014.12.018 |
[6] | Alvarez C, Calo L, Romero LC, et al. An O-acetytlserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol , 2010, 152 (2) : 656–669. DOI:10.1104/pp.109.147975 |
[7] | Hou ZH, Wang LX, Liu J, et al. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Plant Biol , 2013, 55 (3) : 277–289. DOI:10.1111/jipb.2013.55.issue-3 |
[8] | Riemenschneider A, Nikiforova V, Hoefgen R, et al. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physio Biochem , 2005, 43 : 473–483. DOI:10.1016/j.plaphy.2005.04.001 |
[9] | Hossain MA, Munemasa S, Uraji M, et al. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol , 2011, 156 (1) : 430–438. DOI:10.1104/pp.111.172254 |
[10] | Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol , 2014, 165 : 759–773. DOI:10.1104/pp.114.237925 |
[11] | Lisjak M, Srivastava N, Teklic T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem , 2010, 48 (12) : 931–935. DOI:10.1016/j.plaphy.2010.09.016 |
[12] | 刘菁, 侯智慧, 赵方贵, 等. H2S参与ABA诱导的蚕豆气孔关闭. 西北植物学报 , 2011, 31 (2) : 298–304. |
[13] | 李洪旺, 车永梅, 侯丽霞, 等. Ca2+位于H2O2上游参与H2S诱导的拟南芥气孔关闭过程. 植物生理学报 , 2015, 51 (1) : 51–56. |
[14] | Wang LX, Ma XY, Che YM, et al. Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis. Sci Bull , 2015, 60 (4) : 419–427. DOI:10.1007/s11434-014-0659-x |
[15] | 张丹丹, 车永梅, 侯丽霞, 等. G蛋白位于H2O2上游参与H2S诱导的拟南芥气孔关闭过程. 植物生理学报 , 2013, 49 (2) : 181–187. |
[16] | Papanatsiou M, Scuffi D, Blatt MR, et al. Hydrogen sulfide regulates inward-rectifying K+ channels in conjunction with stomatal closure. Plant Physiol , 2015, 168 : 29–35. DOI:10.1104/pp.114.256057 |
[17] | 王兰香, 侯智慧, 侯丽霞, 等. H2O2介导的H2S产生参与干旱诱导的拟南芥气孔关闭. 植物学报 , 2012, 47 (3) : 217–225. |
[18] | 车永梅, 邹雪, 王兰香, 等. H2S位于SOS上游参与盐胁迫诱导的拟南芥气孔关闭. 植物生理学报 , 2012, 48 (11) : 1098–1104. |
[19] | 侯智慧, 车永梅, 王兰香, 等. H2S位于H2O2下游参与乙烯诱导拟南芥气孔关闭过程. 植物生理学报 , 2012, 48 (12) : 1193–1199. |
[20] | 侯智慧, 刘菁, 侯丽霞, 等. H2S可能作为H2O2的下游信号介导茉莉酸诱导的蚕豆气孔关闭. 植物学报 , 2011, 46 (4) : 396–406. |
[21] | Scuffi D, álvarez C, Laspina N, et al. Hydrogen sulfide generated by L-Cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol , 2014, 166 : 2056–2076. |
[22] | 吴延朋, 李洪旺, 侯丽霞, 等. ABC转运体位于H2S上游参与盐胁迫诱导的拟南芥气孔关闭. 植物生理学报 , 2014, 50 (4) : 401–406. |
[23] | Jin Z, Xue S, Luo Y, et al. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem , 2013, 62 : 41–46. DOI:10.1016/j.plaphy.2012.10.017 |
[24] | Liu J, Hou ZH, Liu GH, et al. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stoma l closure in Vicia faba L. J Interg Agr , 2012, 11 (10) : 1644–1653. DOI:10.1016/S2095-3119(12)60167-1 |
[25] | Mostofa1 NG, Saegusa D, Fujita F, et al. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front Plant Sci , 2015, 6 : 1055. |
[26] | Christou A, Manganaris GA, Papadopoulos I, et al. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot , 2013, 64 (7) : 1953–1966. DOI:10.1093/jxb/ert055 |
[27] | Shi HT, Ye TT, Chan ZL. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass(Cynodon dactylon(L).Pers. Plant Physiol Bioch , 2013, 71 : 226–234. DOI:10.1016/j.plaphy.2013.07.021 |
[28] | Yu LX, Zhang CJ, Shang HQ, et al. Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. J Interg Agr , 2013, 12 (3) : 445–456. DOI:10.1016/S2095-3119(13)60245-2 |
[29] | Wang YQ, Li L, Cui WT, et al. Hydrogen sulfide enhances alfalfa(Medicago sativa)tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil , 2012, 351 : 107–119. DOI:10.1007/s11104-011-0936-2 |
[30] | Chen J, Wang WH, Wu FH, et al. Hydrogen sulfide enhances salt tolerance through nitric oxidemediated maintenance of ion homeostasis in barley seedling roots. Sci Rep , 2015, 5 : 12516. DOI:10.1038/srep12516 |
[31] | Lai DW, Mao Y, Zhou H, et al. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K + loss in seedlings of Medicago sativa. Plant Sci , 2014, 225 (8) : 117–129. |
[32] | Li J, Jia H, Wang J, et al. Hydrogen sulfide is involved in maintai-ning ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma , 2014, 251 (4) : 899–912. DOI:10.1007/s00709-013-0592-x |
[33] | Shan CJ, Zhang SL, Li DF, et al. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol Plant , 2011, 33 : 2533–2540. DOI:10.1007/s11738-011-0746-4 |
[34] | Zhang H, Ye YK, Wang SH, et al. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul , 2009, 58 : 243–250. DOI:10.1007/s10725-009-9372-1 |
[35] | Jin Z, Shen J, Qiao Z, et al. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Co , 2011, 414 (3) : 481–486. DOI:10.1016/j.bbrc.2011.09.090 |
[36] | Shi HT, Ye TT, Han N, et al. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Interg Plant Biol , 2015, 57 (7) : 628–640. DOI:10.1111/jipb.v57.7 |
[37] | Ziogas V, Tanou G, Belghazi M, et al. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Mol Biol , 2015, 89 : 433–450. DOI:10.1007/s11103-015-0379-x |
[38] | Shen J, Xing T, Yuan H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS One , 2013, 8 (10) : e77047. DOI:10.1371/journal.pone.0077047 |
[39] | Stuiver CEE, De Kok LJ, Kuiper PJC. Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation. Plant Physiol Biochem , 1992, 30 : 47–55. |
[40] | Li ZG, Ding XJ, Du PF. Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol , 2013, 170 : 741–747. DOI:10.1016/j.jplph.2012.12.018 |
[41] | Li L, Wang YQ, Shen WB. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals , 2012 (25) : 617–631. |
[42] | Chen XD, Chen Q, Zhang XM, et al. Hydrogen sulfide mediates nicotine biosynthesis in tobacco(Nicotiana tabacum)under high temperature conditions. Plant Pysiol Bioch , 2016, 104 : 174–179. DOI:10.1016/j.plaphy.2016.02.033 |
[43] | Li ZG. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize(Zea mays L.)seedlings. Plant Signal Behav , 2015, 10 (9) : e1051278. DOI:10.1080/15592324.2015.1051278 |
[44] | Zhang H, Tan ZQ, Hu LY, et al. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol , 2010, 52 : 556–567. DOI:10.1111/jipb.2010.52.issue-6 |
[45] | Zhang H, Hu LY, Hu KD, et al. Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. J Integr Plant Biol , 2008, 50 : 1518–1529. DOI:10.1111/jipb.2008.50.issue-12 |
[46] | Zhang H, Hu LY, Li P, et al. Hydrogen sulfide alleviated chromium toxicity in wheat. Biologia Plantrum , 2010, 54 (4) : 743–747. DOI:10.1007/s10535-010-0133-9 |
[47] | Dawood M, Cao FB, Jahangir MM, et al. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater , 2012, 209-210 : 121–128. DOI:10.1016/j.jhazmat.2011.12.076 |
[48] | Ali B, Gill R, Yang S, et al. Hydrogen sulfide alleviates admium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicol Environ Saf , 2014, 110 : 197–207. DOI:10.1016/j.ecoenv.2014.08.027 |
[49] | Ali B, Song MJ, Hu WZ, et al. Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oil seed rape. Ecotoxicol Environ Saf , 2014, 102 : 25–33. DOI:10.1016/j.ecoenv.2014.01.013 |
[50] | Ali B, Mwamba TM, Gill RA, et al. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul , 2014, 74 : 261–273. DOI:10.1007/s10725-014-9917-9 |
[51] | Ali B, Qian P, Sun R, et al. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environ Sci Pollut Res , 2015, 22 : 3068–3081. DOI:10.1007/s11356-014-3551-y |
[52] | Sun J, Wang RJ, Zhang X, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Bioch , 2013 (65) : 67–74. |
[53] | Zhang LP, Pei YX, Wang HJ, et al. Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. Oxid Med Cell Longev , 2015, 5015 : 804603. |
[54] | Cui WT, Chen HP, Zhu KK, et al. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced(Homo)glutathione and reactive oxygen species homeostases. Plos One , 2014, 9 (10) : e109669. DOI:10.1371/journal.pone.0109669 |
[55] | Shi H, Ye T, Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass(Cynodon dactylon(L). Pers.). Plant Physiol Bioch , 2014, 74 : 99–107. DOI:10.1016/j.plaphy.2013.11.001 |
[56] | Li ZG, Gong M, Xie H, et al. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco(Nicotiana tabacum L.)suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci , 2012, 185-186 : 185–189. DOI:10.1016/j.plantsci.2011.10.006 |
[57] | Fang HH, Jing T, Liu ZQ, et al. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium , 2014, 56 (6) : 472–481. DOI:10.1016/j.ceca.2014.10.004 |
[58] | Bloem E, Haneklaus S, Kesselmeier Jr, et al. Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops. J Agric Food Chem , 2012, 60 (31) : 7588–7596. DOI:10.1021/jf301912h |
[59] | Bloem E, Riemenschneider A, Volker J, et al. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J Exp Bot , 2004, 55 (406) : 2305–2312. DOI:10.1093/jxb/erh236 |
[60] | 王文杰, 车永梅, 郭秀萍, 等. H2S位于H2O2下游介导葡萄抗霜霉病过程. 植物病理学报 , 2013, 5 : 475–485. |
[61] | Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcrip-tion factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta , 2007, 226 (1) : 125–137. DOI:10.1007/s00425-006-0474-y |
[62] | Wang RK, Cao ZH, Hao YJ. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant , 2014, 150 (1) : 76–87. DOI:10.1111/ppl.2014.150.issue-1 |